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Abstract
We present a simple influence function based approach to compute the variances of estimates of
absolute risk and functions of absolute risk. We apply this approach to criteria that assess the
impact of changes in the risk factor distribution on absolute risk for an individual and at the
population level. As an illustration we use an absolute risk prediction model for breast cancer that
includes modifiable risk factors in addition to standard breast cancer risk factors. Influence
function based variance estimates for absolute risk and the criteria are compared to bootstrap
variance estimates.
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1 Background
Computing variances of complex statistics can be challenging, especially for designs other
than simple random sampling. We show how influence function linearization techniques can
be used to obtain variances for estimates of absolute risk of disease and functional of
absolute risk. We apply the approach to functions recently proposed by Petracci et al.
(submitted) to assess the impact of changes in the risk factor distribution on absolute risk for
an individual and at the population level. These variance estimates are easy to implement
and can accommodate various sampling designs. We also discuss alternatives to the
influence function approach to variance computation. As an example, we use an absolute
risk prediction model for breast cancer that includes modifiable risk factors in addition to
standard breast cancer risk factors.

2 Absolute Risk
The cause specific formulation of absolute risk of an event, for example breast cancer, is as
follows. Let  denote the time to event of cause one. The absolute risk in the age interval (a,
a + τ] for a person who has survived event free to age a is defined as
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(1)

where x denotes individual risk or protective factors, h1(t, x) is the cause specific hazard for
cause 1, and h2(t, x) denotes the competing mortality hazard. While one could model h2 as a
function of x given appropriate data, we assume that it depends only on age, i.e. h2(t, x) =
h2(t).

The cause-specific hazard can be modeled as h1(a, x) = h10(a)rr(a, x), the product of the
age-specific baseline hazard rate, h10(a), and a relative risk model, rr(a, x) that includes
covariates and may depend on age. Both, rr(a, x) and h10(a) can be estimated directly from
cohort data, nested case-control data (Langholz and Borgan, 1997) or case-cohort data (Self
and Prentice, 1988). However, while relative risks may be estimated reliably from such data,
absolute risks may not be representative for the target population of interest and data on
competing causes of death may be imprecise. An alternative approach is to combine relative
risk estimates rr(a, x) and age-specific attributable risk estimates, AR(a), obtained from
cohort data, nested case-control data, case-cohort or case-control data with age-specific
incidence rates  from registries to obtain the age-specific baseline hazard rates from

, see e.g. Gail et al. (1989).

In what follows we approximate formula (1) by assuming a piecewise exponential model,
where h10(a) = h1j and h2(a) = h2j are constant over single year age intervals [aj–1, aj), j = 1,
…, J, leading to

(2)

3 Criteria to assess the effects of changes in risk factors on risk for
individuals and for a population

Sometimes factors X in (1) include non-modifiable factors, denoted by X1, and modifiable
risk factors, X2. In our motivating breast cancer model an example of a non-modifiable risk
factor is age at menarche, and a modifiable risk factor is alcohol consumption. We now
review novel criteria we proposed earlier (Petracci et al, submitted) to quantify the impact of
changes in the risk factor distribution on absolute risk for an individual and at the population
level.

To assess the impact of changing X2 to their lowest levels, X20, we defined the risk
reduction as d(X1, X2) = {r(X1, X2) – r(X1, X20)}, where r denotes the absolute risk
estimate (1). The corresponding fractional risk reduction is fd(X1, X2) = {d(X1, X2)/r(X1,
X2)}. To evaluate the effects of risk modification at the population level for a given
population, d and fd are averaged over the entire population or within subgroups. Subgroups
can be defined by particular risk factor combinations or by using the Lorenz curve to
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identify risk factor combinations that account for a given percentage of total population risk.
The mean risk reduction for a specific subset S is calculated from the formula:

(3)

where I{(X1, X2) ε S} = 1 if (X1, X2) ε S and 0 otherwise. When S corresponds to the whole
population, then (3) reduces to

(4)

Similarly, the mean fractional risk reduction is f̄d(X1, X2) = E{fd(X1, X2)}, which is
different from Petracci et al., who computed the percent reduction in mean risk.

4 Variance estimation
4.1 Approaches to variance estimation

A general analytic approach to computing the variance of a complex statistic, T, is
linearization, by which T is approximated by a linear function of random variable(s), whose
variances can often be easily obtained. A well known linearization is the parametric delta
method, for which T(θ ̂) ≈ T(θ)+T′(θ)(θ ̂–θ). This approach requires that θ be finite
dimensional. Benichou and Gail (1995) used this approach for the variance computation of
absolute risk with discrete covariates, which lead to very complicated expressions that are
difficult to program. Because we wished to develop a method that applies to continuous
covariates (such as body mass index) and makes no parametric assumptions on them, we
used the influence function linearization approach proposed by Deville (1999) and used by
Graubard and Fears (2005) to obtain Taylor deviates for the computation of the variance of
the attributable risk, to find the variances of estimates of absolute risk and the criteria in
Section 3. A great advantage of this approach is that is simple, easy to implement, and can
easily be extended to accommodate complex sampling designs. Results are also available for
linearization methods for estimates defined as the solution of estimating equations (Binder,
1983). However, in our setting estimating equations are not readily formulated.

Alternatively one could use resampling approaches, such as the jackknife and bootstrap, to
estimate the variance of complex statistics. The jackknife is based on repeated computation
of the statistic for a dataset that omits one of the observations at a time, which can make it
computationally intensive. Jackknife and linearization methods are similar in the sense that
analytical derivatives in the linearization are replaced by numerical approximation in the
jackknife (Davison and Hinkley, page 50, 1997). The bootstrap recomputes the statistic
based samples drawn with replacement from the original dataset, which requires
considerable computation and makes bootstrap estimates of variances random. In our
example we compare the influence function based variance estimates to those obtained from
a bootstrap.

4.2 Variance computation using influence functions
We assume relative risk parameters are estimated from population based case-control data
and combined with age-specific disease incidence and mortality rates from registries. As
registries have large samples and are typically independent from the case-control data, the
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incidence and mortality rates can be treated as fixed, and the variability of the absolute risk
estimates arises solely from the estimation of the relative risk parameters.

We assume that age is a categorical variable, indexed by j ε {1, …, J}. Let yij be one if
individual i is a case of age j and zero otherwise and let xij denote a 1 × p vector containing
the covariate information for the i-th individual that may also include interaction terms with
age. We obtain relative risk estimates from the case-control data assuming that the
probability of disease is given by

(5)

where β is a vector of regression parameters and all risk factors x are coded such that the
components of β are positive, βk > 0.

The adjusted age-specific ARj for rare diseases can be computed from the distribution of risk
in the cases using a formula by Bruzzi et al. (1985),

(6)

where N = N0 + N1 is the total sample size and N0 and N1 are the number of controls and
cases respectively. The relative risk associated with x is exp(β′x). While N1 and N0 are fixed
by design, the number of cases in a specific age category is typically a random quantity.

If cases and controls are sampled based on complex designs, for example from surveys, then
each yij would be multiplied by a sampling weight wij, the inverse of the probability of being
included in the sample. While all our computations generalize to unequal weights, we omit
the weights for ease of notation and because our example was based on a simple random
sample of cases and controls.

4.2.1 Influence function based variance of the absolute risk estimate—We base
our variance derivation on a linearization approach, that allows one to obtain variance
estimates of a statistic T ̂ through a first order approximation of T ̂, such that

(7)

where Δi(T ̂) denotes the influence function operator that captures the influence of
observation i on T ̂. Graubard and Fears (2005) summarize the properties of Δi(.), and further
details can be found in Deville (1999).

We first derive the influence Δi(r ̂) of the i-th individual in the case-control study on the
absolute risk estimate r ̂ from (2),
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(8)

Applying chain rule, we can express Δi(r ̂) in terms of Δi{h1jrrj(x), β ̂}, that we compute from

(9)

Thus

(10)

Straightforward differentiation yields

(11)

The corresponding influences are

(12)

and Δi(P2j) = yij. The influence Δi(β ̂) is obtained from the estimating equation for the logistic

regression model by solving , where p stands for the
logistic probability given in (5), to yield

(13)

Let yi = 1 if a person in the study is a case and 0 otherwise. To accommodate the case-
control design, the variance of r ̂ is computed by treating cases and controls as separate strata
and combining their empirical variance estimates,
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(14)

where Δ̄i0(r) and Δ̄i1(r) denote the empirical means over the influences Δi(r) and S0 and S1
the sample variances of Δ in controls and cases, respectively.

4.2.2 Variance of the criteria of the impact of risk factor modifications—We
now use the influences Δi(r ̂) to compute the variance estimates of the criteria presented in
Section 3. For ease of exposition we let r ̂12 = r ̂ (a, τ, X1, X2) and r ̂10 = r ̂ (a,τ,X1,X20). For
the variance of the risk difference d(X1, X2) we compute the two influences, Δi(r ̂12) and
Δi(r ̂10) and then find

(15)

To find the variance of the corresponding fractional risk reduction, we first linearize
,

Hence

The variance of the population average difference in risk, (4), is computed similarly to
. We let r ̂k2, k = 1,…, K denote the absolute risk estimates for all K risk factor

combinations (X1k,X2k) in a given population, with r̂2 = (r12,…, rK2)′, and we let r ̂k0, k = 1,
…K denote the absolute risk estimates for all K risk factor combinations with X2 set to the
lowest levels, X20. We also set r0 = (r10,…,rK0)′. The known probabilities of risk factor
combinations (X1k, X2k) are pk = P(Xk1, X2k), with p = (p1,…,pK)′. The mean risk in the
whole population is then given by p′ r ̂2, and the mean risk difference by d̄(X1, X2) = p′(r̂2 −
r̂0).

For the ith individual in the case-control study, the influences for the K original risk factor
combinations are Δi(r̂2) = (Δi(r ̂12), Δi(r ̂22), ···, Δi(r ̂K2))′, and the corresponding influences of
the risk factor combinations with X2 at its lowest level are Δi(r̂0) = (Δi(r ̂10), Δi(r ̂20), ···,
Δi(r ̂K0))′. Then

(16)

where Si, i = 0,1 is the K × K sample covariance matrix of the K differences in influences in
controls and cases respectively.
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To compute the variance of the difference in risk in a subset S of the population, we multiply
each element pk of p by the indicator I{(X1k, X2k) ∈ S} and divide by the sum of the non-
zero elements to obtain the distribution of risk factors in S, pS. The mean risk in S is then

computed as , the mean risk difference in S is , and the variance of
d̄S(X1,X2) is obtained by replacing p by pS in (16).

The mean fractional risk reduction is  where I denotes the K ×
K identity matrix, and 1 = (1,…, 1) is a vector of K ones. defining two vectors

 and c2 = (1/r ̂21,…, 1/r ̂2K),
.

5 Application: effects of risk factor modifications on projections of
absolute risk of breast cancer

Recently Petracci et al. (submitted) developed a model to predict the absolute risk of
invasive breast cancer for Italian women, that includes modifiable and non-modifiable risk
factors. Relative risks were estimated by logistic regression using an Italian case-control
study comprised of 2,569 cases and 2,588 controls both aged 23–74 years. The non-
modifiable risk factors in the model were age at menarche, number of previous breast
biopsies, number of first-degree female relatives with breast cancer, age at first live birth,
educational level, occupational physical activity at ages 30 – 39 years. Three potentially
modifiable factors were body mass index (BMI), leisure-time physical activity at age 30 –
39 years and alcohol consumption (never, current, and former drinkers). Because BMI
reduced breast cancer risk in women age < 50 and increased risk in older women, it was
included only through the products BMI · AgeLT50 and BMI · (1 − AgeLT50), where
AgeLT50 = 1 if a woman’s age is < 50 years and 0 otherwise.

Five-year age-specific incidence rates for invasive breast cancer and estimated age-specific
hazard rates from competing mortality from causes other than breast cancer were obtained
from the Florence Cancer Registry. The age-specific ARs were obtained from the
distribution of risk factors in cases, separately for women aged < 50 years and for women
aged ≥ 50. For women aged ≥ 50 we assumed that AR(a) is the same for all ages in that
range, and the same assumption was made for the AR for women aged < 50 years.

Table 1 shows the influence function based standard errors and bootstrap standard errors
used by Petracci et al. for comparison for individual absolute risk estimates. Each bootstrap
sample was drawn with replacement from the cases and separately from the controls in the
case-control study, with the original number of cases and controls in each replication. For
each bootstrap replication, we estimated new relative risks and attributable risks. By saving
1000 such sets of these quantities, we could compute 1000 estimates of absolute risk and
obtain bootstrap standard errors. Bootstrap standard errors for other quantities, such as
absolute risk reductions, were likewise based on the stored sets of relative and attributable
risks. The bootstrap standard errors for the individual risk predictions agree well with
standard errors estimated from influence functions.

Table 2 gives the mean risk, the mean risk difference and the mean fractional difference for
a ten year absolute risk prediction from age 65 to 74 computed using the risk factor
distribution of the 8426 women participating in the Florence-European Prospective
Investigation into Cancer and Nutrition (EPIC) cohort study. The mean difference between
non-modified absolute risk and risk was obtained by assuming that current drinkers became
former drinkers, women who exercised less than two hours/week began exercising at least 2
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hours/week and women aged ≥ 50 years maintained BMI < 25kg/m2. Again, influence
function based standard errors and bootstrap standard errors are presented and agree well for
all criteria.

6 Discussion
We present an influence function based approach for the computation of variances of
estimates of absolute risk and functionals of absolute risk. This approach is simple, easily
implemented and can be used for estimators that are defined explicitly or implicitly. Another
advantage is that correlations among different pieces of a statistic, which often makes the
parametrical version of the delta method challenging, are accounted for automatically in the
final computational step for the variances. We illustrate this approach absolute risk estimates
from a breast cancer risk prediction model and criteria to assess the impact of risk factor
modification, and compared the influence function variances to those obtained using a
bootstrap. While the bootstrap and influence function standard errors were very similar, the
influence function method is deterministic, whereas the bootstrap estimate is random and
requires significantly more computing time. For example, for the first risk profile in Table 1,
the influence standard error estimate was 0.058, and the bootstrap standard error of the
absolute risk estimate was 0.060, and this estimate had a standard error of 0.0016.

In addition, the influence function approach can easily be extended to accommodate
complex sampling designs in the data that gave rise to the relative risk parameters (Graubard
and Fears, 2005) and leads to proofs of asymptotic normality for functions of the influences.
The application of resampling to complex designs needs to account for the underlying
design, which can make it more difficult to implement.
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Table 2

Estimated 10-year non-modified mean risk, mean risk reductions and mean fractional risk reductions based on
the risk factor distribution in the European Prospective Investigation into Cancer and Nutrition (EPIC)
population and in subgroups with a positive (FH+) and negative (FH−) family history.

Non-modified mean risk Mean risk reduction‡ Mean fractional reduction in risk

Age 65–74 0.03627 0.00412 0.11070

Bootstrap SE 0.00192 0.00356 0.09429

IF SE 0.00174 0.00341 0.10972

Age 65–74 and FH+ 0.07826 0.00872 0.10873

Bootstrap SE 0.01013 0.00804 0.91945

IF SE 0.00895 0.00726 0.10993

Age 65–74 and FH− 0.03280 0.00374 0.11078

Bootstrap SE 0.00170 0.00331 0.09448

IF SE 0.00157 0.00310 0.09954

SE= standard error, IF= influence function

‡
Mean difference between non-modified absolute risk and risk obtained by assuming that all current drinkers became former drinkers, all women

who exercised less than two hours/week began exercising at least 2 hours/week, and all women aged 50 years or more maintained BMI < 25kg/m2
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