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Abstract
One of the most exciting developments in signal transduction research has been the proliferation
of studies in which a biological discovery was initiated by computational modeling. Here we
review the major efforts that enable such studies. First, we describe the experimental technologies
that are generally used to identify the molecular components and interactions in, and dynamic
behavior exhibited by, a network of interest. Next, we review the mathematical approaches that
are used to model signaling network behavior. Finally, we focus on three specific instances of
“model-driven discovery”: cases in which computational modeling of a signaling network has led
to new insights which have been verified experimentally.

Signal transduction networks are the bridge between the extraordinarily complex extracellular
environment and a carefully orchestrated cellular response. These networks are largely composed
of proteins which can interact, move to specific cellular locations, or be modified or degraded. The
integration of these events often leads to the activation or inactivation of transcription factors,
which then induce or repress the expression of thousands of genes.

Because of this critical role in translating environmental cues to cellular behaviors, malfunctioning
signaling networks can lead to a variety of pathologies. One example is cancer, in which many of
the key genes found to be involved in cancer onset and development are components of signaling
pathways [1, 2]. A detailed understanding of the cellular signaling networks underlying such
diseases would likely be extremely useful in developing new treatments.

However, the complexity of signaling networks is such that their integrated functions cannot be
determined without computational simulation. In recent years, mathematical modeling of signal
transduction has led to some exciting new findings and biological discoveries. Here, we review the
work that has enabled computational modeling of mammalian signaling networks, as well as the
demonstrated value of such modeling. We begin by reviewing the experimental techniques
commonly associated with model-building efforts, in terms of mapping network interactions as
well as determining the dynamic network response to perturbation. We then discuss modeling
strategies, and finally focus on three cases that dramatically illustrate the power of models to
discover new biology.
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Mapping Network Interactions
Experimental interrogation and realistic mathematical modeling of a biological signaling
circuit require at least partial knowledge of the elements of the system, and how these
elements interact. Although the term “interactome” is generally invoked in the context of
protein-protein interactions, the complete interactome describes the set of physical
interactions between all biological molecules in vivo. These interactions are the basis for all
biological phenomena.

Focused experimental studies have traditionally expanded the known interactome through
sequential discovery and characterization of genes and proteins. Most model builders begin
by obtaining this data from the published literature, in order to compile a coherent set of
signaling components and interactions. Increasing the efficiency of this process would
relieve a significant bottleneck in biomedical research. This can be done by either
developing high throughput technologies that can identify network components and
interactions en masse, or by facilitating the data mining process so that network
reconstruction requires minimal human curation.

The interactome can be divided into three partially overlapping subsets: binary interactions,
co-complex interactions, and functional interactions. The most widely used high throughput
method for mapping binary protein interactions is yeast two hybrid (Y2H) screening [3-5].
In Y2H, interaction between bait and prey proteins reconstitutes an active transcription
factor that drives expression of a reporter. Other approaches for detecting binary molecular
interactions range from those that can be performed in mammalian cells [6-8] to a versatile
in vitro method that uses a microfluidic chip [9-11]. Protein-DNA interactions can also be
characterized with ChIP-chip [12] and ChIP-seq [13], which can detect binary interactions
that may exist within a multi-molecular complex.

Affinity purification-based mass spectrometry (AP-MS) has become the standard technique
for probing the space of protein co-complex interactions. Although more technically
demanding than Y2H, AP-MS has the ability to track the dynamic composition of
macromolecular complexes in a near physiological setting [14]. Complexes containing
tagged bait proteins are isolated in the AP step, then the proteins in the complexes are
identified and quantified by MS [14]. Most large scale efforts have been directed toward S.
cerevisiae [15, 16], but a limited number of studies have applied AP-MS to small parts of
the human interactome [17, 18].

A functional interaction is the effect of one molecule on the activity of another molecule,
regardless of the path of physical interactions from one molecule to the other. Functional
interactions can be inferred by gene co-expression as measured by cDNA microarrays [19].
Alternatively, by perturbing cells with cDNA or RNAi libraries, functional screens can
identify genetic perturbations that affect the activity of a given signaling pathway [20, 21].

Informatics-based approaches focus both on making manually curated networks easily
accessible and reconstructing networks automatically. An example of focused manual
curation is a recently compiled comprehensive map of the epidermal growth factor receptor
signaling system [22]. Such maps, made available in a readily useable standard such as
SBML [23] or CellML [24], could be extremely valuable to modelers. Large scale efforts to
manually assimilate biological knowledge include KEGG (Kyoto Encyclopedia of Genes
and Genomes) [25] and Ingenuity Pathway Analysis (Ingenuity Systems). Automated
reconstruction of signaling networks is generally based on probabilistic methods that can
integrate data from various sources [add Sachs] [26-28].
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Up to this point, both high throughput experimental technology and automated data mining
are underutilized in mammalian signal transduction modeling efforts. This may be due to the
general modeling preference for smaller, well documented networks over larger networks
with less characterization. Until recently, the data quality of Y2H and AP-MS was broadly
questioned [5, 14, 29]. This may be due to the general modeling preference for smaller, well
documented networks over larger networks with less characterization. However, a thorough
comparative analysis by Yu et al. suggests that both Y2H and AP-MS provide high quality
interactome maps [30]. A paradigm for future studies is the work by Bouwmeester et al.,
who combined RNAi perturbations with AP-MS to map the physical and functional
interactions of the TNFα/NF-κB signaling pathway [17]. Finally, recent work indicates that
literature-curated interaction databases may be subject to inspection biases and therefore less
reliable that commonly thought [30, 31]. Such findings may lead to a greater use of high
throughput interactome data and automated network reconstruction in generating signaling
network models.

Quantitatively Measuring Signaling Dynamics
Static, topological information is only a first step towards a complete understanding of
cellular signaling. To accurately describe signal transduction, computational models must
account for the intricate spatiotemporal dynamics that shape cell decisions [32]. For
example, most protein signals are transmitted by changes in abundance, localization,
activity, interactions, or post-translational state [33]. Technologies for experimentally
measuring signaling dynamics can be broadly classified as population- or single cell-based
(Table 1). Ideally, intracellular activity should be measured in single cells, because
population-based assays can mask heterogeneity in single cell behaviors (e.g., all-or-none or
asynchronous responses). However, the variety of measurable signals and the throughput of
population level assays are generally superior to single cell approaches [34].

A range of dynamic cellular signals can be measured in low throughput using population
level techniques based on separation by gel electrophoresis. An immunoblot (or western
blot) measures protein abundance [35] and can be combined with subcellular fractionation to
determine a protein's location, or with phospho-specific antibodies to detect protein
phosphorylation. The electrophoretic mobility shift assay (EMSA, also called the gel shift
assay) is a sensitive method to determine the DNA-binding ability of a protein in nuclear
extract [36]. Gel-based in vitro kinase assays measure incorporation of radioactive 32P into a
peptide fragment substrate to determine the activity of a particular kinase.

Using gel-based methods in conjunction with quantitative modeling has some limitations.
Because the linear dynamic range of many gel quantification instruments is relatively small,
it would be appropriate to generate standard curves to relate intensity to protein
concentration. Unfortunately, this rarely occurs. Furthermore, the Bradford assay that is
often used to normalize cell lysates is linear over a very narrow range of protein
concentrations, but this can be improved by calculating the ratio of absorbances at two
wavelengths rather than only measuring one [46]. Additionally, the time required to process
cellular samples means that very short time points (e.g., 5 minutes or less) are likely to have
more experimental error than longer time points.

Proteomic measurements can be scaled up using mass spectrometry or multiplexed
immunoaffinity methods [47]. In addition to mapping the existence of phosphorylation sites,
mass spectrometry allows one to quantify hundreds or thousands of peptides and their post-
translational modifications [38, 48]. Although mass spectrometry can resolve many closely
related peptides, analysis is time-consuming and dynamic experiments have been limited to
a few time points [34].
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Multiplexed protein microarrays use affinity reagents spotted onto solid supports similar to
cDNA microarrays. These techniques are related to traditional ELISA, in which antigens or
antibodies are fixed to a surface and then secondary antibodies are linked to enzymatic
detection. Similar to this format, protein microarrays typically employ the sandwich format,
in which separate antibodies are used for capture to a solid surface and for fluorescent
detection. The specificity resulting from sandwich type assays are generally preferred for
cell signaling studies [33]. A commercial suspension microbead assay also using the
sandwich format shows great promise [49]. In this technique, fluorescently bar-coded beads
coated with capture antibodies are quantified using flow cytometry. Comprehensive sets of
antibodies for capture and detection are limiting and crosstalk can be an issue for all
immunoaffinity methods. In addition, regulated protein complexing may interfere with
affinity binding sites or lead to artificially higher detection signal [33]. Although the number
of proteins which can be detected is not as high as mass spectrometry, protein microarray
and microbeads can be customized to specifically probe relevant proteins in a signaling
pathway.

Single cell measurements can be performed on living or fixed specimens. Live cell
microscopy allows one to follow a cell and its progeny over timescales of seconds to days.
When combined with genetically encoded fluorescent proteins, live cell imaging allows
direct observation of signaling events [42]. Fluorescent proteins can be tied to the
transcriptional activity of a promoter or fused to a protein of interest to measure abundance
and subcellular localization [41, 50]. FRET-based sensors can be constructed from
fluorescent proteins to track enzymatic activity or post-translational changes, but such
sensors currently only exist for a small number of signaling pathways [51]. A technique
developed by Bertrand et al. allows tracking of mRNA in living cells by expression of a
fluorescent protein fused to the RNA-binding protein MS2 and addition of MS2-binding
sites to the mRNA of interest [52, 53]. Bioluminescence produced by luciferase can also be
used to infer gene expression in live single cells [54] and has the advantage of very low
background [55]. Given the optical properties of today's fluorescent proteins, a basic
fluorescence microscopy setup can distinguish up to four colors [56]. If one wishes to mimic
and model the in vivo signaling dynamics as closely as possible, it is important that fusion
proteins retain not only endogenous function but regulation of expression. This can be
particularly difficult in mammalian systems, where regulatory elements in chromatin and
mRNA are generally poorly defined [57]. Although typically considered low throughput,
large scale efforts have been made to systematically tag and track the abundance and
subcellular location of proteins in mammalian cells [58, 59]. Data extraction from the raw
images often determines throughput, but image analysis tools are being developed to
quantify images more rapidly [60].

Measuring intracellular signaling dynamics with immunofluorescence microscopy [43] or
multi-color flow cytometry [45] requires cell fixation. This means that one can monitor the
population dynamics on a single cell level, but cannot follow the same cell over time. Both
techniques can avoid expression of fusion proteins, but rely heavily on antibodies specific
for phosphorylated signaling proteins. While multi-color flow cytometry allows
quantification of up to seventeen colors and two light scattering parameters, it is unable to
detect localization [44]. Flow cytometry is also well-established for studying heterogeneous
cell populations on the basis of cell surface marker expression. Irish et al. leveraged these
strengths of flow cytometry to identify potentiated signaling pathways in subsets of cells
from patients with acute myeloid leukemia [61].

In the modeling studies we surveyed for this review, immunoblots were still the dominant
experimental method for determining network dynamics. However, live-cell imaging has
appeared more often in recent years.
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Mathematical Approaches to Network Modeling
Given a signaling network which has been reconstructed and for which some dynamic
information is available, a variety of mathematical approaches may be used to infer critical
components or predict behaviors. Integrated modeling-experimental studies are enhanced
when, some model parameters are fit using experimental data, and some model predictions
are directly tested experimentally. For this reason, the scale and detail of the experimental
method(s) and modeling approach should be compatible. Examples of several techniques for
modeling mammalian signaling networks is given in Figure 1, and Table 2 highlights
published models of mammalian signaling circuits, including the type of model and
experimental methods.

Modeling with Differential Equations
The most common modeling approach is to represent the signaling system as a set of
ordinary differential equations (ODEs) using mass action kinetics, which can be integrated
to determine the concentration of species over time [105].

Small sets of ODEs can either be solved exactly or by an approximate analytical solution.
Using techniques such as phase space portraits, one can easily identify steady states and
visualize how the dynamic behavior varies with the state of the system. Analytical methods
are useful for studying the recurring modules and network motifs that constitute larger
biochemical networks [106-109]. Investigation of a signaling network's positive and
negative feedback loops can give insight into the network's behavior and identify important
system properties such as multistability, excitability, and limit cycle oscillations [109-111].
Bifurcation analysis is helpful in understanding the transitions between dynamic behaviors
that result from changes in model parameters.

As the size of the dynamical system increases, analytical and graphical approaches become
increasingly difficult. Consequently, numerical integration is necessary to find the solutions
of concentrations with time. In such cases sensitivity analysis is often used to determine
which parameters have the greatest effect on the output of the system, and therefore require
the most accurate experimental measurement [105]. Sensitivity analysis is often performed
by varying one parameter at a time, while the others are held at their estimated values, which
can be misleading in cases where parameters are not independent. Determining the output
while simultaneously varying multiple parameters can give a wider, more integrated view of
the network, but is computationally expensive for large pathways.

Many signaling networks have a significant spatial component to their behavior. For
example, the activity of a transcription factor can be controlled by regulating its access to
the nucleus. Spatial information can be incorporated into ODE-based models with
compartmentalization (e.g., of the cytosol and nucleus). This assumes the contents within a
compartment are well-mixed and requires specifying transport rates between compartments.

Although compartmental ODE modeling is often used as a simplification for PDEs [112], in
some cases detailed spatial localization is important for cell signaling [32, 113]. Often
spatial dependencies such as gradients and microdomains arise due to the geometry of the
cell membrane and can be caused by opposing biochemical reactions that are spatially
separated [63]. PDEs represent biochemical processes in space and time as reaction-
diffusion equations that account for diffusion and biochemical reactions of signaling
molecules. Diffusional constants in cellular environments are often unknown and therefore
usually approximated [113]. The computational tools needed to solve PDEs are not widely
used in biology but these tools are being developed and finding use in some modeling efforts
[114]. PDE models will become increasingly valuable as live cell imaging and fluorescent
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reporters provide the spatial and functional measurements needed to build and validate these
models.

Stochasticity can strongly influence behavior in systems with small numbers of molecules or
in instances of multistability or symmetry breaking, such as when a cell must decide
between two fates [115, 116]. Gene expression in mammalian cells, at least for some genes,
is highly variable due to random bursts of transcription [117]. The growing realization of the
importance of noise in signaling and the proliferation of single cell measurements suggests
stochastic models will become more common, since they can potentially use and reproduce
the variability of individual cell responses. The Gillespie algorithm and its derivatives
simulate the random walk behavior of discrete molecules [99, 118]. Often a signaling
pathway is modeled first with deterministic ODEs, then the same biochemical reactions are
simulated with the Gillespie algorithm [74, 99]. The method is straightforward to implement
but becomes computationally expensive as the number of molecules increases. Another way
to incorporate stochasticity is to add a Gaussian noise term to a differential equation,
resulting in a stochastic differential equation [72]. For spatial PDE models, the modeling
platform Virtual Cell allows both deterministic and stochastic simulation [119].

An advantage of ODE models is that they represent signal transduction circuits
mechanistically, but they become impractical for extremely large networks. Figure 2 shows
a timeline of the order of the differential equation-based models compiled in Table 2. None
of these models have more than one hundred ODEs, and the median is ten. This is largely
because mechanistic models require many parameters in the form of rate constants and
initial conditions. Although some of these parameters have been directly measured
experimentally, most are unknown or poorly constrained, especially in a mammalian setting.
Consequently, many parameters must be estimated by making a first principles guess, by
extrapolating based on homologous proteins, or by fitting the output of the model to
experimental observations [120]. With too many degrees of freedom, even a model that is
mechanistically unfaithful to reality can appear to fit experimental data. Additionally, when
parameters of a model have been fit, it is imperative that later predictions of the model be
independent of the data that was used in the fitting process.

Large Scale Modeling Methods
To circumvent the challenges of large systems of differential equations, several methods
with potential advantages in scale-up have been applied to signal transduction. These
modeling approaches generally lack the detail of ODE-or PDE-based models. The trade-off
between model scale and detail has been noted previously [121].

Constraint-based network analysis allows reconstruction of large systems of biochemical
reactions [122]. The method has proven useful in analyzing genome-scale metabolic
networks [123, 124]. This approach does not need kinetic parameters, but does require
explicit enumeration of all reactions and chemical species in order to generate a
stoichiometric matrix. The space of available steady state solutions is calculated subject to
the constraints of the system, such as the availability of a carbon source or the maximum
speed of an enzymatic reaction. One version, extreme pathway analysis, has been used to
quantify the crosstalk and pathway redundancy of the JAK-STAT signaling in B cells [87].
Since calculation of the extreme pathways becomes unfeasible as the size of the network
increases, Li et al. used flux balance analysis to model the Toll-like receptor network and to
pinpoint eight potential drug targets [125].

Network component analysis is a method for inferring the activity of transcription factors –
and by extension, some signaling pathways – from gene expression data [126]. This analysis
utilizes a prior estimate of the regulatory network structure, which distinguishes it from
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more naïve microarray analysis methods. Network component analysis has been used to
study glycerol kinase deficiency in mouse skeletal muscle [127].

Partial least squares regression (PLSR) analysis has been applied to understand complicated
signaling networks that involve multiple inputs and outputs [75-77]. If the data sets (e.g.,
phosphorylation states, protein abundances, and kinase activities) are extensive enough,
PLSR can be used even without a detailed mechanistic understanding of the underlying
signaling network [2, 40, 128]. PLSR creates a linear model in which state measurements of
the signaling network can be related to outputs such as cytokine secretion [75, 129]. PLSR
reduces the high dimensionality of these data sets by generating principal components,
which are linear combinations of the original variables that can be ranked by their ability to
capture co-variation in the data. Often most of the variation in a high-dimensional data set
can be represented in just a few principal components. With the PLSR formalism, it is
possible to predict the outcome of previously untested experiments by measuring the global
state of the signaling network [75].

Model-driven Discovery
The most exciting aspect of computational modeling of signal transduction networks is the
prospect of using models to facilitate biological discovery. Model-driven discovery is
appealing because computation is far less expensive and time-consuming than wet-lab
experimentation. We want to further emphasize three signaling systems in which
mathematical modeling has led to a deeper understanding of the biology, as verified by
experiments.

p53
p53 is an intensely studied transcription factor due to its role in tumor suppression and DNA
damage repair [130]. The core components of the p53 feedback loop involve p53 itself and
its inhibitor protein Mdm2 [131]. Mdm2 enhances the degradation of p53, while
phosphorylated p53 induces transcription of Mdm2, completing a negative feedback loop.
The wider p53 signaling network also contains additional positive and negative feedback
loops [131]. Given a sufficient time delay for p53-induced Mdm2 transcription, the core p53
circuit can give rise to oscillations. To model this behavior, Lev Bar-Or et al. created a set of
ODEs to describe the system and added a hypothetical intermediate that directs Mdm2
transcription with kinetics governed by a Hill function [95]. They verified with immunoblots
that the levels of Mdm2 and p53 oscillate in response to DNA damage-inducing irradiation.
Although the model parameters were estimated rather than measured or fit to experimental
data, Lev Bar-Or et al. were able to infer qualitative behaviors such as the broadening of the
p53 response to weaker DNA damage signals. In addition, they saw a difference in p53-
Mdm2 dynamics between 3T3 and MCF-7 cell lines and proposed a likely change in the
model that could account for the differences. However, such a prediction is difficult to
verify without quantitative measurements of the parameters and without the identification of
the intermediate.

Extending this work, Lahav et al. observed p53-Mdm2 dynamics in single cells using
fluorescent fusion proteins and time-lapse microscopy [132]. Importantly, the Mdm2 fusion
protein was driven by the human Mdm2 promoter. Contrary to the damped oscillations
observed in population level studies, oscillations in single cells were undamped. The
strength of irradiation correlated with the fraction of responding cells, while the amplitude
of oscillations in single cells was independent of DNA damage signal input. The response is
considered digital, as increased DNA damage increases the number of pulses rather than
their amplitude. To explain the digital response and sustained oscillations, Ciliberto et al.
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proposed a model incorporating positive feedback in the p53-Mdm2 loop [96], while Ma et
al. added positive feedback to an upstream step in the DNA repair pathway [97].

With longer time-lapse movies, Geva-Zatorsky et al. observed p53-Mdm2 oscillations
lasting for over three days [133]. The amplitude of these oscillations showed greater
variability than the frequency. In order to model this behavior, the authors examined six
possible mathematical models (including models similar to those described above) and
eliminated those that could not produce sustained oscillations or that were very sensitive to
parameter values. With an additional stochastic noise term only one of the remaining models
could reproduce the observed variability in oscillations. This noise was limited to protein
production and not other processes such as degradation.

To further explore the nature of the oscillatory dynamics, Batchelor and coworkers studied
two kinases involved in p53 activation, ATM and Chk2 [98]. It was known that ATM
phosphorylates Chk2 and then both ATM and Chk2 phosphorylate p53, lessening p53
inhibition by Mdm2. Using immunoblots and immunofluorescence, they found that Chk2
shows undamped oscillations similar to p53 and that these activation pulses depended on
p53. Targeted RNAi and small molecule perturbations confirmed the dependence of p53
oscillations on ATM and Chk2. Upon inhibition of ATM, oscillations of p53 were not
observed even if the first p53 pulse had been initiated. These results are contrary to a model
in which oscillations are driven solely by the p53-Mdm2 loop. This led Batchelor et al. to
propose a model that included an unknown inhibitor of ATM and Chk2 that is activated by
p53. Negative feedback in this form could explain the pulses in ATM and Chk2. The model
predicted that the unknown inhibitor would oscillate in a similar fashion to p53 and be
expressed at low levels in resting cells. A known interactor with ATM/Chk2/p53 called
Wip1 fit these criteria. RNAi against Wip1 abolished oscillations in ATM and Chk2 and an
immunoblot showed oscillations in Wip1 lagging behind p53. Thus, ATM/Chk2/p53/Wip1
is involved in a second feedback loop that governs p53 oscillations.

NF-κB
The nuclear factor-κB (NF-κB) family of transcription factors regulates the expression of
genes involved in various biological processes from immune system development and
inflammation to cell proliferation [134]. Dysregulation of NF-κB is associated with chronic
inflammatory disease and cancer progression, in addition to many other pathologies [135,
136]. The best studied NF-κB molecule is the heterodimer p65:p50, which is held inactive in
the cytosol by three IκB proteins, IκBα, IκBβ, and IκBε. In the canonical pathway a stimulus
leads to the activation of IκB kinase (IKK), which phosphorylates the IκBs, precipitating
their rapid ubiquitination and degradation. Free NF-κB then translocates to the nucleus,
where it binds DNA and induces expression of hundreds of target genes. For example, IκBα
expression is strongly induced by NF-κB, creating a negative feedback loop. Considerable
complexity is laced throughout these reactions, but this represents the relatively agreed upon
core of the system [134].

Hoffmann et al. observed that the DNA-binding activity of NF-κB in response to tumor
necrosis factor-α (TNFα) resembles damped oscillations, as measured by EMSA with
murine embryonic fibroblasts (MEFs) [90]. To try to explain the observed dynamics and
untangle the roles of the three IκBs, Hoffmann et al. modeled the core circuit response to
TNFα using a system of coupled differential equations. More than half of the model
parameters were constrained by data in the published literature. Experimental data from
mouse cells expressing only one of the three IκB proteins further constrained the model.
These studies suggested that IκBα is responsible for fast NF-κB activation, while IκBβ and
IκBε help dampen oscillations of NF-κB. Interestingly, values for IκBβ and IκBε mRNA
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synthesis parameters from the double knockouts did not match those derived from the wild
type behavior, pointing to genetic compensation that is not encapsulated in the model.

Model simulations predicted that NF-κB activation for long stimulations lasts for the
duration of the stimulus, while short pulses induce a level of NF-κB activation that is
relatively independent of pulse duration. This suggested that NF-κB could induce expression
of some genes after very short exposure to TNFα (<15 minutes), while other genes could
require longer stimulation times. Indeed, IP-10 mRNA can be detected after only 30 minutes
of TNFα exposure, while induction of the gene RANTES requires more than two hours of
exposure to TNFα in wild type MEFs. However, Hoffmann et al. found that in IκBα-/-

MEFs, in which transient stimulation results in prolonged nuclear NF-κB, RANTES can be
induced by TNFα stimulations lasting only 15 minutes [90]. Thus, the computational model
gave insight into how the IκB proteins regulate the output of the signaling network by
controlling the dynamics of NF-κB.

Nelson et al. studied the dynamics of the NF-κB network in live HeLa cells and SK-N-AS
cells (human S-type neuroblastoma cells with constitutive NF-κB activity [137]) using
ectopic expression of NF-κB and IκBα fluorescent fusion proteins [50]. In response to
TNFα, single cells exhibited asynchronous oscillations in NF-κB nuclear localization. Cells
co-expressing control EGFP showed more regular, higher frequency oscillations than cells
co-expressing IκBα-EGFP under the constitutive CMV immediate early promoter.
Transfection of cells with IκBα-EGFP driven by a NF-κB-responsive promoter confirmed
that increasing the strength of negative feedback reduces the oscillation frequency of nuclear
NF-κB, consistent with simulations of the model developed by Hoffmann et al. [90].
Although the original computational model considers all free nuclear NF-κB as active,
Nelson et al. observed that constitutive nuclear localization effected by leptomycin B results
in only transient luciferase reporter expression along with rapid NF-κB dephosphorylation
[50]. Thus, persistent target gene expression seems to require oscillatory behavior of NF-κB
localization and phosphorylation.

The NF-κB computational model continues to be expanded and refined, leading to new
insights into the behavior of the system. Modeling the network upstream of IKK helped to
reveal the role of A20 in mediating crosstalk between TNFα and other inflammatory stimuli
[138]. Integrated experimental and computational studies of the interactions between the
canonical and non-canonical NF-κB pathways suggested that altered IκB homeostasis could
result in an inflammatory response to developmental stimuli [94].

Another expansion of the NF-κB model led to the elucidation of an extracellular component
to the network. While NF-κB localization dynamics are oscillatory in response to TNFα,
lipopolysaccharide (LPS) causes stable activation of NF-κB as measured by EMSA. LPS
signaling through TLR4 goes through a MyD88-dependent pathway and a Trif-dependent
pathway, each of which acting individually in Trif-/- or MyD88-/- MEFs leads to oscillatory
dynamics [92]. When given the time courses of IKK kinase assays, the Hoffmann model
correctly reproduces the observed NF-κB translocation dynamics in wild type MEFs
stimulated with LPS or TNFα [91]. Covert et al. fit the dynamics of the two pathways in the
knockout MEFs to predict the kinetics of IKK activity, which suggested that a 30 minute
time delay caused the slower activation of the Trif-dependent pathway. Subsequent
experiments confirmed that the Trif-dependent pathway requires expression and secretion of
TNFα, apparently mediated by IRF3 [92]. Thus, while TNFα activates NF-κB once, the
qualitatively different LPS response is achieved by an autocrine or paracrine loop that
activates IKK twice.
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Apoptosis signaling
Apoptosis, or programmed cell death, is regulated by a variety of extracellular signals and
their downstream pathways [139]. Some of these signals can have opposite effects
depending on cell type and signaling context [140]. For example, the TNFα pathway can
lead to cell death through caspase activation, or induce pro-survival signals through NF-κB.
There is also considerable crosstalk between extracellular inputs such as cytokines.

In such cases, PLSR can take into account the global state of signaling to determine the
cellular response to combinatorial inputs. Janes et al. probed the signaling network
involving EGF, TNFα, and insulin to build a predictive model of the apoptotic response in
HT-29 cells [75]. Twelve apoptosis markers were measured under these stimulation
conditions [141]. With this data, a PLSR model was trained to predict the apoptosis markers
given a set of 19 signaling measurements over 13 time points [75]. To test the predictive
ability of the model, the authors perturbed the network by applying either a blocking
antibody to the TGFα receptor or an IL-1 receptor antagonist. They then repeated the
signaling network measurements and used the PLSR classifier to predict the result. The
model accurately predicted the apoptotic responses even though these perturbations
interfered with autocrine signals not explicitly encoded in the model. Two of the principal
component vectors from the PLSR model correlated well with pro-survival and pro-
apoptosis signals. Thus, Janes et al. could represent the effects of multiple stimuli or
network perturbations in terms of the projection of signaling data along pro-survival and
pro-apoptosis axes. In a related study, Janes et al. (2006) used informative principal
components to visualize the contribution of EGF, TNFα, and insulin to the activity of
various signaling kinases and receptors [76]. The signaling map showed that some pathway
specific components were activated to a similar extent by other ligands. This shared
influence was shown to be a result of an ordered series of autocrine cytokine secretion.

Many signaling models concentrate on the response of a specific cell type and it is often
unknown whether the model is valid in other cell types. To investigate this, Miller-Jensen et
al. measured the dynamics of kinase activity for various signaling pathways and the
apoptotic response in HT-29 cells treated with TNFα and adenovirus [77]. A PLSR model
was trained to learn the relation between this input and output data. HT-29 and HeLa cells
exhibit distinct signaling network and apoptotic responses after combined adenoviral and
TNFα treatment. However, the computational model correctly predicted the apoptotic
response in HeLa cells and MCF-10A cells given the kinase activity measurements for those
respective cell types. The model also correctly predicted that specific inhibition of Akt by
the PI(3)K inhibitor LY294002 would affect apoptosis in HT-29 cells but not in HeLa cells.
However, the model underestimated the level of TNFα-induced apoptosis in HeLa cells
when IKK activity was blocked by a neutralizing antibody. Upon closer examination,
Miller-Jensen et al. noticed that early IKK activity in HeLa cells was significantly higher
than in the HT-29 training data, which prevented the PLSR model from learning the extent
of the relationship between early IKK activity and apoptosis. Further experiments confirmed
that early IKK activity is anti-apoptotic in HeLa cells. Thus, even though the cells respond
differently to the same extracellular stimuli, these epithelial cell types use common
effectors, e.g., kinase substrates and transcription factors, to integrate multiple signals to
produce a phenotypic output.

Conclusion
Our main goal in writing this review was to highlight the impact that integrated
computational-experimental studies are having on our understanding of mammalian signal
transduction. Accordingly, we described the current experimental and computational
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approaches to understanding mammalian signal transduction, and focused on how these
approaches have been successfully used together to facilitate biological discovery.

In compiling the data for this paper, we made two interesting observations that relate to the
future of this field. First, we noticed that models fell into two groups: refining and
expansive. The refining models are related to pre-existing models, with new parameter
values and relatively minor changes. The expansive modeling efforts move into new
biological territory, a previously un-modeled signaling pathway. While proven models are
key to an iterative discovery program [142], in the future it will be imperative that the
number of expansive models increase. Deriving maximal benefit from expansive models
will require rigorous experimental testing of model predictions. Fortunately, this is likely to
occur as more young scientists are learning both biology and mathematics, and interaction
between biologists and computational scientists is on the rise.

Our second observation was that most models are relatively small. To be sure, small models
of signal transduction can make nontrivial predictions and provide meaningful insight.
However, the incoming experimental data indicates that signaling pathways that are
traditionally studied separately are highly interconnected. This can be seen in Table 2 as
well, with the numerous models that focus on different parts of the network involving
EGFR, β-adrenergic receptor, Ras, and MAPK. As a result, it is important that in the coming
years, models incorporate more signals and downstream responses – that they become more
integrative with respect to biological function. Recent work suggests this trend has already
begun [143, 144]. This shift will require the development of new methods to assimilate and
organize large data sets, and to model network behaviors at a larger scale and in more detail.

Finally, we highlighted three important examples, where the success of the experimental
biology was a direct result of applying computational modeling to the system. Table 2 holds
many more such examples. Taken together, these studies highlight the important role that
systems biology is beginning to play in elucidating mammalian signaling networks. As
modeling efforts in signal transduction become more expansive and integrative, we expect to
see a dramatic rise in our understanding of the complex links between environmental cues
and cellular responses, which will have a direct impact on our ability to treat pathology.
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Figure 1.
Mathematical approaches to model a signaling network.
a. A hypothetical signaling network, which transfers information from cytosolic enzymes to
transcription factors to regulate gene expression.
b. The ordinary differential equation represents the phosphorylation and dephosphorylation
of the Y protein. The partial differential equation models the effects of molecular diffusion
and biochemical reactions with spatial dependence.
c. Measurements of the signaling network and phenotypic output (possibly measured
through flow cytometry) are analyzed together to form a reduced space partial least squares
regression model.
d. Network-based approaches. Network component analysis determines the linear weight of
transcription factors on gene regulation. Extreme pathway analysis gives the minimal set of
pathways that characterize the functional signaling in a network.
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Figure 2.
The order (number of independent variables) of differential equation-based models of
mammalian signal transduction, plotted by publication year. In cases where one model's
publication led to the creation of several derivative models, only the first model is included.
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Table 2

Models of various mammalian signaling pathways (not necessarily studied in mammalian cells), along with
the major experimental technologies used when developing the model. (c) denotes a two-compartment model
(cytoplasm and nucleus), (n) denotes a differential equation-based model incorporated noise.

Signaling pathway Model type Experimental Verification Ref.

β-Adrenergic receptor ODE - [62]

β-Adrenergic receptor / MAPK ODE, PDE Live cell imaging, immunofluorescence microscopy, immunoblot [63]

Cell Cycle ODE Immunoblot [64]

ODE - [65]

ODE - [66]

Boolean - [67]

Chemotaxis ODE (n) - [68]

ODE, PDE - [69]

PDE - [70]

Circadian Clock ODE (c, n) Live cell imaging [71, 72]

ODE (c), Gillespie - [73, 74]

Cytokines / Apoptosis PLSR High throughput kinase assay, protein microarray, flow
cytometry

[75-77]

Delta / Notch ODE (c) - [78]

Piecewise affine hybrid - [79]

EGFR / Ras ODE, Gillespie Immunoblot, ELISA [80, 81]

EGFR / MAPK ODE - [82]

Hedgehog ODE, Gillespie, PDE - [83, 84]

JAK / STAT ODE (c) Immunoblot [85]

ODE (c) - [86]

Extreme pathways - [87]

ODE (c) Immunofluorescence microscopy, flow cytometry [88]

MAPK ODE Immunoblot, kinase assay [89]

NF-κB ODE (c) EMSA, kinase assay [90, 91]; live cell imaging,
immunofluorescence microscopy [50]; immunoblot

[50, 90, 91]

ODE (c) EMSA, immunoblot [92]

ODE (c) - [93]

ODE (c) EMSA, immunoblot, kinase assay, mass spectrometry [94]

p53 ODE Immunoblot [95]

ODE (c) - [96]

ODE (n) - [97]

ODE Immunoblot [98]
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Signaling pathway Model type Experimental Verification Ref.

Ras ODE, Gillespie Flow cytometry, immunoblot [99]

TGF-β / Smad ODE (c) Live cell imaging, immunoblot [100]

Wnt ODE Immunoblot [101, 102]

PDE Histology [103]

PDE Histology [104]
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