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Transposable elements (TEs) are a tremendous source of genome instability and genetic variation. Of particular interest to
investigators of human biology and human evolution are retrotransposon insertions that are recent and/or polymorphic
in the human population. As a consequence, the ability to assay large numbers of polymorphic TEs in a given genome
is valuable. Five recent manuscripts each propose methods to scan whole human genomes to identify, map, and, in some
cases, genotype polymorphic retrotransposon insertions in multiple human genomes simultaneously. These technologies
promise to revolutionize our ability to analyze human genomes for TE-based variation important to studies of human
variability and human disease. Furthermore, the approaches hold promise for researchers interested in nonhuman ge-
nomic variability. Herein, we explore the methods reported in the manuscripts and discuss their applications to aspects of
human biology and the biology of other organisms.

Transposable elements (TEs), comprising two major classes (retro-

transposons and DNA transposons), are ubiquitous components of

eukaryotic genomes that are often thought of as genomic parasites.

They are also powerful agents of evolutionary change. For exam-

ple, they impact gene expression via the introduction of alterna-

tive regulatory elements, exons, and splice junctions (Jurka 1995;

Speek 2001; Nigumann et al. 2002; Kazazian 2004; Peaston et al.

2004; Matlik et al. 2006; Babushok et al. 2007; Hasler et al. 2007).

However, TEs need not be actively mobilizing to have an effect on

genome structure. TE-mediated genome rearrangements through

nonhomologous recombination are well-documented (Batzer and

Deininger 2002; Lonnig and Saedler 2002; Eichler and Sankoff

2003; Hancks and Kazazian 2010) and deletions, duplications,

inversions, translocations, and chromosome breaks have all been

linked to the presence of TEs in a variety of genomes (Weil and

Wessler 1993; Lim and Simmons 1994; Mathiopoulos et al. 1998;

Caceres et al. 1999; Gray 2000; Zhang and Peterson 2004).

The obvious evolutionary question that arises is, ‘‘Why are TEs

tolerated if they cause so many problems?’’ Of course, they may

simply be too adaptable to be completely eliminated. However,

along with recombination, independent assortment, and sex, TE-

mediated mutation plays a major role in generating genetic di-

versity. As potent mutagens, TEs create genetic changes upon which

natural selection can act. Their prevalence in eukaryotic genomes

may indicate that TEs are, on balance, selectively advantageous and

several studies have suggested important roles in genome biology

(Vidal et al. 1993; Hamdi et al. 2000; Deininger and Roy-Engel 2002;

Nouaud et al. 2003; Lowe et al. 2007; Mikkelsen et al. 2007).

For example, one of the most exciting contributions of TEs to

a genome is as a source of raw material in the evolution of new

genes and regulatory pathways, aka exaptation or molecular do-

mestication (for examples, see Kapitonov and Jurka 2005; Cordaux

et al. 2006b; Feschotte 2008; Lu and Clark 2010; Volff 2010). TEs

are recognized as important players in the diversification of taxa by

way of their involvement in gene regulation. This point was em-

phasized with the publication of the Monodelphis domestica

(opossum) genome (Mikkelsen et al. 2007) and by numerous other

authors (Medstrand et al. 2005; Thornburg et al. 2006; Lowe et al.

2007; Feschotte 2008; Faulkner et al. 2009). For example, in the

Monodelphis research the investigators noted that much of the

evolutionary innovation distinguishing metatherian from euthe-

rian mammals was not due to differentiation in coding sequences

but was instead due to differences in noncoding DNA and that TEs

are a ‘‘major creative force’’ in mammalian evolution. Further-

more, one recent publication provided strong arguments suggest-

ing that increases in transposable element activity in response to

physiological stress may provide the foundation for the punctu-

ated equilibrium model of evolutionary change (Zeh et al. 2009).

As genetic markers, TEs provide certain advantages over other

more widely used systems and have proven to be nearly ideal

markers for phylogenetic and population genetic analyses (Murata

et al. 1993, 1998; Stoneking et al. 1997; Tatout et al. 1999; Nikaido

et al. 2001; Kawai et al. 2002; Xiao et al. 2002; Terai et al. 2003, 2004;

Nishihara et al. 2005, 2006; Schmitz et al. 2005; Xing et al. 2005,

2007; Witherspoon et al. 2006; among many others). This is espe-

cially true of the retrotransposons, particularly the SINEs (Short

INterspersed Elements). First, the presence of an element in multiple

individuals at a given locus represents identity by descent in almost

all cases because of the very large number of potential insertion sites

for any element (Batzer and Deininger 2002; Okada et al. 2004; Ray

et al. 2006). Polymorphic TE insertions therefore reflect relation-

ships more accurately than many other genetic markers (e.g., single

nucleotide polymorphisms (SNP), microsatellites, and restriction

fragment length polymorphisms [RFLP]). In other words, SINEs have

been demonstrated to be essentially homoplasy-free (Shedlock et al.

2004; Salem et al. 2005a; Schmitz et al. 2005; Ray et al. 2006). A

second advantage is that the ancestral state of a SINE insertion locus

is known to be the absence of the element (Perna et al. 1992; Batzer

et al. 1994), making assumptions about this aspect of the analysis

unnecessary.

Retrotransposons are of particular interest to human biology.

They comprise a substantial proportion (;42%) of the mass of our

genome and the only human TE families known to exhibit current

mobilization activity (Fig. 1). All three recently active non-LTR ret-

rotransposons in the human genome, LINE-1 (Long INterspersed
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Element 1, L1), Alu, and SVA have insertions that are human specific

and many that are recent enough to still be polymorphic in the

human population (Kazazian et al. 1988; Batzer and Deininger

1991, 2002; Batzer et al. 1991; Brouha et al. 2003; Ostertag et al.

2003; Wang et al. 2005). These insertions have tremendous po-

tential to be informative for human biology at a number of levels.

Unfortunately, assaying genomes for lineage-specific TE insertions,

especially those that are polymorphic among individuals can be

a time-consuming and expensive proposition.

Some authors have attempted various experimental methods

to identify human-specific TE polymorphisms (Roy et al. 1999;

Sheen et al. 2000; Budzin et al. 2002; Badge et al. 2003; Mamedov

et al. 2005), but the approaches tended to be rather cumbersome

and difficult to optimize. Limited sequencing and computational

capacity were also two main problems. As a result, most of the loci

used in analyses of human population structure were discovered

as part of a disparate set of projects and just happened to be in-

formative with regard to human population differentiation. Thus,

their large scale utilization in the scientific community has been

rather limited (Bamshad et al. 2003; Watkins et al. 2003).

Fortunately, over the past several years new techniques have

revolutionized our ability to generate and analyze DNA sequence

data. Whereas only 10 yr ago we were able to generate at best a few

hundred thousand bases per day using chain termination sequenc-

ing methods, we can now generate gigabases of data in a single run

of a 454 (Roche) or Illumina machine. Five recent papers report

multiple methods based on second-generation sequencing tech-

niques as well as hybridization arrays to rapidly and relatively in-

expensively characterize genome-wide TE insertion patterns (Beck

et al. 2010; Ewing and Kazazian 2010b; Huang et al. 2010; Iskow

et al. 2010; Witherspoon et al. 2010) and identify a plethora of hu-

man TE polymorphisms. With these novel

methods, the identification of markers for

a vast array of applications can be specifi-

cally targeted.

The methods
Many of the methods are novel augmen-

tations of the PCR-based techniques cited

above (Roy et al. 1999; Sheen et al. 2000;

Budzin et al. 2002; Badge et al. 2003;

Mamedov et al. 2005). Ewing and Kazazian

(2010b) took advantage of the unique se-

quence characteristics of the most recently

active family of human L1 elements (L1Ta;

Kazazian et al. 1988; Skowronski et al.

1988; Kazazian and Moran 1998; Boissinot

et al. 2000; Sheen et al. 2000) to generate

a library of half-sites (loci containing

sequence from an insertion of interest

and the neighboring flank) via multiple

rounds of PCR. Libraries for 25 indi-

viduals including six family groups were

then sequenced using Illumina technol-

ogy to generate a huge data set of ;12

million 36- or 76-bp single-end reads per

individual, that is, ;20% of a human

genome consisting solely of sequences

adjacent to recent L1 insertions. These

sequence reads were mapped to the hu-

man genome reference sequence to iden-

tify the locations of the potentially polymorphic L1 insertions.

Similarly, Witherspoon et al. (2010) utilized Illumina tech-

nology, but with a different method that targets the genomic se-

quence junctions of Alu elements. Subsequent steps enriched for

Alu-containing PCR amplicons and the resulting libraries were

sequenced using a paired-end protocol. Although it could reduce

the total number of insertions that could potentially be assayed,

using paired-end sequencing gives this method the advantage of

having not only a sequence read just upstream of the insertion but

also the sequence of the 59 insertion junction itself, thereby pro-

viding a mechanism to verify that the initial round of PCR was due

to proper annealing of the Alu-specific primer.

Also taking advantage of the junction between retrotrans-

posons and the adjacent flank were Iskow et al. (2010) in their study

of L1 and Alu activity. Using both Sanger sequencing and 454

(Roche) pyrosequencing technology to interrogate the junctions,

they investigated insertions in 46 individuals of diverse ancestry to

identify 152 novel L1 insertions. Unique to this study, however, was

the inclusion of DNA from eight cell lines derived from human

tumors, thereby allowing a comparison of activity in normal so-

matic genomes and genomes thought to be under a differential

regulatory regime.

Huang et al. (2010) took a very different approach. Following

genome digestion and vectorette PCR, the resulting amplicons

were hybridized to a human genome tiling microarray. Analysis of

the hybridization data provided information on locations of the

sequences flanking L1 insertions in the genomes analyzed.

Finally, Beck et al. (2010) were the only team not to utilize

PCR to select for TE insertions in their initial assays. Instead, they

used Sanger sequencing to determine the ends of 40 kb fosmid

inserts. These end sequences were then used to identify potential

Figure 1. Recently active human retrotransposons (Long Terminal Repeat [LTR] and non-LTR groups)
and their approximate representation in the human genome (in parentheses). While all sharing a polyA
tail, the non-LTR retrotransposons are structurally distinct. The autonomous LINE-1 element (L1)
contains two open reading frames while Alu and SVA do not. Alu is instead composed of two monomers
linked by an A-rich linker sequence (A5TACA6). SVA is a composite element made up of a hexamer repeat
of varying copy number, an Alu-like region, a region of variable numbers of tandem repeats, and an
HERV-K derived region known as SINE-R. All non-LTR elements are flanked by target site duplications
(arrows) that are typically between 5 and 10 bp. The only recently active LTR element in the human
genome (HERV-K) has a distinct structure resembling most endogenous retroviruses—full-length copies
contain a central region encoding the Gag, Pol, and Env proteins flanked by identical long terminal
repeats and short TSDs. HERV-K was assayed only by Huang et al. (2010), exhibited relatively low
insertion rates compared to non-LTR retrotransposons, and will not be mentioned further. L1, Alu, and
SVA all mobilize via a mechanism known as TPRT (Target Primed Reverse Transcription; for review, see
Ostertag and Kazazian 2001). During this process, the mobilizing element is transcribed via RNA pol II
(LINE-1 and SVA) or RNA polIII (Alu). In the case of LINE-1, ORFs 1 and 2 are translated on the ribosomes
and ORF1 will typically bind to its own transcript for transport back to the nucleus. Once in the nucleus,
ORF1, which has endonuclease and reverse transcriptase activity, is responsible for creating and in-
tegrating a cDNA copy at some other location. Alu, and likely SVA elements, ‘‘hijack’’ the L1 enzymatic
machinery, probably via docking to the ribosome, in order to facilitate their own nuclear reentry and
reverse transcription (Boeke 1997; Ostertag et al. 2003).
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size differences in the range of a full-length L1 insertion between

these inserts and the human reference sequence. Using this method

to survey the genomes of six geographically diverse individuals,

they were able to identify 65 insertions not present in the human

genome reference or dbRIP, the Database of Retrotransposon In-

sertion Polymorphisms in Humans (Wang et al. 2006). Furthermore,

using cell culture analyses they estimate that each genome con-

tained between three and nine ‘‘hot’’ L1 elements, those with in-

creased activity compared to a previously characterized active LINE,

L1.3 (Brouha et al. 2003).

Of course, each approach has its own advantages and disad-

vantages. For example, by utilizing Illumina sequencing technology,

Ewing and Kazazian (2010b) and Witherspoon et al. (2010) were able

to scan entire genomes of multiple individuals to identify poly-

morphisms. However, as is often the case, the cost of so many reads

comes in the form of reduced read length and both studies are

somewhat limited in their ability to query the human genome ref-

erence, especially in highly repetitive regions. Iskow et al. (2010)

increased read lengths by utilizing Sanger and pyrosequencing but

sacrificed throughput as a consequence. Additionally, for all three of

these methods there are also problems with optimization of multi-

plex sequencing runs and PCR amplification.

The latter optimization problem was overcome by Beck et al.

(2010) by eliminating the PCR and instead detecting size differences

in large genome fragments. An advantage of this method is the

ability to identify full-length insertions at single bp resolution. The

major disadvantage, however, is the inability to recognize smaller

insertions such as those produced by Alu activity and incomplete

reinsertion of L1 elements (most L1 insertions are <1 kb), thereby

decreasing throughput. The hybridization (TIP-chip) method of

Huang et al. (2010) suffers from both PCR and hybridization opti-

mization problems but this may be offset by the ability to build

custom chips for particular genomic regions and the relatively low

cost. The individual researcher who considers utilizing any of these

methods must choose the appropriate path for his or her laboratory.

Human applications: variation
Many different genetic markers ranging from mitochondrial DNA

polymorphisms to microsatellites to SNPs have been applied to

investigations of human genetic variation and origins (for reviews,

see Relethford 1998; Excoffier 2002; Cavalli-Sforza and Feldman

2003; Pakendorf and Stoneking 2005). Regardless, the ability to

assay all or a substantial number of L1, Alu, or SVA insertions in a

human genome represents a practical boon to fields related to hu-

man genetic variation. One application is to human population

genetic and forensic analysis. Because of the homoplasy-free nature

of retrotransposon insertions, a number of publications have ap-

plied variation in Alu insertion frequencies to ascertaining human

demography and its extension, forensic identification of particu-

lar individuals or groups. For example, Bamshad et al. (2003),

Witherspoon et al. (2006), and Watkins et al. (2003) utilized either

Alu or L1 (or a combination of both) to not only explore ancient hu-

man origins and migrations but also to cluster continental human

populations. Others have extended these results to forensic applica-

tions by genotyping unknown individuals and identifying their ge-

netic ancestry with high probability, a potentially useful tool for lim-

iting the field of suspects in a criminal investigation (Ray et al. 2005a).

While these studies have been successful, the identification of

novel polymorphisms in the various human populations to pro-

vide additional resolution (e.g., intracontinental assignments) has

been a difficult task (Mamedov et al. 2005; Cordaux et al. 2007)

yielding only a few to a couple of dozen loci per study. However,

the studies discussed herein identified numerous insertions with

the potential to be useful in this area. For example, Ewing and

Kazazian (2010b) identified over 300 nonreference L1 insertions

while Witherspoon et al. (2010) simultaneously identified and

mapped nearly 500 novel polymorphic Alu insertions in four in-

dividuals. Additionally, Beck et al. (2010) identified three L1 in-

sertions apparently restricted to persons of African origin.

Two of the four studies focusing on L1 insertions (Ewing and

Kazazian 2010b; Huang et al. 2010) suggest that the current esti-

mates of the rate of L1 insertions in the human genome should be

increased. The most recent estimate prior to this work was one new

insertion for every 225 births (Xing et al. 2009). Ewing and Kazazian

(2010b) and Huang et al. (2010) both essentially doubled this value

to between one in 140 births and one in 108 births, respectively.

While Beck et al. (2010) did not directly estimate rates of L1 retro-

transposition activity, they did note the potential for multiple active

L1 elements in all of the genomes surveyed, suggesting the potential

for substantial retrotransposition activity. Further support for this

idea was provided by Iskow et al. (2010) with their finding that 19%

of their population samples exhibited private L1 insertions.

Observing such high rates of L1 mobilization activity is in-

teresting in its own right, but its importance is emphasized when

one considers the two other active families of retrotransposons in

our genome, Alu and SVA. Both families are considered parasites of

L1 and likely rely on L1 for their mobilization (Dewannieux et al.

2003; Ostertag et al. 2003). Alu has been amazingly successful in

colonizing our genome (>1 million copies; Lander et al. 2001) and

Cordaux et al. (2006a) found an insertion rate for Alu of around one

insertion for every 20 births. Of course, these are estimates of overall

rates for the human population and do not consider differential

rates or the mutational load in individuals, which may vary widely

(Brouha et al. 2003; Seleme et al. 2006) or differences in trans-

position activity between alleles at the same source locus (Lutz et al.

2003). However, in light of the upward revision of our estimates of

L1 retrotransposition, should Alu or SVA retrotransposition rates be

increased correspondingly? Such a revision is unlikely to be neces-

sary because the estimation methods of Cordaux et al. (2006a) were

very different from any of those of any of these studies and therefore

independently derived. Unfortunately, Witherspoon et al. (2010)

made no attempt to calculate the rate of Alu retrotransposition using

their data, likely because they were examining a relatively small

subset of Alu elements, the Yb8 and Yb9 subfamilies. No estimates of

SVA retrotransposition frequency are available. However, given its

likely dependence on L1 enzymatic machinery, the rate of L1

retrotransposition must have some impact on SVA rates.

We should not overlook additional human variation impacts of

TE-mediated transduction leading to the duplication of portions of

the human genome and potentially to exaptation and the forma-

tion of novel genes (Fig. 2). Transduction by transposable elements

generates genome diversity by exon shuffling (Moran et al. 1999;

Goodier et al. 2000; Pickeral et al. 2000; Beck et al. 2010) or through

gene family formation (Xing et al. 2006) and at least two of the active

human retrotransposon families, LINE-1 and SVA, are known to

have participated in transduction events (Holmes et al. 1994;

Goodier et al. 2000; Pickeral et al. 2000; Ostertag et al. 2003; Xing

et al. 2006). These events provide a means of rapid lineage-specific

evolution. The ability to assay all of the polymorphic insertions that

may occur between any two individuals allows us the chance to

observe evolutionary change in action. Large scale TE display along

with powerful computing will allow a direct means to estimate the

levels of these types of events within individual genomes and

Reading TE leaves
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species to determine the contributions that they make to the ar-

chitecture of the genome. Might some intrepid researchers actu-

ally identify a case of exon shuffling or gene duplication due to

retrotransposition still segregating in the human population? It is

entirely possible given that Beck et al. (2010) noted numerous

such transductions ranging from 18 bp to over 1 kb.

Finally, the recent publication of the pilot paper of the 1000

Genomes Project (http://www.1000genomes.org/; Durbin et al.

2010) and an analysis of the L1 elements in the project data by

Ewing and Kazazian (2010a) provides a context for the methods

described and the TE variation observed. Briefly, the project’s stated

aim is to provide deep characterization of human genomic variation

and its connection to phenotype. Obviously, any method of sam-

pling comes with some inherent ascertainment bias and the studies

described herein are no exception. One of the great strengths of

the 1000 Genomes Project is an unbiased comparison of multiple

genomes that were all sequenced and assembled in an identical

manner. However, initial analysis suggests that the methods dis-

cussed by Iskow et al. (2010), Ewing and Kazazian (2010b), and Beck

et al. (2010), all of which focused on L1 insertions, have managed to

capture snapshots of L1-derived human variation that are very

similar to that found by the 1000 Genomes Project. In all cases,

nonreference L1 insertions tend to be of relatively low frequency in

the human population. Thus, the newly reported methods appear

able to accurately ascertain TE diversity in multiple genomes.

Human applications: biomedical
Previous studies have indicated that retrotransposon insertions

from all three active families have played a role in the occurrence of

human disease either directly, by insertion into or near coding

sequences, or indirectly, by serving as loci for nonhomologous

recombination (Ostertag and Kazazian 2001; Ostertag et al. 2003;

Callinan and Batzer 2006; Cordaux and Batzer 2009). The identifi-

cation of large numbers of TE insertions with differing levels of

variation may provide a new set of markers to deploy in genome-

wide association studies (Gibson 2010). Furthermore, the intro-

duction of the new high-throughput ascertainment methods adds

a valuable toolkit for identifying potential retrotransposon-based

etiologies for de novo instances of genetic disease. For example, in

their examination of L1 insertions via the TIP-chip method, Huang

et al. (2010) searched specifically for L1 insertions that may be as-

sociated with X-linked disorders. While no direct link to a particular

pathology was made, at least two insertions with correlations to

known human X-linked disorders were indeed observed, suggesting

further examination may be needed in these cases.

Somatic retrotransposition events have been identified pre-

viously. For example, researchers interested in the mechanism and

impact of retrotransposition have engineered L1 elements to dem-

onstrate retrotransposition in somatic cells (Babushok and Kazazian

2007; Garcia-Perez et al. 2007; Coufal et al. 2009; Kano et al. 2009).

By including tumor-derived cell lines in their study, Iskow et al.

(2010) were able to distinguish germline mutations from those

made in somatic cells. Additionally, they were observant enough to

note a somatic mobilization in a lung tumor in their small (n = 8)

sample of tumor-derived data. Pursuing this outcome, they sampled

from additional tumors along with neighboring tissues. Results in-

dicate that lung cancers, in particular, appear to be home to high

levels of L1 retrotransposition activity. In all, nine L1 insertions were

identified, which when assayed against normal tissues from the

same individual, were found to be specific to the tumor. Further

analysis suggested that hypomethylation in the tumor cell-lines is at

least partially responsible for the increased activity, an observation

that is in agreement with numerous studies of L1 regulation (Alves

et al. 1996; Jurgens et al. 1996; Yoder et al. 1997; Steinhoff and

Schulz 2003; Suter et al. 2004; and Coufal et al. 2009 are several

examples from among many). Is this a general pattern for human

tumors? Such conclusions are not possible from this study alone due

to its limited sample sizes, but other research has suggested that low

methylation levels in tumor tissues may allow for increased retro-

transposition (for review, see Slotkin and Martienssen 2007).

Extensions to other organisms
While all of the potential discoveries within Homo sapiens repre-

sent an exciting prospect, many consider the potential applica-

tions to other taxa to be even more exciting. Just as in humans,

retrotransposon insertions in other taxa have potential as powerful

tools for studying population biology. Most studies of population

genetics in nonhuman species are facilitated by mitochondrial

Figure 2. Schematic illustrating the mechanism of 39 transduction by non-LTR retrotransposons and possible gene-related impacts. TE-mediated
39 transduction occurs when the transcription machinery skips a weak or nonexistent polyadenylation signal (pA). Transcription continues until a down-
stream polyadenylation signal is recognized. The resulting transcript will contain a portion of the 39 genomic flank and a secondary homopolymer tract,
which will be reverse transcribed into cDNA upon reinsertion into the genome (Boeke and Pickeral 1999; Moran et al. 1999; Goodier et al. 2000). If the
transduced sequence contains an exon, it may be inserted near existing exons, resulting in an exon shuffling event. Assuming RNA pol II transcription and
normal post-transcriptional processing, two or more exons in the transduced sequence may be merged and reinserted, resulting in a processed pseudogene.
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DNA, microsatellites, AFLP, or RFLP. Unlike in human studies, SNPs

are typically too expensive to use for non-model species and have

thus far had limited utility. However, retrotransposon insertions

represent a valuable new tool because of their unique combination

of genetic properties and the observation that they are one of the

least expensive molecular markers to assay. Essentially, all one needs

to assay a population is a thermal cycler and gel electrophoresis

equipment. Of course, as was the case with humans, developing

that all-important library of polymorphic insertions has been a

major stumbling block to the widespread use of retrotransposon

insertions as population genetic markers (Ray 2007), especially

given the paucity of reference genomes from non-model organisms.

However, while each of these studies utilizes the human ref-

erence genome to identify specific locations for individual in-

sertions, Witherspoon et al. (2010) point out that with the longer

sequence reads now available to users of the Illumina sequencing

platform, one could develop a library of polymorphic insertions to

‘‘study the population dynamics of nearly any [TE] family in any

organism.’’ As such, this is an opportunity not to be missed by re-

searchers interested in the population dynamics of non-model taxa.

It should be noted however, that there may be substantial effort

involved in designing and optimizing methods for other taxa. Not

the least of these is identifying the polymorphic TE families in

a given genome, which can be a daunting prospect. Compiling an

inventory of potentially useful retrotransposons is beyond the scope

of this commentary. However, for interested researchers, Ohshima

and Okada (2005) provided a useful list in their 2005 discussion of

LINE/SINE interactions.

Similar applications also exist outside of individual species. For

many of the same reasons TEs are good population genetic markers,

they also make good markers for the inference of organismal phy-

logenies (Shedlock and Okada 2000; Okada et al. 2004; Ray et al.

2006). However, the problem of applying the published methods to

the identification of insertions polymorphic among taxa could be

both more and less difficult. Obviously, there are likely to be mul-

tiple polymorphisms when comparing two species that diverged

multiple millions of years ago. Thus, finding random differential

insertions could be a trivial task. However, because of the evolution

of the TEs themselves, a problem could be observed when it comes to

identifying informative insertion patterns across the species group.

Researchers familiar with Alu SINEs will be aware that distinct

subfamilies of Alu exist in each primate lineage (Carter et al. 2004;

Hedges et al. 2004; Otieno et al. 2004; Garber et al. 2005; Ray and

Batzer 2005; Ray et al. 2005b; Salem et al. 2005b; Han et al. 2007;

Liu et al. 2009; Locke et al. 2011). Each of the methods described

relies on sequence characteristics unique to particular subfamilies

of elements. Herein lies the problem. When sampling among taxa,

should one target particular subfamilies? If so, one may find in-

sertions in one taxon but recover essentially nothing in any other

taxa. For example, imagine that a researcher decides to develop a

library of polymorphic insertions that will allow them to infer the

relationships among humans, chimpanzees, gorillas, and orangu-

tans. He or she unwisely follows Witherspoon’s protocol exactly

and targets Alu elements from the Yb8/9 family. As a result, they

will find a plethora of insertions in the human genome but nothing

of interest from any of the other taxa because these families are es-

sentially human specific (Carter et al. 2004; Hedges et al. 2004). The

end result will be an unresolved tree because only humans will

contain any of the discovered elements.

It is therefore clear that targeting insertions that have been

recently active in one taxon may not be the best way to proceed.

Instead, one may cast a broader net and target a generalized SINE

element from the group of interest. This would likely be a more

productive avenue. Again, using humans as a model, we can imagine

that the typical primate genome is home to approximately one

million Alu insertions. Because of the initial success of Alu early in

primate evolution, the majority of these insertions belong to the

older subfamilies, J and S (Batzer and Deininger 2002). Thus, when

comparing relatively recently diverged taxa, identifying the few

hundred or thousand informative insertions will be like searching

for the proverbial ‘‘needles in the haystack.’’ Fortunately, modern

computational tools may prove to make the problem more tractable

and we would encourage interested persons to pursue this as a po-

tential methodology.

Finally, one additional benefit of discovering both population

and/or taxon specific insertions is the ability to develop TE-based

ascertainment tests for forensic applications to wildlife conserva-

tion. A prime example is the investigation into the illegal trade of

endangered species. Wildlife conservation often comes into contact

only with samples that are not readily identifiable as belonging to

one species/population or another. A readily available library of

species or population specific markers would be valuable, especially

in cases where DNA is limited or degraded (Walker et al. 2003, 2004).

Conclusions
The observations reported in these manuscripts are powerful re-

minders of the impacts that TEs continue to have on the human

genome and have provided valuable information on the way our

genomes are being shaped not only in the germline but also in

somatic cells, including cells destined to become cancerous. Not

only have the investigators given us new perspectives on ongoing

retrotransposon activity but they have each developed a new

toolkit from which other researchers interested in various aspects

of biology, ranging from human disease to endangered species

conservation, can select.
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