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Functional Subdivisions in the Left Angular Gyrus Where
the Semantic System Meets and Diverges from the Default
Network

Mohamed L. Seghier, Elizabeth Fagan, and Cathy J. Price
Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London WCIN 3BG, United Kingdom

Theleft angular gyrus (AG) is reliably activated across a wide range of semantic tasks, and is also a consistently reported component of the
so-called default network that it is deactivated during all goal-directed tasks. We show here that there is only partial overlap between the
semantic system and the default network in left AG and the overlap defines a reliable functional landmark that can be used to segregate
functional subdivisions within AG. In 94 healthy human subjects, we collected functional magnetic resonance imaging (fMRI) data
during fixation and eight goal directed tasks that involved semantic matching, perceptual matching or speech production in response to
familiar or unfamiliar stimuli presented in either verbal (letters) or nonverbal (pictures) formats. Our results segregated three different
left AG regions that were all activated by semantic relative to perceptual matching: (1) a midregion (mAG) that overlapped with the default
network because it was deactivated during all tasks relative to fixation; (2) a dorsomesial region (dAG) that was more activated by all tasks
relative to fixation; and (3) a ventrolateral region (vAG) that was only activated above fixation during semantic matching. By examining
the effects of task and stimuli in each AG subdivision, we propose that mAG is involved in semantic associations regardless of the presence
or absence of a stimulus; dAG is involved in searching for semantics in all visual stimuli, and vAG is involved in the conceptual identifi-

cation of visual inputs. Our findings provide a framework for reporting and interpreting AG activations with greater definition.

Introduction

In this paper, we used fMRI to characterize the different spatial
patterns of activation and deactivation in the left angular gyrus
(AG) when systematically varying semantic, perceptual and
speech processing in a large group of 94 healthy subjects. The AG
is a posterior part of the inferior parietal lobule corresponding to
Brodmann’s area (BA) 39 or area PG of von Economo and Ko-
skinas (see Triarhou, 2007). Its role in reading comprehension
was first recorded by Dejerine (1891) and popularized by the
seminal work of Geschwind (1965, 1970). Early functional imag-
ing studies demonstrated AG activation during semantic process-
ing of auditory (Démonet et al., 1992) and visual (Vandenberghe
etal.,, 1996) stimuli and these findings have been replicated with
high consistency and reliability across multiple studies with dif-
ferent semantic tasks and stimuli (for meta-analysis reviews, see
Cabeza and Nyberg, 2000; Vigneau et al., 2006; Binder et al.,
2009). For instance, Binder et al. (2009) found that the most
consistent semantic activation across 120 functional neuroimag-
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ing studies was located within the left AG (Binder et al., 2009).
They described AG as a heteromodal association area.

In addition to being associated with semantic processing, the
left AG has also been identified as part of the so-called “default
network” (Raichle et al., 2001) that is deactivated during goal-
directed tasks compared with rest or any passive baselines. This
default or resting-state network has frequently been described as
the reduction of activity in specific brain regions when subjects
are engaged in effortful tasks (Shulman et al., 1997; Gusnard and
Raichle, 2001; Mazoyer et al., 2001; Raichle et al., 2001), or engage
in self-relevant internal thoughts about past and future events
(Buckner et al., 2008; Andrews-Hanna et al., 2010a,b). The task-
independent deactivation in left AG is remarkably reliable (She-
hzad etal., 2009) and consistent across different tasks, paradigms,
subjects and studies, see recent meta-analysis reviews (Buckner et
al., 2008; Laird et al., 2009; Smith et al., 2009; Spreng et al., 2009;
Biswal et al., 2010).

To explain why left AG is part of both the default and the
semantic networks, Binder and colleagues (Binder et al., 1999,
2009; McKiernan et al., 2003, 2006) proposed that task-unrelated
thoughts during conscious passive states are essentially semantic
because they involve activation and manipulation of acquired
knowledge about the world that is interrupted during effortful
tasks so that competition between exogenous and endogenous
attentional and executive resources is reduced. This explanation
highlights a common source of processing during semantic tasks
and task-unrelated thoughts. However, AG is a large area with
different anatomical (Eidelberg and Galaburda, 1984; Ebeling
and Steinmetz, 1995; Rushworth et al., 2006; Caspers et al., 2008;
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Kiriyama et al., 2009) and functional subdivisions (Seghier and
Price, 2009; Vandenberghe and Gillebert, 2009; Andrews-Hanna
etal., 2010b; Brownsett and Wise, 2010; Sharp etal., 2010; Uddin
et al., 2010). Here we use a range of different tasks and stimuli,
including fixation, to systematically subdivide semantic activa-
tions in AG according to their response properties and to estab-
lish how the identified AG subdivisions overlap with the default
network.

Materials and Methods

Subjects
Ninety-eight healthy subjects (aged 31.6 = 16.7 years, 52 females, 46
males) gave written informed consent to participate in this study. Ac-
cording to the Edinburgh handedness questionnaire (Oldfield, 1971): 58
were right-handed and 40 were either left-handed or ambidextrous. All
subjects were native English speakers, had normal or corrected-to-
normal vision, and had no history of neurological or psychiatric disor-
ders. Four subjects were excluded after data acquisition because of low
performance on the semantic matching task (accuracy <75%). The data
from the remaining 94 subjects (aged 30.8 * 15.8 years, 50 females, 44
males) were included in our group analyses (see below). The inclusion of
a large heterogeneous sample of subjects who differed in their handed-
ness, age and gender allows our findings to be generalized across different
populations as well as giving us the opportunity to explicitly investigate
the influence of these demographic variables on brain activity in different
regions. Importantly, because of the well known relationship between
language laterality and handedness (Pujol et al., 1999; Knecht et al., 2000;
Szaflarski et al., 2002), we aimed to test whether any effect in left AG
would be significant when atypical data from left handers were included
or excluded.

The study was approved by the National Hospital for Neurology and
Institute of Neurology Joint Ethics Committee.

Experimental design

Our participants were engaged in 8 goal directed tasks as well as fixation.
The semantic network was identified by comparing semantic decisions
on semantic stimuli (pictures of objects or their written names) to per-
ceptual decisions on non-semantic stimuli (meaningless pictures of non-
objects or Greek letter strings) (Vandenberghe et al., 1996; Josse et al.,
2008). The default network was identified as that which was deactivated
during the non-semantic stimuli relative to fixation (Shulman et al.,
1997; Laird et al., 2009). The non-semantic stimuli were meaningless and
unfamiliar, and thus a semantic search for a recognizable entity will not
be successful. The remaining four conditions involved the presentation
of the same four sets of stimuli with a different task. For nonverbal
semantic stimuli (pictures of objects), participants named aloud the ob-
jects in the pictures; for verbal semantic stimuli (written object names),
participants read aloud the object names; for non-semantic stimuli (pic-
tures of non-objects and Greek letters), participants said “1,2,3” (for
further details, see Josse et al., 2008, 2009).

This factorial experimental design allowed us to investigate how the
following factors influence the direction and height of activation in dif-
ferent subdivisions within the left AG.

Stimuli. By including semantic and non-semantic stimuli we were able
to identify which parts of the AG were involved in semantic processing
and the correspondence between these parts and the default network
(which was expected to be deactivated for all conditions relative to fixa-
tion). The inclusion of different types of non-semantic stimuli was also
important for assessing the impact of perceptual processing in AG because
the pictures of non-objects were physically bigger than the Greek letters
(maximum visual angle was 7.3° X 8.5° for pictures and 4.9° X 1.2° for
words). In addition, the perceptual decision task required attention to the
visual stimulus whereas saying “1,2,3” was unrelated to the visual stimulus.

Semantic versus production task. By comparing activation for semantic
decisions and speech production, we can dissociate different types of
semantic processing. Semantic matching involves a search for semantic
features that are shared across two stimuli, and short term memory to
maintain these features while a decision is made. In contrast, naming and
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Table 1. Summary of in-scanner behavioral responses (mean = SD) of accuracy (in
[%]) and reaction times (in [s]) during all conditions over our 94 subjects

Matching Production
Stimuli Words Pictures Words Pictures
Familiar 93.0 = 43% 91.0 = 5.4% 99.5 = 1.7% 89.0 = 9.8%
1.70 £ 0.27 s 175 £0.28s NA NA
Unfamiliar 97.5 + 4.2% 99.0 = 3.2% 99.9 + 1% 99.9 + 1%
1.09 £0.20s 113 £0.27s NA NA

Task: Matching or Production. Modality: Words or Pictures. NA, Not available.

reading involve the retrieval of a unique conceptual representation that
can be used to access the corresponding sounds of the associated words.

Verbal versus nonverbal stimuli. The key distinction here is that verbal
semantic stimuli (i.e., the written object names) are more strongly linked
to their sounds than the nonverbal stimuli (i.e., the pictures of objects)
(Glaser and Glaser, 1989). Therefore, during semantic decisions, we ex-
pected more phonological activation when the stimuli are written words
than pictures of objects. Conversely, the demands on semantic activation
are higher during picture naming than reading aloud because, in the
absence of non-semantic links between orthography and phonology, ob-
jects need to be conceptually identified before they can be named. The
comparison of semantic processing in response to pictures and written
words (Vandenberghe et al., 1996; Van Doren et al., 2010) also allows us
to make inferences concerning possible access to a common semantic
system (Binder et al., 2009). For example, access to the semantic system
from phonology was expected to be stronger during written word pro-
cessing than picture processing. Conversely, accessing the semantic sys-
tem directly from visual inputs was expected to be stronger during
picture processing than written word processing.

Procedures

There were four separate scanning runs or sessions. In 2 sessions, the
participants made semantic and perceptual decisions, interleaved with
blocks of fixation. In the other 2 sessions, the participants performed the
4 speech production tasks interleaved with blocks of fixation. The order
of conditions was counterbalanced within and across session. Each ses-
sion consisted of 24 blocks of stimuli of the same type/condition with an
additional 12 blocks of fixation that were presented every two stimulus
blocks. Each stimulus block lasted 18 s and consisted of 4 trials during
which 3 stimuli were simultaneously presented on the screen for 4.32 s,
followed by 180 ms of fixation. Every two stimulus blocks, fixation con-
tinued for 14.4 s.

All stimuli were presented in triads with one item (picture or letter
string) above and two items below in the same format as the item above.
During semantic and perceptual decisions, the item above acted as a
target that was semantically or physically related to one of the items
below. In the speech production conditions, there was no semantic or
perceptual relationship between any of the three items.

Before each stimulus block, a brief instruction was presented on the
screen for 3.6 s to indicate what sort of response would be necessary. (1)
“Match pictures” cued a finger press response to indicate whether the
target picture was semantically related to the picture on the lower-left or
lower-right (e.g., is “truck” or “ship” most closely related to “anchor”).
(2) “Match words” cued the same semantic task as “Match pictures” but
with written object names rather than pictures. (3) “Same pictures” cued
a finger press response to indicate whether the target picture was percep-
tually identical to the picture on the lower-left or lower-right. (4) “Same
symbols” cued the same perceptual task as “Same pictures” except with
meaningless Greek letter strings rather than pictures of meaningless ob-
jects. (5) “Name” indicated that the participant should name each of the 3
objectsin the pictures aloud. (6) “Read” indicated that the participant should
read aloud each of the 3 words. (7) “1,2,3 Pictures” indicated that the partic-
ipantshould say “1,2,3” while looking at each of the 3 pictures of meaningless
non-objects. (8) “1,2,3 Symbols” indicated that the participant should say
“1,2,3” while looking at each of the 3 strings of Greek letters.

To ensure that the task was understood correctly, all subjects under-
took a short training session before entering the scanner with a different
set of words and pictures.
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A, B, Main effect from the group analysis (at p << 0.05 FWE-corrected) over our 94 subjects for semantic matching relative to perceptual matching (semantic system) (4), and for

deactivations relative to fixation over all non-semantic stimuli (default network) (B). All significant effects are shown in red-to-yellow (4) or blue-to-white (B) color coding and projected on an
individual T1-weighted image. C, Projection of the semantic system (red) and the default network (blue) on a 3D cortical mesh of the left hemisphere. The common voxels between the two systems

are shown in green (only present within the left angular gyrus).

Stimulus presentation in the scanner was via a video projector, a front-
projection screen and a system of mirrors fastened to the MRI head coil.
Additional details about the stimulus selection can be found in the work
of Josse et al. (2008, 2009). Responses during the matching task were
recorded using a button box held under one hand throughout the exper-
iment. Subjects who responded with the right hand (n = 57) indicated
the lower-left stimulus with their first finger and the lower-right stimulus
with their middle finger (to avoid spatial conflict). Likewise, subjects who
responded with their left hand (n = 37) indicated the lower-left stimulus
with their middle finger and the lower-right stimulus with their first
finger. The hand of response was held constant in both the activation
(semantic decision) and control (perceptual decision) conditions.
Therefore it had no effect on activation for semantic versus perceptual
decisions. It was included as a variable because the data from adult par-
ticipants will also be used in a study of stroke patients, some of whom are
no longer able to use one of their hands due to hemiparesis. Therefore, we
scanned four groups of adult healthy controls: right handed responding
with their right hand, right handed responding with their left hand, left
handed responding with their right hand and left handed responding
with their left hand. In contrast, the data from the younger participants
(<18 years) will also be used in a study of developmental dyslexia who do
not have hemiparesis. Therefore, all the younger participants were right
handed and responded with their right hand. The influence of age, gen-
der, handedness and hand of response on all our results was carefully
evaluated, see results section.

MRI acquisition

Experiments were performed on a 1.5T Siemens system. Functional im-
aging consisted of an echoplanar imaging with gradient recalled echo
sequence (repetition time/echo time/flip angle = 3600 ms/50 ms/90°,
field of view = 192 mm, matrix = 64 X 64, 40 axial slices, 2 mm thick
with 1 mm gap). Functional scanning was always preceded by 14.4 s of
dummy scans to insure steady-state tissue magnetization.

fMRI data analysis

Data processing and statistical analyses were performed with the Statis-
tical Parametric Mapping SPM5 software package (Wellcome Trust Cen-
tre for Neuroimaging, London UK, http://www.fil.ion.ucl.ac.uk/spm/).
All functional volumes were spatially realigned, un-warped, normalized
to MNI space using the unified normalization-segmentation procedure
of SPM5, and smoothed with an isotropic 6 mm full-width at half-
maximum Gaussian kernel, with resulting voxels size of 2 X 2 X 2 mm°>.
Time-series from each voxel were high-pass filtered (1/128 Hz cutoff) to
remove low-frequency noise and signal drift. The preprocessed func-
tional volumes of each subject were then submitted to a fixed-effects

Table 2. List of the local group peaks (MNI coordinates and Z scores) within the left
angular gyrus

Z-score
X,J,Z coordinates Semantic network Default network
—30, — 66,42 (dAG) 7.6 NS
—48, —68, 28 (MAG) 5.7 79
—48, —68, 20 (VAG) 7.0 3.8
—34, —64,24 5.8 3.1
—42,—176,36 NS 8.3
—50, —70, 32 NS 8.4
—58, —60, 26 NS 79
—60, —56,24 NS 7.5

Boldface values are significant at p << 0.05, FWE-corrected. NS, not significant at p << 0.001 uncorrected.

analysis, using the general linear model at each voxel. Each stimulus onset
was modeled as an event using condition-specific ‘stick-functions’” hav-
ing a duration of 4.32 s per trial and a stimulus onset interval of 4.5 s.
These were convolved with a canonical hemodynamic response function
thus providing regressors for the linear model. The contrast images for
each of the 8 conditions (correct trials only) compared with fixation were
then entered into a second-level analysis (i.e., random-effects analysis) to
enable inferences at the group level.

Our second level analyses systematically explored the direction (acti-
vation or deactivation) and amplitude of the signal change, reflected here
by the weighted-f values (Poline, 2003).

Semantic system. The semantic system was identified by comparing
semantic decisions on semantic stimuli to perceptual decisions on non-
semantic stimuli [at p < 0.05 familywise error (FWE)-corrected].

Default network. The default network was identified as the main effect
of fixation relative to all unfamiliar (non-semantic) stimuli regardless of
task or modality (i.e., deactivation in 4 conditions at p < 0.05 FWE-
corrected). We excluded the 4 conditions that used familiar stimuli be-
cause they may involve direct or indirect semantic access that can bias the
overlap with the semantic network. One alternative method to identify
the default network is to use a data-driven approach such as independent
component analysis (ICA) (McKeown et al., 1998) to segregate the dif-
ferent resting-state networks (Greicius and Menon, 2004; Damoiseaux et
al.,, 2006). This can be achieved by running ICA on the fixation epochs
(i.e., interleaved resting periods) that are present in our block paradigm
(see procedure in the work of Fair et al., 2007). However, we opted for
defining the default network as a deactivation relative to fixation because
(1) the number of fixation data points in our paradigm is relatively small
(4 data points per fixation epoch) and this may not be sufficient to
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guarantee a robust ICA analysis, (2) we aimed
to define both networks (semantic and default)
using the same methodology, in this case by
hypothesis-driven “cognitive subtraction” be-
tween different conditions, and (3) many pre-
vious studies have defined the default network
as deactivation relative to a fixation (rest) con-
dition (for review, see Laird et al., 2009) and
found robust and reliable results (Shulman et
al., 1997; Raichle et al., 2001).

Overlap of semantic system and default net-
work. This was identified by using the inclusive
masking option in SPM to identify activation
that was common for (1) semantic—perceptual
decisions with (2) fixation—unfamiliar stimuli.
We also visualized the overlap between the two
systems on a three-dimensional (3D) cortex
mesh that is available in SPM8.

Divergence of semantic system from default
network in AG. This was identified by using the
exclusive masking option in SPM to identify
where activation was significant (p < 0.05
FWE-corrected) for semantic—perceptual deci-
sions but not significant ( p < 0.001 uncor-
rected) for fixation—unfamiliar stimuli (and
vice versa).

Functional specialization within AG voxels
that were more activated for semantic than per-
ceptual decisions. This was investigated further
by contrasting (1) semantic decisions versus
naming; (2) perceptual decisions versus saying
“1,2,3”; (3) semantic versus non-semantic
stimuli; (4) pictures of objects versus written
words during semantic decisions and naming;
(5) non-objects versus Greek letters, during
perceptual decisions and saying “1,2,3” and (6)
the interactions between stimuli and task. See
Experimental design section (above) for full
details of the type of processing tapped by each
of these manipulations. Critically, we also
compared each condition to fixation to disso-
ciate voxels that were activated or deactivated
(see Box 2 in the work of Gusnard and Raichle,
2001).

In addition, we assessed the influence of
age, gender, handedness, hand of response
used for matching conditions and/or the in-
scanner semantic decision times on brain ac-
tivation across our 94 subjects. To do that, we
applied correlation analyses (Pearson correla-
tion coefficient) on continuous variables (age
and reaction times) or two-sample ¢ tests on
dichotomic variables (gender, handedness and
hand of response).

Statistical thresholds

The main effects of interest (semantic system and
default network) are reported at p < 0.05 FWE-
corrected for multiple comparisons across the
whole brain in the group analysis. This thresh-
old islowered to describe any effects of task and
stimuli in each AG region at p < 0.001 uncor-
rected for the group analysis.

Localization of AG
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effect size

SM PM SM PM

SM PM
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Figure 2. A, Activation amplitude (effect size) during semantic matching minus perceptual matching within the default net-
work (masked inclusively). Red, Semantic more than perceptual matching; Green, similar amplitudes during both matching tasks;
Blue, semantic less than perceptual matching. The only voxels that showed higher activation within the default network for
semantic matching were located in the left angular gyrus. B, The sign of the effect size for the semantic system within the left
angular gyrus is shown on six coronal slices (fromy = —58 mm toy = —68 mm). Although all voxels were significantly more
activated during semantic matching than perceptual matching, their response can be characterized into three main patterns (see
bar graphs): activated by both matching conditions relative to fixation (red), deactivated by both matching condition relative to
fixation (blue), or activated during semantic matching but deactivated during perceptual matching relative to fixation (yellow).
The effect size of a voxel within the default network that is not part of the semantic system (indicated by a white cross) is shown on
a bar graph in black. SM, Semantic matching, PM, perceptual matching.

BA39 or von Economo and Koskinas’ area PG [also defined as area 69 in
the unified nomenclature of Triarhou (2007)]. Recent cytoarchitectonic
studies (Caspers et al., 2006, 2008) have suggested that AG extends to

Anatomically, AG can be seen as the continuation of the superior/middle
temporal gyri into the inferior parietal lobe with a medial boundary
defined by the intraparietal sulcus. Its anterior boundary with the supra-
marginal gyrus and its posterior boundary with the superior occipital
lobe are not well defined. It is usually considered to correspond with

areas PGa (rostral, gravity center at [—46 —65 + 44]) and PGp (caudal,
gravity center at [—43 —78 35]). Functionally, left AG has shown huge
variability across functional neuroimaging studies. For instance, Vigneau
etal. (2006) assessed an average coordinates over 27 foci at [—45 —68 +
26] with a large SD of ~14.1 mm (Vigneau et al., 2006, their Table 4).
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Binder et al. (2009) showed a wide distribution of activated peaks
across 120 functional studies in the parietal regions (Binder et al.,
2009, their Fig. 2).

Thus, to ensure that we included activity in the entire left AG, we
reported all significant foci that were located within a mask that extended
from —20 mm to —60 mm in the x-direction, from —54 mm to —82 mm
in the y-direction, and from +16 mm to +54 mm in the z-direction
(Rushworth et al., 2006). Finally, we also compared our activated pat-
terns to the probabilistic cytoarchitectonic maps that are available in the
MNI-space within the Anatomy Toolbox in SPM8 (Eickhoff et al., 2005)
(for a similar procedure, see Wu et al., 2009).

Results

In-scanner behavior

Allsubjects performed the tasks with high accuracy (for more details,
see Table 1). Response times varied from 0.95 s to 2.6 s for semantic
decisions on familiar stimuli and from 0.68 s to 2.24 s for perceptual
decisions on unfamiliar stimuli (see average values in Table 1).

fMRI activation

The semantic system

Semantic relative to perceptual matching activated a strongly left-
lateralized set of regions (Fig. 1 A) including left AG, inferior and
middle frontal regions, middle and superior temporal regions,
precentral cortex, occipitotemporal cortex, and the supplemen-
tary motor area. In the right hemisphere, activation was only
significant in the cerebellum. Left AG activation extended from
dorsomesial (junction between BA 39 and 7) to ventrolateral
(junction between BA 39 and 19), see coronal view in Figure 1 A
and list of peaks in Table 2. There was no significant effect of the
hand of response used in the matching tasks on activation for
semantic relative to perceptual decisions.

The default network

The default network, as defined by deactivation relative to fixa-
tion during all unfamiliar stimuli, is illustrated in Figure 1B. It
includes the typical set of regions reported in other studies (Shul-
man et al., 1997; Raichle et al., 2001) including bilateral inferior
parietal regions (of which AG is a part), medial prefrontal cortex,
precuneus and posterior cingulate cortex. The local peaks de-
tected in the left angular gyrus are listed in Table 2.

Overlap between the semantic system and default network in

left AG

Consistent with prior reports (Binder et al., 1999, 2009), we
found that semantic activation and the default network over-
lapped in left AG (Fig. 1C). It was also interesting to note that the
semantic system did not overlap with the default network in any
area other than left AG (Fig. 1C). Moreover, we found that,
within anatomically defined left AG, the default network only
intersected one part of the extensive dorsal-mesial to ventral-
lateral AG activation observed for semantic relative to perceptual
decisions (Figs. 1C, 2A). Thus, parts of left AG were activated by
semantics but were not part of the default network.

Functional subdivisions in left AG. The intersection between the
two networks (maximum overlap at [x = —48,y = —68,z = +28])
(Table 2) marks a reliable functional landmark that segregates se-
mantic activation in left AG into three functional subdivisions
(Fig. 2B): a dorsal and mesial part (dAG) at approximately z =
+40 mm (which is above the overlap), a ventral part (VAG) at
approximately z = +20 mm (which is below the overlap), and a
middle (mAG) at approximately z = +30 mm (which corre-
sponds to the location of the overlap).

Comparison of these functional subdivisions to the cytoarchi-
tectonic regions PGa and PGp (Fig. 3) shows that dAG was closer
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Figure3. Theextentofthe semanticactivationin the left AG overlapped on the probabilistic
cytoarchitectonic (coronal view at y = —66, with a zoom on the left AG). PGp (white), PGa
(dark gray) and 7A (light gray) represent the cytoarchitectonic regions from the Anatomy
Toolbox.

to the center of gravity of area PGa and extends anteriorly to area
hIP3 (overlap with this area = 14%) and dorsally to area 7A
(overlap with this area = 7%), whereas mAG and vAG were
mainly located in PGp (overlap with this area = 74%). Note that
the AG activity of the default network also extents over the two
cytoarchitectonic regions PGp (overlap with this area = 47%)
and PGa (overlap with this area = 25%).

Functional specialization in vAG, dAG, and mAG. All three AG
subdivisions were more activated for semantic decisions on fa-
miliar stimuli than perceptual decisions on unfamiliar stimuli.
Moreover, there was no evidence, in any of the subdivisions, that
processing was influenced by the demands on perceptual pro-
cessing ( p > 0.001 for perceptual matching versus saying “1,2,3”)
or the intensity or size of the visual stimulus (p > 0.001 for
non-objects versus Greek letters). Differences in the response
properties of the three AG subdivisions are illustrated in Figures 2
and 4 and summarized below.

The defining differences were in relation to fixation (Fig. 2 B).
Specifically, mAG activation was below fixation for both seman-
tic (Z = —5.2) and non-semantic stimuli (Z = —7.8), dAG,
activation was above fixation for both semantic (Z = 8.9) and
non-semantic stimuli (Z = 6.4); and vAG activation was no sig-
nificantly above fixation during semantic decisions but below
fixation for non-semantic stimuli (Z = —4.3). These patterns
remained significant and robust even after excluding left handed
subjects (supplemental Figs. S1 and S2, available at www.
jneurosci.org as supplemental material; see detailed results on
data from right-handed subjects only).

Other task and stimulus effects revealed the following (Fig.
4): In mAG, activation was higher for semantic decisions than
picture naming (Z = 5.6); reading aloud than picture naming
(Z = 5.5) and articulation (say “1,2,3”) than perceptual deci-
sions (Z = 3.3). In dAG, activation was higher for semantic
decisions than picture naming (Z = 5.3) and picture naming
than reading aloud (Z = 5.3). In vVAG, activation was higher
for semantic decisions on pictures than words (Z = 6.7).

Other factors influencing activation in vAG, dAG, and mAG

For each subdivision and condition, we investigated whether se-
mantic activation correlated, across our 94 subjects, with age,
gender, handedness and/or the in-scanner semantic decision
times. In mAG, deactivation during semantic decisions on pic-
tures was stronger in subjects with faster reaction times (p =
0.03). This was not observed in vVAG or dAG (p > 0.1). In VvAG,
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males showed higher semantic activation than females (t = 3.2,
p = 0.002). This gender effect was not observed in mAG or dAG
(p > 0.1). There were no other significant correlations, but in
mAG, there was a no significant trend for deactivation to be
stronger in older than younger subjects ( p = 0.06).

Discussion

This study investigated the spatial overlap between the neural
systems associated with semantic processing and the default net-
work. We found that the intersection of the semantic system with
the default network defines a functional landmark that segregates
three different functional subdivisions in AG that we refer to as
mAG (at the point of overlap), vVAG (ventral to the overlap) and
dAG (dorsal to the overlap). By comparing the effect of task and
stimuli in each AG subdivision, our results also contribute to-
ward an understanding of the range of functions that AG is in-
volved in. Our work should provide a useful framework for
predicting and interpreting the location of AG activation in past
and future studies.

Previous anatomical and functional studies have subdivided
the inferior parietal lobe in different ways (Eidelberg and Gala-
burda, 1984; Ebeling and Steinmetz, 1995; Caspers et al., 2006,
2008; Rushworth et al., 2006; Kiriyama et al., 2009; Seghier and
Price, 2009; Vandenberghe and Gillebert, 2009; Andrews-Hanna
etal., 2010b; Brownsett and Wise, 2010; Sharp et al., 2010; Uddin
et al., 2010). Our results provide further anatomical and func-
tional differentiation of semantic activations in AG that enable us
to demonstrate where and how semantic activation in AG over-
laps with the default network.

Overlap of semantic system and default network

The default network intersected the middle of the AG (mAG)
area that was activated by semantic relative to perceptual deci-
sions. Within mAG, activation was proportional to the level of
semantic associations with most activation when semantic asso-
ciations were allowed to occur continuously and randomly dur-
ing fixation; high when the task focused on semantic associations
between 3 concepts; and least during perceptual decisions and
naming that focused attention on perceptual processing and
name retrieval respectively. It is however worth noting that the

Stimuli Stimuli

lllustration of the signal level (effect size in bar graphs) in the three subdivisions VAG (in yellow), mAG (in blue), and dAG (in red) for all tasks and stimuli: W, words; P, pictures; S, string

exact nature of the processing involved during fixation (or rest) is
poorly defined (Shulman et al., 1997; Mason et al., 2007; Smith et
al., 2009) and thus may not be uniquely attributed to semantic
processing. For example, it is also involved in episodic memory
(Mazoyer etal., 2001; Anticevic et al., 2010; Yang et al., 2010) and
self-relevant internal cognitive processes (Andrews-Hanna et al.,
2010a). Critically, the response in mAG was not dependent on
visual inputs as shown recently by (Brownsett and Wise, 2010)
who reported activation at [—50 —68 + 26] for both written and
spoken narratives and by (Obleser et al., 2007) who associated
activation at [—50 —60 + 34] with a semantic resource for speech
comprehension.

The lower mAG response for picture naming relative to all the
other tasks is consistent with picture naming being the most de-
manding task (McKiernan et al., 2003, 2006; Greicius and Me-
non, 2004; Kelly et al., 2008; Esposito et al., 2009; Pica et al.,
2009). In particular, we note that higher mAG activation for read-
ing relative to picture naming might reflect unconstrained se-
mantic associations that occur in parallel to the direct links from
orthography and phonology (Strain et al., 1995) or post articula-
tion because reading is faster than picture naming (Fraise, 1969;
Potter and Falconer, 1975) and our interstimulus onset was held
constant. Alternatively, increased mAG activation during reading
than picture naming might reflect increased demands on top-
down modulation that predicts the visual input (Carreiras et al.,
2009). Future studies, using other high-temporal resolution tech-
niques such as magnetoencephalography, could evaluate these
hypotheses by mapping the timing of the responses (see examples
by Service et al., 2007; Cornelissen et al., 2009; Vartiainen et al.,
2009) during reading aloud and determining whether mAG activa-
tion occurred before completion of visual processing, in parallel with
speech production or after speech production was complete.

Semantic activation in AG that did not overlap with

default network

Activation in vAG and dAG differed from that in mAG in two
distinct ways. First, vAG and dAG activation was higher for se-
mantic decisions than fixation which suggests these regions are
more involved in stimulus driven semantics than amodal seman-
tic associations. Second, VAG and dAG activation was higher for
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picture naming than for reading aloud whereas mAG activation
was higher for reading aloud than picture naming. This suggests
that vAG and dAG may be more involved in the conceptual iden-
tification of visual input, which is essential for picture naming but
not reading (Glaser and Glaser, 1989).

There were also differences in the response properties of vAG
and dAG. The first was that dAG was activated (versus fixation)
by non-semantic as well as semantic stimuli whereas vAG was
only activated above fixation during semantic decisions. The sec-
ond was that vAG was more activated when semantic decisions
were made on pictures than words. We suggest below that the
dAG is involved in searching for a semantic representation and
VAG is associated with later stages of conceptual identification.

The observation that dAG was activated during perceptual as
well as semantic decisions is unlikely to be related to visual atten-
tion or eye movements because dAG activation did not differ for
perceptual decisions (that require a visual comparison of three
stimuli) and saying “1,2,3” (that involves minimal attention to
the stimuli). It is also unlikely to reflect visual or perceptual process-
ing per se because dAG activation was not differentially activated by
(a) perceptual decisions and saying “1,2,3” or (b) non-objects and
Greek letters. We therefore propose that dAG activation in re-
sponse to non-semantic (unfamiliar) stimuli might reflect a
search for semantics even though this search will be implicit (not
task related) and unsuccessful during the non-semantic condi-
tions. Our proposal is in line with a previous report that suggested
dAG (at [—44 —76 44] and [—56 —60 36]) is part of a bottom-up
support network when stimulus meaning is being retrieved
(Whitney et al., 2009).

In vAG, the response profile was more specific to later
stages of conceptual identification. In this area, activation was
higher than fixation during semantic decisions but below fixation
for perceptual decisions as reported previously (Binder et al., 1999,
2009; McKiernan et al., 2003, 2006). Higher vAG activation for pic-
tures than words suggests responses increase when conceptual iden-
tification is accessed directly from visual inputs (Viswanathan
and Childers, 2003). In contrast, higher mAG activation for
words than pictures reflects the fact that conceptual identifica-
tion of words can occur indirectly after accessing phonology.

In summary, we are proposing that mAG is involved in se-
mantic associations regardless of the presence or absence of a
stimulus; dAG is involved in searching for semantics in all visual
stimuli, and vAG is involved in the later stages of conceptual
identification from visual inputs.

At this greater spatial definition of the left AG subdivisions,
future work can investigate how the different AG parts interact
with other core semantic regions including the pars orbitalis in
the inferior frontal gyrus (Bookheimer, 2002; Binder et al.,
2009; Price, 2010) and the anterior ventral temporal cortex
(Price, 2010; Visser et al., 2010). Understanding how different
parts of AG interact with other regions can also help to refine
previous language models; for instance, several recent studies
have suggested that the left AG provides top-down “semantic
constraints” during language comprehension (Price, 2010), a
role that we can now potentially attribute to mAG/vAG rather
than dAG.

Conclusions

Our findings are in line with previous literature that highlighted
the need for a better characterization of the spatial heterogeneity
in left AG. Here, we have addressed the issue by providing higher
spatial precision in the left AG subdivisions along with some of
the corresponding functional characteristics. Our results should
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therefore help to interpret the diverse set of left AG activations
that have been identified in different contexts including the de-
fault network (Buckner et al., 2008; Laird et al., 2009), the seman-
tic system (Binder et al., 2009; Price, 2010), the reading system
(Price and Mechelli, 2005), the attention system (Corbetta and
Shulman, 1998; Cabeza et al., 2008), the number processing sys-
tem (Dehaene et al., 1998), and the autobiographical memory
system (Svoboda et al., 2006). The left AG subdivisions that we
have identified should also be useful for explaining why the ef-
fects of left AG damage have inconsistent consequences on a
range of skills including speech comprehension, speech produc-
tion, finger agnosia, spatial disorientation, acalculia and agraphia
(Luria, 1970; Hart and Gordon, 1990; Ardila et al., 2000; Jefferies
and Lambon Ralph, 2006; Corbett et al., 2009). Future studies
are required to look at the timing of activations in these three
AG subdivisions and their connectivity, and to further com-
pare the AG subdivisions identified here with AG areas asso-
ciated with resting-state networks other than the default
network (Damoiseaux et al., 2006; van den Heuvel et al., 2008;
Smith et al., 2009).
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