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Abstract
Objective—As therapeutics are being developed to target the underlying neuropathology of
Huntington disease (HD), interest is increasing in methodologies for conducting clinical trials in
the prodromal phase. This study was designed to examine the potential utility of structural MRI
measures as outcome measures for such trials.

Methods—Data are presented from 211 prodromal individuals and 60 controls, scanned both at
baseline and two-year follow-up. Prodromal participants were divided into groups based on
proximity to estimated onset of diagnosable clinical disease: Far (>15 years from estimated onset);
Mid (9–15 years); and Near (<9 years). Volumetric measurements of caudate, putamen, total
striatum, globus pallidus, thalamus, total gray and white matter, and CSF were performed.

Results—All prodromal groups showed a faster rate of atrophy than Controls in striatum, total
brain, and cerebral white matter (especially in the frontal lobe). Neither prodromal participants nor
Controls showed significant longitudinal change in cortex (either total cortical gray or within
individual lobes). When normal age-related atrophy (i.e., change observed in the Control group)
was taken into account, there was more statistically significant disease-related atrophy in white
matter than in striatum.
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Conclusion—Measures of volume change in striatum and white matter volume, particularly in
the frontal lobe, may serve as excellent outcome measures for future clinical trials in prodromal
HD. Clinical trials using white matter or striatal volume change as an outcome measure will be
most efficient if the sample is restricted to individuals who are within 15 years of estimated onset
of diagnosable disease.

Keywords
Huntington disease; striatum; white matter; longitudinal; MRI

Clinical trials are underway to test the effectiveness of potential treatments for HD. Because
previous research has indicated that neurodegeneration begins many years before the onset
of diagnosable motor impairment,[1–3] treatment efforts are beginning to focus on the
prodromal stage of HD. PREDICT-HD is an international multi-site study following a large
sample of prodromal participants (individuals who have tested positive for the HD mutation,
but do not yet have motor features indicating onset of diagnosable HD) as well as gene-
negative controls. As part of this study, we aim to identify which measures from structural
MRI scans show significant longitudinal change over a two-year period, and to identify
when in the course of prodromal HD such longitudinal change becomes significant. This
will allow us to establish potential outcome measures that can be used in prodromal HD
individuals for whom traditional measures of disease progression (namely, increases in
symptom severity) are not useful and to identify the prodromal stages during which
participants will be most appropriate for future clinical trials.

Many cross-sectional studies have been published regarding volume differences in cortex,
white matter, and subcortical regions in presymptomatic individuals, with results suggesting
at least some atrophy in all of these regions prior to diagnosis.[1, 4–6] Few longitudinal
studies have been reported, however, and these studies have included much smaller samples
than the current study.[3, 7–10] Here we present data from a large, multi-site longitudinal
study of prodromal HD that compares rates of atrophy in regions throughout the brain.
These data allow us to determine which structural MRI change measures are the strongest
indicators of disease progression in prodromal HD.

METHODS
Sample

The analyses presented here are based on a subsample of 211 prodromal participants
(individuals who have tested positive for the HD mutation, but did not at the time of
enrollment have motor features indicating onset of diagnosable HD) and 60 Controls
(individuals who are offspring of an HD-diagnosed parent, but who have themselves tested
negative for the HD gene mutation). All PREDICT-HD participants were included for whom
baseline and two-year follow-up MRI scans were available and image analysis was
completed. Participants were seen yearly by clinicians experienced in the evaluation of
movement disorders and specifically trained on administration of the UHDRS for
PREDICT-HD. In accordance with clinical practice,[11] diagnosis is made on the basis of
“an otherwise unexplained characteristic movement disorder,” operationally defined as a
score of 4 on the HD Diagnostic Rating Scale of the UHDRS,[12] which indicates that the
clinician had ≥99% certainty that the participant showed “unequivocal presence of an
otherwise unexplained extrapyramidal movement disorder.” Participants were excluded
from the current study if they received a rating of 4 at either baseline or at the follow-up
visit during which the second MRI scan was performed. All aspects of the study were
approved by the Institutional Review Board at each participating institution, and all
participants gave written informed consent.
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Prodromal participants were categorized according to estimated proximity to diagnosis,
based on their CAG repeat length and age.[13–14] (See Supplemental Material for details.)
Consistent with previous reports involving this cohort,[15] cases were considered “Far”
from onset if their estimated onset was >15 years, “Mid” to onset if estimated onset was 9–
15 years, and “Near” to onset if estimated onset was <9 years. Table 1 provides
demographic information for Controls and the prodromal groups.

MRI Measures
All scans were obtained using a standard multi-modal protocol that included an axial 3D
volumetric spoiled gradient echo series and a dual echo proton density/T2 series. Scans were
processed at The University of Iowa using AutoWorkup, an automated procedure
implemented in BRAINS[16] and artificial neural networks.[17] Volume measures were
determined for caudate, putamen, total striatum (caudate + putamen), globus pallidus,
thalamus, total cortical gray matter, cerebral white matter, total brain, ventricular CSF,
surface CSF, and total CSF. In addition, gray and white matter volumes within each of the
four lobes, as well as subcortical white matter, were calculated. After completion of
AutoWorkup, all scans were individually inspected for correct realignment and
coregistration, tissue classification, and accuracy of brain and subcortical structures. (See
Supplemental Material for details on scan acquisition and analysis.)

Statistical Analysis
For each structure region, volume change (in cc) between Time 1 and Time 2 was analyzed
directly as the outcome variable in a mixed linear model. The main predictor of interest was
group membership (Control, Far, Mid, Near). We controlled for gender, age at Time 1, and
inter-scan interval as a priori-defined covariates. Effect sizes for two-year change in each
group were calculated for each brain region, allowing us to estimate the number of
participants per treatment arm that would be needed for clinical trials. For each regional
measure, partial correlations were performed between CAG repeat length and volume
change, controlling for initial structure volume. (See Supplemental Materials for further
details on statistical analyses.)

RESULTS
Longitudinal Change

Table 2 presents volume change for each region for the Control, Far, Mid, Near groups, as
well as both unadjusted and adjusted group comparisons. Unadjusted volumes from Time 1
and Time 2 are presented in Supplemental Table 1. Volumes for caudate, putamen, and
thalamus were significantly smaller at Time 2 than Time 1 for all groups, including
Controls, with the reverse being true for all CSF measures (ventricular, surface, total). For
the striatum (caudate, putamen, and total striatum) volume change from Time 1 to Time 2
was highly significant (p < 0.0001) for all three prodromal groups, while changes over time
for the Control group were more modest (ps ranging from 0.02 to 0.05). The globus pallidus
was significantly smaller at Time 2 than Time 1 for the Far and Near groups only. Volumes
of cortical gray matter (total and within individual lobes) did not change significantly over
time for any group. For cerebral white matter and total brain volume, all prodromal groups
showed significantly smaller volumes at follow-up than at baseline, but the Control group
did not. Longitudinal white matter changes for the prodromal groups were fairly evenly
distributed across frontal, parietal, and temporal lobes, and were not significant in either
occipital lobe or subcortical areas (Supplemental Table 2).
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Group Differences in Rate of Change
Results below are based on group differences in amount of volume change over time, not
total structure volumes, and all analyses were performed controlling for gender, age, and
inter-scan interval. Analyses were repeated with adjustment for intracranial volume (ICV),
yielding results that were essentially the same as those reported, but with significance levels
slightly decreased.

(a) Subcortical structures—For striatum, caudate, putamen, and thalamus, Controls had
slower rates of change than Mid and Near groups, with no difference between the Mid and
Near groups on rate of change. Only striatum showed a significant difference between
Controls and the Far group, with group differences approaching significance (p = 0.06) for
caudate. For globus pallidus, the Far and Near groups showed significantly greater change
than the Controls but did not differ from each other; the Mid group had significantly less
change than the Near group. Other post-hoc analyses are presented in Table 2 and described
more fully in Supplemental Table 3.

(b) Gray/White/CSF—There was no difference in rate of change between any of the
groups on any of the cortical measures (total or within each lobe). Rates of white matter
atrophy were greater for all prodromal groups than for Controls in all regions except
subcortical white matter, with the greatest difference in frontal lobes (see Supplemental
Materials for fuller description of white matter regions). Controls showed a slower rate of
change than the Near group for white matter, total brain, and all CSF measures, and slower
rate of change than the Mid group for white matter, total brain, and all CSF measures except
extracerebral CSF. Rate of change differed between Controls and the Far group for cerebral
white matter and total brain volume, with a trend toward significance for ventricular CSF.
All post-hoc analyses are presented in Table 2 and described more fully in the Supplemental
Material.

CAG repeat length
Over 95% of prodromal participants had CAG repeat lengths in the 39–52 range. (We do not
list more detailed extremes in order to protect participant privacy.) To address the question
of whether increased CAG repeat length was associated with faster rate of atrophy, analyses
were performed correlating these two variables, controlling for the region volume at Time 1.
CAG repeat length was significantly associated with rate of change for caudate (r = − 0.18;
p = 0.009) and total striatum (r = − 0.16, p = 0.02); there was a trend toward a significant
association for putamen (r = − 0.12, p = 0.07), with a faster rate of atrophy occurring in
individuals with higher CAG repeat lengths. No significant associations were observed for
any other regions, with p values ranging from 0.13 to 0.85.

Effect Sizes/Sample Size Calculations
Table 3 presents effect sizes for two-year change for each region for each group. (In addition
to the major regions we analyzed, effect sizes are presented for frontal white volume, as this
was the specific region of white matter that showed the greatest group differences in amount
of change.) Further analyses were completed to estimate the sample sizes that would be
needed for clinical trials using volume change in these regions as outcome measures in
clinical trials. Because significant atrophy is associated with normal aging, sample size
calculations are based on the rate of atrophy in each group that is over and above the atrophy
that would be expected based on age alone (i.e., disease-related change). Table 4 presents
the estimated number of participants that would be required per treatment arm for a two-year
clinical trial, based on the assumption of 30%, 40%, or 50% reduction in rate of case-control
atrophy difference. Because of the exceptional sparing of white matter over two years
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among Controls, sample size calculations suggest that fewer participants might be needed
for clinical trials if white matter volume change was used as the outcome measure than if
any of the other regional measures were used, especially for the Far and Mid groups. More
specifically, using frontal lobe white matter volume change as an outcome measure may
require the smallest sample sizes, especially for individuals more than 15 years from
estimated onset. Although effect sizes are greater for striatum than for cerebral or frontal
white matter for the Far and Mid groups, the amount of change observed for Control
participants in the striatum was also relatively high, resulting in greater sample size
estimates for striatum than for the white matter measures, especially in the Far and Near
groups.

DISCUSSION
This is the largest longitudinal study to date comparing rates of atrophy in striatum with
rates in other brain regions in prodromal HD. Results indicate that the annual percent
volume change for prodromal participants in striatum and globus pallidus (1.8 to 4.01% per
year for Far to Near groups) is greater than in cerebral white matter (0.6 to 2.2% per year),
with no significant volume change in cortex for any of the prodromal groups. However,
when normal age-related atrophy (i.e., change observed in the Control group) is taken into
account, there appears to be more disease-related atrophy in white matter than in striatum.
Significant rates of striatal atrophy have been demonstrated previously in much smaller
studies using manual tracing of structures, with results indicating somewhat faster annual
rates of atrophy (4.3% for caudate and 3.1% for putamen) than the current study. Our
finding of a significant rate of white matter atrophy in prodromal HD is consistent with
previous cross-sectional studies indicating white matter abnormalities prior to diagnosis of
HD, either using DTI[18–20] or structural imaging,[5, 21] and with one small longitudinal
study.[5] White matter volume reductions were not observed, however, by Rosas et al.[19]
in a small cross-sectional study (N = 15 prodromal participants) or in two small longitudinal
studies (17 prodromal participants each) [8, 10] using voxel-based morphometry
approaches. Kipps et al. [10] suggest that cortical and white matter atrophy may be more
variable in location compared with the relatively concentrated striatal loss, making it more
difficult to detect using voxel-based measurement techniques. Rate of globus pallidus
atrophy was also significantly greater in the Far and Near groups than in the Controls,
consistent with cross-sectional reports of prodromal volume reduction in this area.[22–23]

We did not find evidence of faster rate of atrophy in cortical gray for any of the prodromal
groups in comparison to controls. This is somewhat surprising, considering widespread
cortical involvement in later stages of manifest HD.[24–26] Our results are consistent with
two much smaller longitudinal studies[8, 10] using voxel-based morphometry that showed
no difference between prodromal and control participants in rate of cortical atrophy. Cross-
sectional studies,[27–28] however, have generally shown prodromalwidespread cortical
thinning, although one small study using voxel-based morphometry [6] found only
regionally specific cortical loss. Examination of our own cross-sectional data from a larger
prodromal sample, which included the current longitudinal sample,[21] found significant
differences in cortical volume between control and prodromal participants (even participants
in the Far group), although these group differences were much smaller than for white matter
and striatal volume. Our current longitudinal finding of no group differences in rate of
change suggests that any cortical volume reduction observed in prodromal HD is either the
result of very prolonged and/or very slow volume decrease or failure to reach normal
cortical volume early in life.

One major goal of this study was to determine which measures of regional brain volume
would make the strongest outcome measures for future clinical trials at various prodromal
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stages. For individuals >15 years from estimated onset, sample sizes using any region would
be large. Although rate of change was significantly greater for all prodromal groups in
striatum than in other brain regions, our findings suggest that change in cerebral white
matter (and specifically, in frontal white matter) compares quite favorably to change in
striatum as a potential outcome measure. For the Mid group (9–15 years from estimated
onset), frontal white matter, total cerebral white matter, or striatal volume change would
require approximately equal numbers of participants; and for the Near group frontal white
matter, total cerebral white matter and ventricular CSF volume change would require
approximately equal numbers of participants. Our results are consistent with previous
findings from much smaller studies indicating significant longitudinal change for striatal
volume, even in individuals who are decades away from diagnosis. The current study, for
the first time, includes data from control participants and suggests that selection of the most
effective MRI outcome measures must take into account normal age-related atrophy.
Because white matter shows much slower change related to normal aging than striatum, it
may allow better assessment of actual therapeutic effects than measures of striatum, even
though striatal volume shows a greater annual percent decline.

Another goal of this study was to determine which prodromal participants would be the best
ones to include in clinical trials, based on the degree of longitudinal change at various points
in the prodromal phase. Our results suggest that only total striatum, globus pallidus, cerebral
white matter, and total brain volume showed significantly greater rate of change for the Far
group than Controls, with a trend for caudate and ventricular CSF. However, the difference
from Controls was much stronger for the Mid and Near groups than for the Far group
(except for globus pallidus), suggesting that clinical trials can be conducted with much
smaller samples if they include only individuals who are within 15 years of estimated
clinical onset. (This, of course, assumes that the therapy is also appropriate for targeting
pathogenetic processes at this stage of disease development.)

In addition to relatively quick change over time, another desirable feature for potential
outcome measures is low variability in rate of change among study participants.[29] For
striatal measures and white matter (total cerebral and frontal white matter), there were no
significant differences between the Mid and Near groups in amount of longitudinal change,
although both total cerebral white matter and frontal white matter showed trends toward
faster rate of atrophy in the Near group than in the Mid group (ps = 0.10 and 0.11,
respectively; see post-hoc group analysis in Supplemental Table 3). Measures with the least
amount of difference in rate of change between Mid and Near groups were total striatum and
putamen, suggesting a fairly stable rate of atrophy across participants who are within 15
years of estimated onset, regardless of their exact proximity to onset. Although globus
pallidus showed a rapid rate of change for the Near group (4.01% per year), this differed
significantly from rate of change for the Mid group. Thus, in clinical trials that include
prodromal participants with a fairly wide range of estimated years to onset (within 15 years),
striatum and putamen measures may provide a more consistent method of assessing change
than other measures.

CAG Repeat Length
Although it is clearly established that CAG repeat length has an effect on age at onset of
HD,[30–31] few studies have examined the effect of CAG repeat length on rate of brain
atrophy. In longitudinal studies of symptomatic participants, Ruocco et al.[32] found that
higher repeat length (>45) was associated with faster rate of atrophy in frontal, occipital,
parietal, and cerebellar regions, and in a sample including both symptomatic and prodromal
individuals, Henley et al.[7] found that an increase of CAG repeat length by one was
associated with an increase in whole-brain atrophy rate of 0.12% per year (after adjusting for
age and gender). Our analyses demonstrated that increased CAG repeat length is associated
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with faster progression of atrophy in prodromal HD for caudate and total striatum (with a
trend toward faster progression for putamen), but not in cortical, CSF, or white matter
volumes. Thus, for individuals who are at the same stage of striatal atrophy, those with
longer CAG repeat lengths exhibit a faster rate of striatal volume loss. This may suggest that
HD has a more direct effect on striatum than on other brain regions. Our lack of finding a
significant correlation between CAG repeat length and rate of atrophy in overall brain
measures is inconsistent with findings of Ruocco et al.[32] in a sample of symptomatic HD
and Henley et al.[7] in a sample combining symptomatic and prodromal participants. These
studies did not, however, control for initial structure volume. Controlling for baseline
volume was done through partial correlation in the current study to eliminate effects of
faster rate of atrophy among participants who were closer to estimated onset, who were
already known to have longer CAG repeat lengths.

Limitations
Although participants in this study had not received a diagnosis of HD, some individuals,
especially those close to predicted onset were not totally free of HD signs and symptoms.
Clinicians were instructed to make a diagnosis based on ≥99% certainty that participants
had unequivocal presence of an otherwise unexplained extrapyramidal movement disorder.
Although study clinicians were trained on the UHDRS specifically for PREDICT-HD and
met reliability criteria, it is unlikely that they all used precisely the same criteria for making
this judgment. One goal of PREDICT-HD is to identify measures that can be used more
reliably than clinicians’ ratings of symptom onset as outcome measures in clinical trials with
prodromal participants.

Another limitation of the study involves its reliance on estimated proximity to onset rather
than retrospectively established known time to HD diagnosis. As participants continue to be
followed, we will be able to determine the accuracy of our method for estimating proximity
to onset and to determine whether the formula for estimating onset can be improved by
including additional relevant variables, such as MRI structure volumes.

Lack of consistency among neuroimaging studies in HD (and other disorders) is often
attributed to differences in scan acquisition and analysis. Although our segmentation
methods have been validated,[33] it is possible that tissue changes that accompany
progression toward HD onset may affect segmentation results. For example, if white matter
neurodegeneration results in decreased MRI tissue intensity, it is possible that white matter
might be misclassified as gray matter, and that this misclassification will increase as
neurodegeneration increases. It is clear that tissue loss is occurring with disease progression
in prodromal HD, as evidenced by reductions in total brain volume, so true cortical atrophy
would only be missed if disease progression results in both continuous cortical volume
reduction and continuous misclassification of white matter as gray matter. Studies
implementing alternative segmentation methods are underway, which will allow further
validation of our results. Regardless, our current measurement of white matter change is an
excellent indicator of disease progression, even if the underlying neuropathology being
assessed is more complicated than simple white matter volume reduction.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Table 3

Effect sizes for two-year volume change, based on adjusted volume change

Control Far Mid Near

Caudate − 0.35 − 0.68 − 1.16 − 0.95

Putamen − 0.30 − 0.55 − 0.90 − 0.93

Total striatum − 0.30 − 0.69 − 1.17 − 1.05

Thalamus − 0.27 − 0.33 − 0.63 − 0.73

Globus Pallidus 0.15 − 0.28 − 0.12 − 0.52

Cortical gray − 0.21 − 0.04 0.01 − 0.10

Cerebral white 0.09 − 0.40 − 0.80 − 1.08

Total brain − 0.11 − 0.44 − 0.73 − 1.09

Ventricular CSF 0.31 0.62 0.98 1.51

Surface CSF 0.39 0.28 0.64 0.91

Total CSF 0.40 0.45 0.75 1.09

Frontal white − 0.09 − 0.63 − 0.95 − 1.24
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