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Liver transplantation in patients with active hepatitis C virus (HCV) infection is followed by almost universal

recurrence of viral infection. The control of HCV infection has been characterized largely in terms of the

HCV-specific function of T-lymphocytes and the adaptive immune response. Emerging data suggest that

components of the innate immune system, including natural killer cells, have a central role in determining the

nature of posttransplant HCV infection and the likelihood of response to antiviral therapy. This review

examines the emerging evidence implicating innate immunity in the pathogenesis of posttransplant HCV

infections and the potential therapeutic implications of these observations.

Hepatitis C virus (HCV) –induced liver injury is the

primary indication for orthotopic liver transplantation

(OLT) in the United States [1]. Recurrent HCV in-

fection occurs in at least 75%–80% of recipients, of

whom 10%–21% go on to develop fibrosis and cir-

rhosis [2, 3]. OLT recipients with HCV infection have

higher rates of allograft failure and death relative to

virus-free recipients [4–8]. The difference in outcomes

may reflect the effect of HCV infection on the graft and

on graft rejection, as well as the role of HCV in pro-

moting other opportunistic infections and posttrans-

plant malignancies [5, 6, 9]. None of the standard

antiviral regimens used to treat posttransplant HCV

have been consistently well tolerated or efficacious

[10]. Thus, the pathophysiology of recurrent infection

and the factors contributing to adverse outcomes are

important topics for investigation. In general, the

control of posttransplant HCV infection has been

studied in the context of adaptive, cellular or humoral

immunity. This review explores emerging evidence

that implicates effectors of innate immunity, notably

natural killer (NK) cells, in the pathogenesis of

recurrent HCV and may suggest novel approaches to

therapeutic interventions for viral infection in trans-

plant recipients.

HCV AND THE ADAPTIVE IMMUNE

RESPONSE

All components of innate and adaptive immunity are

involved in the pathogenesis of posttransplant HCV

infection. Containment of HCV infection requires

a coordinated, vigorous, and sustained multispecific

CD41 and CD81 T cell response to the virus. HCV

epitopes include both core and nonstructural proteins

(NS3, NS4, and NS5) [11]. Clearance of acute HCV

infection has been correlated with the rapid expansion

of CD41 and CD81 T cells [12–16]. Maintenance of

viral clearance is associated with persistence of HCV-

specific CD41 T cells, with the production of memory

CD81 T cells, and with the elaboration of interferon-c

[16–19]. Progression to chronic HCV in patients who

have not undergone transplantation seems to be related

to exhaustion of adaptive immune function [20]. The

role of the humoral immune response to the contain-

ment of HCV infection is controversial. Neutralizing

antibodies to surface viral glycoproteins E1 and E2
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occurs during the course of infection, regardless of HCV ge-

notype [21]. However, although antibodies interfere with re-

ceptor binding, antibody presence does not correlate well with

viral clearance in patients with acute HCV infection [22].

Reconstitution of the adaptive immune system after trans-

plantation is associated with an improved antiviral response and

attenuation of the severity of recurrent HCV infection [23–27].

Because hepatic allografts are HLA-mismatched between donor

and recipient, immune responses to HCV within the liver occur

largely in the context of indirect pathways for antigen pre-

sentation. The role of the indirect pathway in HCV infection

after transplantation is incompletely characterized. The exis-

tence of donor major histocompatibility complex (MHC)–re-

stricted, HCV-specific CD81 T cells has been revealed [28].

Unfortunately, the development of such donor-HLA–restricted

CD81 T cells generally occurs after the reestablishment of al-

lograft HCV infection. Indirect evidence for the role of the in-

direct pathway in immunity to HCV infection comes from

studies suggesting that cyclosporine does not increase HCV vi-

remia; the indirect pathway is reported to be less sensitive to

cyclosporine than the direct pathway [29, 30]. The indirect

pathway may also contribute to the generation of regulatory T

cells that may suppress HCV-specific immune responses [30].

The net clinical impact of the indirect pathway in the patho-

genesis of posttransplant HCV infection and allograft injury

remains to be elucidated.

THE KINETICS OF POSTTRANSPLANT HCV

INFECTION

The kinetics of HCV infection in the early posttransplant period

underscores the possible role of the innate immune system in

antiviral defenses. During the transplantation procedure, the

HCV viral load decreases precipitously with removal of the

diseased organ [31]. However, virus is detectable in the blood

within 12 h of reperfusion of the allograft and generally returns

to pretransplant baseline levels within days of transplantation

[31]. This relapse reflects the presence of extrahepatic viral stores

and recurrent infection and may not correlate well in the early

posttransplant period with intrahepatic or membrane-associ-

ated virus that would be expected to be associated with liver

injury. Viral loads will often exceed pretransplant levels, likely as

a result of the healthier cellular environment for viral replication

rather than the effects of immunosuppression [32]. Not all viral

species carry equal avidity for hepatic cell surface receptors; virus

internalization is a complex process involving virus species, re-

ceptor, the low-density lipoprotein receptor, other receptors,

and cell-specific factors.

After infection, the individual carries multiple circulating

HCV quasispecies differing in viral envelope proteins; viral

variants are produced by means of immune selection pressure

and the error-prone HCV RNA polymerase at genomic hot-

spots, such as the highly variable regions 1 and 2 of the E2

protein. Viral quasispecies act as a collective unit with high vi-

rologic diversity associated with susceptibility to immune

modulation or antiviral therapies prior to the emergence of

more virulent strains. In individuals with greater diversity of

HCV quasispecies and who demonstrate early but nonsustained

virologic responses to antiviral therapy, the time course suggests

a role for the innate immune system in the early phase response

[33]. Some, but not all, studies have correlated increased ho-

mogeneity of quasispecies with greater severity of HCV re-

currence after transplantation [34–39].

When HCV-positive donor allografts are transplanted into

HCV-positive recipients, either the recipient or donor strain

prevails; expulsion of the competing strain occurs as early as 1

day after transplantation [40]. The timing of this process

suggests, rather than an immune process or selection based on

relative replicative efficiency, that the nature of posttransplant

infection is determined by competition of quasispecies for

viral entry. Studies of quasispecies pretransplant, post-

perfusion, and postallograft infection suggest that the allograft

selects a fraction of the quasispecies variants found in serum

and that posttransplant evolution of this fraction retains

conservation of the E2 residues [41–46]. This conservation

suggests a role for the interaction between E2 and specific

allograft receptors in the development of posttransplant HCV

infection. A candidate receptor may be the CD81 molecule of

hepatic NK cells.

NK CELLS AND VIRAL INFECTION

NK cells function at the interface of the adaptive and innate

immune systems. NK cells have been implicated in host defenses

against a variety of human viruses, including the herpes viruses

(Epstein-Barr virus and cytomegalovirus) and HCV (Figure 1)

[47–51]. Antiviral effects are mediated via cytokines (interferon-

c, interleukin-12, and tumor necrosis factor) and chemokines

(CCL3) and/or cytolysis of abnormal or infected cells through

secretion of granzyme or perforin. [52, 53, 54] Cytolytic activ-

ities of NK cells for virally infected cells may be restricted to

anatomic compartments, such as the spleen (for cytomegalovi-

rus [CMV]) or liver (for HCV with interferon-c) [53]. NK cells

recognize target cells via FCIII receptor (CD16) binding of IgG

complexes on opsonized targets or specific NK receptor binding

of target ligands [52]. These ligands are typically MHC class I

molecules and may be stress inducible [54]. Depending on the

specific ligand-receptor pair, NK receptors contribute to either

inhibition or activation of NK cells, in part related to the pres-

ence or absence of cytoplasmic immunoreceptor tyrosine-based

inhibitory motifs [53, 54]. The magnitude of NK cell activation

is tightly regulated by the cumulative input of multiple
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activating and inhibitory receptors [54]. The latter are thought

to serve an important role in preserving self-tolerance.

The relationship of NK cells to HCV infection is under in-

vestigation. NK cells are activated in patients acutely infected

with HCV, notably in virologic responders to interferon-a and

ribavirin therapy [55, 56]. Chronic HCV infection is associated

with reduced NK cell frequency and function (perforin and

interferon-c secretion) in the peripheral blood and in the liver

[57–59]. Achievement of undetectable HCV viral load after

pegylated interferon-a therapy was associated with increased NK

cell numbers, as well as expression of the activating NK cell

receptor (NKG2D) and of perforin [59]. NK functions were not

reconstituted in patients for whom therapy did not achieve viral

clearance [59].

Viral infections elicit the synthesis of interferon-a/b and in-

terleukin-12, which stimulate NK cells to secrete interferon-c,

and TNF-a [53]. These cytokines activate a series of antiviral

pathways, chemokines (eg, monokine induced by interferon-c

or Mig, CX3CL1), production of nitric oxide, and immuno-

regulatory effects, including the stimulation of adaptive immune

responses [53]. Interferon-c inhibits HCV replication and may

contribute to activation of the virus-specific immune response

[60]. The therapeutic effects of ribavirin have been correlated

with an ability to enhance cellular responses to inteferon-c [61].

Single nucleotide polymorphisms near the gene encoding type

III interferon, IL-28B, significantly affect the HCV treatment

response [62–64]. HCV may evade the innate immune response

of the infected hepatocyte by attenuating the activation of in-

tracellular signaling pathways responsible for expression of in-

terferon-b and interferon-stimulated genes, and the antiviral

effects of interferon on HCV [60].

Multiple viruses have mechanisms that enable them to evade

NK cell defenses. Murine CMV encodes a protein, m144, which

mimics MHC class 1 and engages NK cell inhibitory receptors

[65]. Human CMV proteins downregulate cellular ligands for

the activating NK receptor, NKG2D [66–68]. Influenza virions

infect NK cells causing apoptosis; the hemagglutinin protein

depresses NK cell cytotoxicity upon internalization [69]. Simi-

larly, HCV seems to downregulate NK natural cytotoxicity re-

ceptors [70]. It may also depress NK cell cytotoxicity by means

of the HCV core protein, which has been shown to upregulate

the expression of MHC class I in infected hepatocytes [71, 72].

Furthermore, the HCV-E2 protein, an envelope protein of

HCV, may cross-link the tetraspanin CD81 surface receptor,

Figure 1. Modulation of innate immunity during hepatitis C virus (HCV) infection. HCV alters the innate immune response at multiple sites. In response
to HCV infection, (1) natural killer (NK) cells elaborate interferon-c to mediate antiviral effects. However, (2) HCV E2 protein binds the NK CD81 receptor,
decreasing release of interferon-c and cytotoxic granules by NK cells. (3) HCV core protein increases major histocompatibility complex class I expression
on infected hepatocytes, decreasing NK cell activity against infected cells. (4) Protection from, and clearance of, HCV infection have been associated with
a KIR2L3 and HLA-C1 receptor-ligand pairing. (5) Dendritic cells release cytokines IL-12 and IL-15, which augment NK cell function and survival. However,
HCV depresses dendritic cell function and number. (6) HCV increases the regulatory T cell population in the liver. Regulatory T cells secrete transforming
growth factor–b and IL-10 to decrease NK cell function. (7) HCV proteins ablate signaling pathways in the infected cell to block intracellular pathways
associated with innate immunity. In the infected cell, the nonstructural proteins of HCV, notably NS3/4a protein, interact with various host adaptor
molecules to block type I interferon induction pathways and the antiviral effects of interferon. Plus sign, activating; minus sign, inhibiting.
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decreasing NK cell function. Two groups have reported in vitro

systems in which recombinant HCV-E2 protein was used to

tether the CD81 receptor on NK cells, resulting in decreased NK

cell function [73, 74]. Inhibition of NK cell function occurred

with immobilized HCV virions; the physiologic relevance of

such exposures is uncertain [75, 76].

MODULATORS OF NK CELL FUNCTION IN

RECURRENCE OF HCV INFECTION

NK Cell Receptors, Dendritic Cells, and Regulatory T Cells
Two main families of NK receptors exist that tightly regulate NK

activity: the Ly49 family (killer immunoglobulin receptor [KIR])

and CD94/NKG2 [77].In individuals, one receptor type may be

relatively overexpressed [78]. The Ly49 family in mice comprises

more than 10 Ly49 genes, including both activating and in-

hibitory receptors [79]. In humans, the functions of the Ly49

family are subserved by a distinct family, the KIR genes. In-

hibitory Ly49 molecules bind primarily MHC class I ligands,

whereas the ligands for activating Ly49 molecules may include

MHC class I and MHC class I–like molecules expressed by vi-

ruses. The murine CMV m157 gene product decreases NK

function by means of Ly49H binding [79]. In steady state, the

Ly49 receptors allow murine NK cells to discriminate ‘‘self’’ cells

expressing MHC class I molecules from foreign or infected cells

that are ‘‘missing self’’ MHC class I molecules. The absence of

self MHC class I molecules relieves NK cell inhibition and ac-

tivates NK cell cytotoxicity against infected or foreign cells.

The CD94/NKG2 family also comprises inhibitory (eg, CD94/

NKG2A) and activating (eg, CD94/NKG2C) receptors [54].

During stress, a signal peptide derived from heat shock protein

60 binds to the ligand for these receptors, HLA-E, decreasing

affinity for the inhibitory receptor, and upregulates NK activity

[80]. Potential target cells express MHC class I chain-related

genes (MICA/B) under stress that bind the NK activating re-

ceptor, NKG2D [81–83].

Modulation of NK cell activity is also regulated by cytokines

produced by other immune and inflammatory cells. Dendritic

cells (DCs) and NK cells participate in a complex crosstalk that

results in reciprocal activation (Figure 1) [84]. The control

mechanisms include DC elaboration of soluble IL-12 to stimu-

late NK cell cytotoxicity and IL-15 to enhance NK cell survival

[85].

Recent studies have shown that regulatory T cells (Tregs and

Foxp31CD41CD251) inhibit NK cell function. Data from

murine studies suggest that membrane-bound transforming

growth factor (TGF)–b on Tregs mediates NK cell inhibition by

downregulating the NKGD2 receptor [86].In mice, Tregs may

interfere with DC-NK cell crosstalk by limiting DC interaction

with self-reactive CD41 T cells in the lymph node [87]. This

interaction seems to be critical to DC expression of IL-15.

Local Microenvironment: Hepatic NK Cells
The hepatic NK cell compartment is increasingly recognized as

unique. Although NK cells form only 5%–15% of peripheral

blood mononuclear cells, they comprise 30%–50% of intra-

hepatic lymphocytes [88]. The results of a recent study in mice

suggested that hepatic NK cells could be distinguished from

splenic NK cells by the presence of decreased levels of activating

receptor (Ly49) expression, increased inhibitory receptor

(NKG2A) expression, and decreased interferon- c secretion.

Splenic NK cells adoptively transferred into the murine liver

assumed the liver NK cell phenotype, suggesting that the hepatic

environment influences NK cell function [89]. Such changes in

the cellular phenotype are likely to have functional con-

sequences. In a C57BL/6 mouse model, NK cell control of

murine CMV infection required perforin in the spleen but not in

the liver [90]. This distinction may be specific to the mouse

strain studied and was not replicated in a subsequent study [91].

NKT cells are a T cell subset that express NK cell markers

(NK1.1 or Ly-49), an activated phenotype, and a restricted T cell

receptor repertoire. Although some of the functions ascribed to

NKT cells have been attributed more recently to NK cells, NKT

cells are substantial producers of interferon-c and might par-

ticipate in the antiviral immune response. However, the role of

NKT cells in hepatic antiviral defenses is uncertain, because

NKT cells represent only �4% of resident human intrahepatic

lymphocytes [92].

NK Receptor Genotypes and Recurrent HCV Infection after Liver
Transplantation
The relationship of inhibitory KIR genotypes to clinical out-

comes after HCV infection has been studied. Ligands for the

inhibitory KIRs chiefly include HLA-C and HLA-Bw4. The

former ligand exists as 2 allotypes, HLA-C1 and C2. Each KIR

haplotype differs in the ligand affinity. For example, the in-

hibitory KIR2L3 haplotype has a lower affinity for HLA-C1

antigen, rendering NK cells more easily activated for cytolytic

attack [93]. Among individuals at risk, protection from, and

clearance of, HCV infection have been associated with a KIR2L3

and HLA-C1 receptor-ligand pairing [93–95]. The KIR2L3–

HLA-C1 haplotype-ligand pair has also been associated with

sustained virologic response to antiviral therapy [95, 96]. By

contrast, KIR-ligand mismatch and recipient KIR2L3 haplotype

have been correlated with recurrent allograft hepatitis, perhaps

because both are associated with a reduction in KIR inhibition

of NK cells (P 5 .04) [97]. This correlation has been found to

be independent of antiviral therapy and immunosuppressive

regimen. Neither a KIR ligand mismatch nor recipient KIR2L3

haplotype was associated with acute allograft rejection. A study

of 44 OLT patients receiving therapy for posttransplant HCV

revealed that the lack of antiviral response to therapy was

associated with the absence of the activating NK receptor
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haplotype, KIR2DS2 (P5 .008) [98]. It is difficult to ascribe this

finding to an isolated impairment of innate immunity, because

KIR2DS2 is also expressed on T cells. The study also could not

distinguish a KIR2DS2 correlation from one with the inhibitory

counterpart, KIR2DL2, because both haplotypes are found in

the same populations.

Another NK receptor-ligand pair, the inhibitory CD94/

NKG2A receptor and HLA-E, may also modulate host response

to HCV infection. HLA-E has 2 alleles, HLA-ER and HLA-EG.

The former has less cell surface expression with resultant re-

duction in the probability of inhibitory receptor binding to in-

hibit NK cell activity [99]. Thus, individuals with HLA-E R/R

would be expected to exhibit more rapid NK cell activation and

increased viral clearance. Consistent with this hypothesis, 308

patients who were susceptible to HCV genotypes 2 and 3 were

generally found to lack the HLA-ER allele (P , .001) [100].

Correlation between HLA-E allele match and the risk for re-

current posttransplant HCV infection has not been explored.

Treg Enrichment in the Hepatic and HCV Environment
Peripheral regulatory T cells (Tregs) include IL-10–secreting Tr1

cells, TGF-b–secreting Tr3 cells, and Fox3p1CD41CD251 cells

[101]. Coculture studies show that the hepatic microenviron-

ment may influence DC and NK crosstalk, favoring enrichment

of the hepatic CD41CD251 Treg population [102]. HCV in-

fection may also enrich the hepatic Treg cell population; this

enrichment may persist after liver transplantation. Immune

profiles of liver biopsies show a CD41:Foxp31ratio of 10:1 in

patients with primary biliary cirrhosis, compared with a ratio of

2:1 in patients with chronic HCV [103]. Compared with un-

infected recipients, OLT recipients with posttransplant HCV

may have an enhanced peripheral Foxp31CD41CD251 T cell

population [104, 105]. The mechanisms underlying these ob-

servations are uncertain. The loss of Treg function has been

associated with more effective clearance of acute HCV infection

(P5 .02) [106]. Longitudinal examination of the transcriptome

and proteome in sera and livers of transplant recipients has

demonstrated an association between development of post-

transplant hepatitis C at five years with Treg cell markers and

Treg-associated cytokines, TGF-beta and IL-10 [105].

Dendritic Cell Impairment by the HCV-Infected Liver
Although direct HCV infection of DCs is rare, HCV is associated

with decreased numbers of peripheral DCs in patients with

chronic and posttransplant disease [107, 108, 109]. In vitro at-

tenuation of DC function by HCV has been reported but not

reliably validated [110, 111]. In vivo, DCs from patients with

chronic HCV infection show decreased release of inflammatory

cytokines [112, 113]. HCV may directly interfere with DC ac-

tivation of NK cells by downregulating DC expression of the

MICA/B ligands that activate NK cells [114]. Although the liver

allograft brings a population of uninfected DCs to the recipient,

these hepatic DCs are distinguished from other subsets by their

tolerigenic ability. Products from enteric bacteria may maintain

hepatic DCs in an immature, hyporesponsive state [115]. Al-

though these immature hepatic DCs may reduce the immuno-

genicity of liver allografts, they may also contribute to the

development of posttransplant HCV infection [116, 117].

FUTURE DIRECTIONS

Observations on the role of the innate immune system in re-

current HCV infection after transplantation are preliminary but

beginning to find clinical application. Pretransplant peripheral

NK cell levels may predict the severity of HCV recurrence in

OLT recipients [118]. In a recent clinical trial, 14 HCV-positive

recipients elected to receive a donor lymphocyte infusion, rich in

NK and NKT cells, on day 3 after transplantation. All had un-

detectable HCV RNA levels by 1 week after transplantation, and

1 participant has maintained a durable response 20 months after

infusion. Eight control recipients refused the infusion and never

achieved virologic control during the study period [119].

Experience with NK cell immunotherapy for hematologic

malignancies may suggest approaches relevant to HCV infection

in liver transplant recipients. In haploidentical stem cell trans-

plant recipients with donor-recipient mismatches at the HLA-C

or HLA-Bw4 loci, a population of donor NK cells with KIR

ligands may recognize recipient cells as non-self and mediate

attack [120]. Recipients of haploidentical stem cell transplants

and recipients of cord blood for acute myelogenous leukeumia

(AML) with this HLA mismatch have been shown to have im-

proved disease-free survival and time to relapse. This has been

attributed to NK cell–mediated cytotoxicity of tumor cells [121–

124]. The potential role for NK cell therapies in HCV infection

remains undefined. As for any hematopoietic cellular transplant,

the potential risks of neutropenia-associated infections and

transplant-associated malignancies may temper enthusiasm for

NK cell therapies [125].

Anti-KIR monoclonal antibodies may circumvent some of the

logistical hurdles associated with NK cell infusions and, in

a phase I trial, have been shown to augment endogenous NK cell

activity against AML [126]. Blockade of other inhibiting NK

receptors has increased NK activity against AML cells in vitro

[127]. Similar monoclonal antibodies might be considered as

a part of anti-HCV therapy for transplant recipients with the risk

that enhanced NK cell activity may exacerbate allograft rejection.

In the process of evasion of the innate immune response,

HCV also adversely affects the development of antigen-specific

adaptive immunity and contributes to viral persistence and

resistance to therapy. As increasing numbers of patients

become eligible for OLT, therapeutic interventions aimed at the

innate immune response and mechanisms that enhance viral
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persistence may provide novel means by which to control

posttransplant HCV infections and to extend allograft survival.
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