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The majority of sporadic carcinomas suffer from a kind of genetic
instability in which chromosome number changes occur together
with segmental defects. This means that changes involving intact
chromosomes accompany breakage-induced alterations. Whereas
the causes of aneuploidy are described in detail, the origins of
chromosome breakage in sporadic carcinomas remain disputed.
The three main pathways of chromosomal instability (CIN)
proposed until now (random breakage, telomere fusion and
centromere fission) are largely based on animal models and in
vitro experiments, and recent studies revealed several discrepan-
cies between animal models and human cancer. Here, we discuss
how the experimental systems translate to human carcinomas and
compare the theoretical breakage products to data from patient
material and cancer cell lines. The majority of chromosomal de-
fects in human carcinomas comprises pericentromeric breaks
that are captured by healthy telomeres, and only a minor pro-
portion of chromosome fusions can be attributed to telomere ero-
sion or random breakage. Centromere fission, not telomere
erosion, is therefore the most probably trigger of CIN and early
carcinogenesis. Similar centromere–telomere fusions might drive
a subset of congenital defects and evolutionary chromosome
changes.

Introduction

Molecular analysis of tumor samples has led to the subdivision of
carcinomas in two classes, each with a specific type of genetic in-
stability. Most solid tumors undergo numerical chromosome altera-
tions, termed aneuploidy, together with gross structural changes such
as translocations or deletions. This combination of genetic defects
is termed chromosomal instability (CIN) and is found in �85% of
non-hereditary carcinomas (1,2). Approximately 15% of sporadic
carcinomas show a different type of genetic instability termed micro-
satellite instability (MIN). The alterations responsible for MIN accrue
in a small number of genes involved in mismatch repair and bring
about a mutator phenotype (3,4). Because of its mutagenic effect on
key regulators of cell proliferation (5), the relationship between MIN
and cancer is generally accepted. The link between CIN and cancer,
however, remains a matter of dispute, notwithstanding the large num-
ber of tumors that show this kind of genetic defect.

A better understanding of CIN has come from the finding that
aneuploidy arises together with segmental chromosome changes, such
as translocations, deletions and amplifications (6,7). Whereas aneu-
ploidy strictly refers to the missegregation of intact chromosomes,
segmental changes involve breakage and fusion. Aneuploidy and seg-

mental changes have been recognized individually for a long time;
abnormal chromosome numbers were suggested as a cause of cancer
nearly a century ago (8), and chromosomes in cancer cells were shown
to undergo structural changes when banding techniques became avail-
able (9). Only recently, however, aneuploidy and chromosome break-
age were suggested to be part of a single phenotype (10).

Our current knowledge concerning the initial steps leading to
CIN is largely based on experimental approximations. Even though
experimental models can describe one or more phenomena related
to cancer, they only reproduce individual aspects, are based on
induced phenotypes, and have given problems when extrapolating
to human carcinogenesis. The complex etiology of CIN has some-
times led to the idea that instability is caused by a combination of
two defects; multiple defects would justify its description by a com-
bination of models. The classical opinion is that spindle errors
result in aneuploidy, whereas telomere erosion or random breakage
causes segmental alterations. A novel hypothesis, however, indi-
cates that mitotic spindle defects might cause both aneuploidy and
chromosome breakage, opening the possibility of a single origin
for the full spectrum of genetic alterations in CIN tumors (11,12).
Here, we will compare three pathways of DNA breakage, assess if
they faithfully describe chromosomal defects in human carcinomas
and discuss the role of centromeres and telomeres in the initial
phases of CIN.

Aneuploidy alone is not enough

Among the genetic alterations in CIN tumors, aneuploidy is under-
stood in more detail; most carcinomas show variations in chromo-
some number that arise from continuous losses and gains of entire
chromosomes during mitosis (13). Aneuploidy can be reproduced in
animal models through the inactivation of genes that control the spin-
dle assembly checkpoint (14,15) but frequently leads to an embryonic
lethal phenotype (14,16). In contrast, haploinsufficiency of these
checkpoint genes is compatible with life but induces tumor develop-
ment (17,18). A complete loss of spindle checkpoint control probably
causes a high rate of aneuploidy that compromises embryogenesis and
masks the tumor development phenotype. Haploinsufficiency or mu-
tations that inhibit apoptosis rescue the embryonic lethality and ex-
pose the carcinogenic effects (14,18). A question left unanswered in
these studies is whether spindle checkpoint mutants undergo genetic
alterations other than aneuploidy.

The simple presence of extra chromosomes does not seem to lead to
CIN, and aneuploidy itself slows down cell proliferation (19). Experi-
ments in which MIN cells are released from nocodazole-blocked
mitosis yield a mixed population of diploid and aneuploid cells that
reverts to a diploid state after a few passages (20). Similar observa-
tions have been made in animal models; autosomal trisomy is usually
associated with fetal or early postnatal death, although an extra copy
of a small chromosome is tolerated (21–23). The reduced viability of
aneuploid cells seems at odds with the behavior of CIN tumors, as
neither uncontrolled growth nor DNA breakage are explained by nu-
merical chromosome changes alone. Once a certain degree of insta-
bility has been reached, aneuploidy can promote amplification of
growth-promoting mutations (2,24). This collaboration between mu-
tations and aneuploidy is evident in a combined Bub1/p53 haploin-
suffient background (25); as the Bub1 insufficiency generates
aneuploidy, lymphomas can acquire two copies of the mutated p53
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allele from a heterozygous background. The capacity of gene dosage

to maintain a normal chromosome complement is illustrated by the

concomitant loss of the wild-type p53 locus. In this way, murine

tumors with chromosome segregation errors gain a growth advantage

through p53 inactivation but avoid the gene dosage effects of a third

chromosome 11. Early carcinogenesis is thus governed by the balance

between copy number changes of oncogenes or tumor suppressor

genes on one side and overall gene dosage effects on the other side.

Given the high level of aneuploidy in advanced carcinomas, tumor

development might at some stage involve acquired tolerance for gene

dosage effects (20,26).

Chromosome breakage can limit gene dosage effects

Experimental creation of a broken—also termed reactive—chromosome
end induces a phenomenon termed the breakage-fusion-bridge (BFB)
cycle and leads to extensive genome remodeling (27). In contrast to
aneuploidy, which refers to numerical changes of entire chromosomes,
BFB can modulate the copy number of chromosome segments in which
oncogenes or tumor suppressor genes are flanked by a limited amount of
DNA. The limitations imposed by gene dosage are illustrated by high-
level amplifications and homozygous deletions (28); these genetic de-
fects are usually restricted to a few megabases surrounding the gene that
confers the phenotype. This means that segmental alterations, at least
theoretically, can contribute to tumorigenesis but have fewer gene dos-
age effects than aneuploidy. Since aneuploidy alone cannot account for
segmental alterations, BFB is now generally accepted as a mechanism
that explains genetic plasticity in CIN tumors (2).

Whereas mitotic spindle errors are generally accepted as the
leading cause of aneuploidy (29), the origins of segmental alterations
in CIN tumors are still poorly understood. All models that include
segmental alterations rely on BFB, however, as breakage is essential
to obtain different copy numbers for segments of a single
chromosome. The original study on the BFB cycle illustrated how
breakage is propagated (27) but relied on breaks induced by
recombination and thus might reflect an artificial situation. The
detection of multiple copies of the n-Myc gene in anaphase bridges
(30) directly links BFB to gene amplification in human cancer and
indicates at a role for both breakage and fusion in the amplification
mechanism (Figure 1).

Since BFB was first described, three routes have been proposed to
start breakage: Random breaks due to external factors, and the
site-specific telomere erosion and centromere fission (11,31,32).
Since the hypotheses concerning chromosome breakage are based
on experimental models, the comparison with data from patient
material provides an essential verification.

External factors, random breakage and fragile sites

Since chromosomal breaks and translocations were considered
random until recently (33), several mechanisms of random breakage
have been proposed as causes of BFB. The common theme in models
that assume random breakage is a continuous basal rate of break
formation due to external factors such as cosmic radiation or reactive
oxygen species (31). Normally, these breaks are repaired by one of the
multiple repair mechanisms in mammalian cells, but an increased rate
of break formation or defects in the repair machinery might offset this
equilibrium and lead to the random accumulation of breaks that ini-
tiate BFB (31). Whereas radiation-induced damage persists longer in
cells with reduced repair capacity to (34), most CIN tumors efficiently
repair DNA damage (35) or show augmented break repair activity
(36,37). Even models that lack a single repair system maintain genetic
stability unless given a break-inducing treatment (38,39). Although
a few random breaks might escape detection on the timescale of
a human life, this hypothesis is difficult if not impossible to prove
experimentally; since late passage human fibroblasts show increased
levels of spontaneous but not of induced DNA damage (40),

repair-independent mechanisms probably generate DNA damage in
aging cells.

One mechanism that could generate repair-independent DNA
damage is breakage of stalled replication forks. According to this
theory, termed the fragile site hypothesis, our genome has various
sites with extensive flexibility and sequence repeats that are believed
to be more difficult to replicate in fast-growing cells. The study of
fragile sites includes folate deprivation, which results in repair de-
ficiency, or treatment with the DNA polymerase inhibitor aphidicolin
(41) conditions that unlikely represent early carcinogenesis. When not
induced experimentally, breakage at fragile sites seems to correlate
with a loss of function in cell cycle checkpoint and repair proteins
(42), suggesting a hereditary component normally absent from
sporadic carcinomas. An important argument against random break-
age and fragile sites comes from human cancer itself; large-scale
analyses of tumor samples show that chromosome breaks in CIN
tumors are non-random and show little or no preference for fragile
sites (43). Even fragile sites that coincide with tumor suppressor genes
(44), the breakage of which might affect carcinogenesis directly, rep-
resent only a small fraction of breakpoints in sporadic carcinomas
(28). Instead, tumor samples and cancer cell lines show a striking
preference for gains and losses of whole arms (43). Thus, even though
random breakage or fragile sites could explain genetic alterations
after a massive genotoxic insult, they probably have a minor role in
the genesis of CIN under normal circumstances.

The popular model: telomere erosion

After the identification of specific sequences that protect chromosome
ends from erosion, telomeres have been suggested as major players in
CIN (45). The initial description of the BFB cycle (27) included a role
for the chromosome ends, which were first proposed to have a special-
ized structure—the telomere—around the same time (46,47).
Whereas the original experiments introduced an interstitial break in
a single chromosome (27), current models of telomere dysfunction are
based on gradual erosion, also termed attrition (48). The theory that
links telomere attrition to CIN gained popularity after the identifica-
tion of telomerase activity and specific telomeric sequences (45), but
the vast amount of data generated during the last decades has failed to
provide a mechanism that adequately explains the role of telomeres in

Fig. 1. Copy number alterations involve chromosome breaks. As aneuploidy
strictly refers to numerical changes of whole chromosomes, segmental gains
and losses require that part of a chromosome has obtained a different copy
number from the remainder of the same chromosome. The example shows
chromosome 11 from Figure 3. Segmental gains and losses create a growth
advantage by uncoupling the copy number of oncogenes (e.g. cycD1) and
tumor suppressor genes (e.g. chk1) from general gene dosage. Frequently, the
gains and losses over a single chromosome are complementary, as segments
without gains are not copy number neutral but normally show losses.
Intrachromosomal segment borders that delineate copy number alterations
correspond to unprotected (reactive) ends that are functionally equivalent to
breaks.
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early carcinogenesis. Although induced telomere attrition in mouse
mutants results in chromosome end-to-end fusions (49), this neither
reproduces the CIN phenotype nor increases carcinogenesis if not
aided by a tumor-inducing treatment (32,50). Long-term cultures of
murine fibroblasts showed CIN in both wild-type and telomerase null
cells and a large proportion of telomere-positive fusions (51); also
human cell lines with chromosome fusions but a normal telomere
length have been described (52), indicating no correlation between
telomere length and CIN. In some models, telomere attrition has been
associated with suppression of spontaneous tumorigenesis (53) and
tumor regression (54).

To understand the effect of telomere attrition, it is important to
recognize how telomeres protect chromosomes under physiological
conditions. Since telomeres contain free DNA ends, they are capped
by proteins from the non-homologous end joining (NHEJ) pathway
(55). Normally, NHEJ catalyzes the fusion of free DNA ends, but the
shelterin complex suppresses this reaction in telomeres (56). DNA
repair pathways have dual functions, break repair and signalling for
cell cycle arrest or apoptosis (31). When telomeres get shorter, the
shelterin complex allows the activation of the damage signalling
through ataxia telangiectasia mutated (ATM) but sustains the inhibi-
tion of repair (57). Through the combination of senescence signalling
and repair inhibition, telomeres not only prevent unwanted cell pro-
liferation but also chromosome fusion.

Detection of chromosomal breaks by the repair machinery leads to
the local phosphorylation of histone H2A.X, usually described as
cH2A.X (38,58). cH2A.X is rapidly dephosphorylated during break
repair, with the goal to constrain damage signalling and to enable cell
cycle progression. Telomere shortening also results in cH2A.X for-
mation (59). In contrast to breaks, however, suppression of the DNA
ligation step by shelterin (56) prevents telomere fusion while sustain-
ing the cH2A.X signal. Persistent telomeric cH2A.X thus indicates
that the protection against telomere fusion is functional.

Early carcinomas frequently show accumulation of cH2A.X in
combination with an activated ATM pathway, culminating in p53-
mediated cell cycle arrest (60,61). Inactivation of p53 allows cancer
cells to proliferate in the presence of an activated ATM pathway (62),
which explains the frequent mutation of p53 in advanced carcinomas.
cH2A.X can also be found at telomeres of cancer cell lines, indicating
ATM activation provides a long-term senescence signal (63). No fu-
sion of cH2A.X-positive telomeres in cell lines has been reported,
however, and even the short telomeres that prevail in senescent cells or
cancer cells are able to recruit the ligation-suppressing shelterin com-
plex (64,65). Taken together, the current data suggest that telomere
attrition is an effective tumor suppression mechanism, capable of in-
ducing senescence long before a critical telomere length is reached.

Cancer cells can attenuate an activated ATM pathway by telomere
elongation. Like break repair, telomerase activity is augmented in
cancer cells (66), but telomerase overexpression induces neither
CIN nor cell transformation in model systems (67). The observation
that telomerase reactivation occurs after cells have escaped from
growth crisis (68) suggests that telomerase reactivation is selected
for during tumor progression and thus is a consequence—not a cau-
se—of CIN. The recent discovery of a role for telomerase in break
repair indicates that telomerase upregulation in carcinomas might be
a response to chromosome breakage in general, not just to telomere
attrition (69,70). In conclusion, even though telomerase upregulation
might give a growth advantage in the later stages of tumor develop-
ment, the role of telomere attrition in the initiation of CIN is dubious.
Examination of the genetic landscape in tumor samples might help to
evaluate the contribution of telomeres in human cancer.

Centromere fission and spindle defects

Recently, a third pathway for breakage has been proposed in the form
of centromeric breaks (11). Centromere fission was described—again
using a plant as model system—even before the discovery of BFB
(71). Unlike telomere attrition, no association between centromeric or
pericentromeric breaks and CIN was suggested until recently. The

latest data show that DNA damage can be generated under conditions
that compromise the mitotic spindle (11,72), suggesting that a single
mechanism causes aneuploidy and chromosome breakage (12). One
spindle defect in particular, merotelic kinetochore attachment, seems
important for centromere fission, because it is not efficiently corrected
by the classic mitotic checkpoints (73) but can generate enough force
to physically shear the kinetochore (11). A small percentage of
merotelic attachments might even go undetected in normal cells;
the associated centromere fission can be detected in �0.1% of all
lymphocytes from healthy donors (74).

Apart from spindle control, other mitotic processes might
contribute to centromere fission. In mammals, chromosome arms
are liberated in prophase through the non-proteolytic removal of
cohesin, but centromeres remain joined until the metaphase–anaphase
transition (75). At least in theory, residual centromeric cohesin could
resist the pulling force exerted by the spindle and thus contribute to
centromere fission. In addition, mammalian centromeres comprise
repetitive DNA, a feature of inducible fragile sites (41). No
centromere fission, however, has been observed under the conditions
that induce known fragile sites, suggesting that stalled replication
unlikely causes centromeric DNA damage. The description of errors
in replication initiation of a common fragile site but not in its
replication progression (76), shows that sequence repetition not
necessarily creates fragile DNA.

Given the connection between the mitotic spindle and breakage,
DNA damage would be expected in mutants that undergo aneuploidy.
Although studies that address spindle defects usually test only for
aneuploidy, cells treated with spindle poisons and mutants in the
spindle checkpoint gene Mad2 were shown to accumulate cH2A.X
(14,77). In addition, haploinsufficiency or biallelic point mutation of
spindle checkpoint genes such as Mad1 and BubR1 induces tumor
development (18,78,79); knowing that aneuploidy alone cannot ac-
count for tumor formation, carcinogenesis in these mutants probably
involves chromosome breakage. Even mild spindle defects, which
lead to low levels of chromosome breakage but are compatible with
development, suffice to produce anaphase bridges and translocations
in mouse chromosomes (11,78). Interestingly, chromosome
segregation defects have recently been implicated in pathways of
early aging and senescence (80–82). Spindle defects thus are on
a par with telomere attrition when concerning a possible link between
aging and cancer.

Since breakage and aneuploidy are normally found together (6,7),
a shared mechanism provides an attractive solution. In support of this
hypothesis, centromere-driven instability has been proposed for CIN
tumors such as liposarcoma (83), squamous cell carcinoma (84,85) or
glioblastoma (86). Still, much of the data on centromere fission has
been generated in experimental models and would therefore benefit
from the same verification as random breakage and telomere erosion.

The three breakage pathways yield different products

Based on the origins of DNA damage, three models can be proposed
(Figure 2). The most obvious difference between the three pathways
concern the place where breaks first occur and what kind of products
are initially formed. Theories that depend on external break induction
invariably assume random breakage, as it is hard to imagine how
chromosomes can be specifically oriented on background radiation
or reactive oxygen species. On the contrary, telomere fusion and
centromere fission affect a specific chromosomal structure and might
thus impose specificity on break sites. Even though telomere fusion
and centromere fission originate at a specific chromosome site, the
order of events in these two cases is very different; whereas breakage
is a consequence of telomere–telomere fusion in the former model,
centromeric breakage occurs before the actual fusion in the latter
model. As a result, breaks are expected to appear in a random pattern
in the telomere attrition model but specifically clustered around the
centromere in the centromere fission hypothesis (Figure 2). Further-
more, the site of the first defect means that the initial fusion products
have an antiparallel orientation in the telomere erosion model (two
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telomeres fuse) but adopt a tandem orientation after centromere
fission (a broken centromere is fused to a telomere). In all three
models, telomeres may capture broken ends (87) and incorporated
into fusions as interstitial telomeric sequences (ITS). Exclusively in
the centromere fission model, ITS are flanked by an intact
chromosome and a tandem whole chromosome arm.

Telomeric fusions give rise to dicentric chromosomes, which are
highly instable and liberate new reactive ends upon breakage (27,88).
New breaks in dicentric chromosomes are situated between the two
centromeres; all fragments therefore contain a centromere and fuse to
form new dicentrics. Some of the secondary products in the telomere
erosion model might be formed due to pericentromeric breaks, but
these products occur after break randomization and would thus rep-
resent a minor proportion. In contrast to telomere erosion, a pericen-
tromeric break can yield either a centromere-containing or
centromere-less fragment. In this way, unstable as well as stable fu-
sions can be formed, all of which adopt a tandem orientation. This
means that stable tandem fusions, which contain a single centromere
and do not enter BFB cycles, are formed exclusively by a pericentro-
meric break followed by fusion to a chromosome end. To determine
which pathways govern the early steps of CIN in human carcinogen-
esis, a comparison of these models to chromosome alterations in
tumor samples might yield important clues.

What tumor samples and cell lines show

To determine which of the three models most faithfully describes CIN
in human cancer, we have to examine samples from actual neoplasms.
The first clue comes from breakpoint localization; traditional marker
analyses showed that nearly half of all breakpoints on the largest
chromosome map to the centromeric and pericentromeric region
and only a small proportion to the arms and telomeres (89). Recent
advances in microarrays have enabled large-scale analysis of copy
number changes in tumor samples (43), and massive sequencing has
identified the pattern of breakpoints in a large panel of cancer cell
lines (28). Chromosome breakage and the location of breakpoints can
be inferred from the limits of regions that show copy number alter-

ation; if a normally continuous DNA tract is found in two different
amounts, this tract must have been broken and one of the fragments
must have been amplified or lost to yield a different number of copies
than the other fragment (Figure 1). By analyzing the copy number of
a large number of chromosomal regions, breakpoints can be mapped
with kilobase precision. Even though the latest studies focussed on the
identification of small regions, the most evident switches in copy
number localize to centromeres and pericentromeric regions
(28,43,90). These data show that the most common alterations involve
whole chromosome arms—arm-level alterations are more frequent
than aneuploidy in some studies (43)—and that breaks frequently
localize adjacent to centromeres (Figure 3). The high frequency
of arm-level alterations corroborates the centromere fission model,
because this is the only mechanism that specifically splits a chromo-
some into two arms.

The analysis of copy number changes alone does not depict the
topology of breakage and fusion. Microscopy based techniques, for
example spectral karyotyping and fluorescent in situ hybridization,
yield a much more visual image of chromosome fragments and their
instability. Optical techniques showed that chromosome arms are nor-
mally not found alone but rapidly fuse to other fragments or intact
chromosomes (83,91). Some of the copy number changes observed in
the large-scale analyses are therefore brought about by chromosome
arms that ‘hitch a ride’ on the ends of healthy chromosomes (Figure
4). When viewed by microscopy, fused chromosomes appear to grow
from a telomere; this observation might have contributed to the focus
on telomere defects. Close inspection of the formed products, how-
ever, shows that the fusion point comprises a centromere and a telo-
mere, and analysis by banding techniques shows that a fragment the
size of a whole arm attaches to the end of a healthy chromosome in
a tandem orientation (91). A classification of products described in
literature (94) and spectral karyotyping databases (93) indicate that
tandem fusions are much more common than antiparallel fusions
(Figure 5). Also the other products of centromere fission—for exam-
ple centromeric fusion of two arms and isochromosomes (84,95)—are
common in tumor samples.

In all three models, ITS can be formed when telomeres capture
broken ends (87). No comprehensive search for ITS in tumor samples
has been conducted, but the studies carried out until now show ITS at
antiparallel fusion sites formed after centromere fission (96,97). In
some cases, a combination of probes has enabled direct detection of
the fusion between a pericentromeric chromosomal region and telo-
mere (97). In conclusion, the most frequent chromosomal defects do
not seem to be the result of random breakage or telomere erosion,
although genuine telomere–telomere fusions have occasionally been
detected (98–100). Mitotic centromere fission followed by NHEJ
(11,101) provides a simple model that faithfully describes the pattern
of common chromosome alterations in CIN tumors (Figure 6).

From single breaks to ongoing instability

A question that arises is how events such as centromere fission can
lead to ongoing instability. The analysis of tumor samples provides us
with a large number of individual ‘snapshots’, that hint at centromere
fission as an important early step. Long-time cultures of cancer cell
lines (102) and serial sampling of patients (103), however, indicate
that tumor karyotypes evolve over time.

The high levels of CIN in advanced tumors suggest that these have
acquired adaptations to gene dosage. Cancer cells seem to cope with
gene dosage by increasing proteasomal protein degradation, used as
a target for chemotherapy (104). Also in yeast, mutations that increase
activity of the ubiquitin–proteasome pathway generate tolerance for
aneuploidy (26). Additional screenings for compounds that preferen-
tially inhibit growth of aneuploid cells identified protein folding and
autophagy as potential targets (105). Although many of these adapta-
tions promote tumor survival individually (106), they probably are
induced together as a result of gene dosage. As a consequence, these
pathways might cause a general ‘spillover’ effect on key cell cycle
regulators (107) and promote further genetic instability.

Fig. 2. Comparison of chromosome breakage pathways Three models,
random breakage (left), telomere fusion (middle), and centromere fission
(right) are represented. For each model, initial defects are shown on the upper
row, primary fusions on the second row and later products on the third row.
Random breaks are depicted with purple arrows and site specificity is
indicated with yellow arrows. Whereas random breaks are the main products
in the random breakage and telomere fusion models, arm-level breaks are
generated first in the centromere fission model and random breaks form only
after secondary fusion has taken place. Fusions in the telomere erosion model
are telomere to telomere (blue) and thus antiparallel, whereas fusions in the
centromere fission model are centromere (red) to telomere and thus tandem
(black arrows, oriented from the centromere to the telomere).
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Initial steps in this gene dosage cycle probably are quite small, as
whole arm gains add a considerable amount of DNA to the genome
and are associated with reduced viability. Since small chromosomes
can be present in extra copies without compromising viability, the
arms from small chromosomes might target larger chromosomes for
instability (Figure 4). In addition, commonly amplified arms on large
chromosomes contain ‘strong’ oncogenes such as c-Myc (8q), ErbB2
(17q) or Pik3CA (3q). Still, these changes add or remove a consider-
able amount of genetic material and are probably to cause a spillover
effect to important regulatory pathways. In conclusion, gene dosage is
a mechanism that can inhibit cell transformation in its first steps but
might promote ongoing CIN and malignancy when overcome by
adaptation.

Concluding remarks

Large-scale genetic analyses of tumor samples and cancer cell lines
show that the vast majority of copy number changes correspond to
intact chromosomes or entire chromosome arms (28,43), which
points at the centromeric region as a breakage hotspot. One has to
admit that also the other pathways might occasionally generate
a pericentromeric break. The vast numbers of arm level transloca-
tions in tumor samples, however, show that pericentromeric breaks
must be formed preferentially. In advanced tumors, chromosome
segments are more probably to undergo several rounds of breakage;
the biphasic pattern of the 11q arm (Figures 1 and 3) probably has its
origin in a centromeric break causing amplification of the whole

arm, followed by loss of the distal part. In this way, cells gain extra
copies of the proximal CycD1 oncogene but repress the distal tumor
suppressor Chk1. Note that the reverse pattern is very rare because
the centromeric break anchors the proximal part to acceptor chro-
mosomes. Thus, even though oncogenes and tumor suppressor genes
govern the proliferation of cancer cells, the genetic signature of

Fig. 4. Broken arms fuse to the end of chromosomes. Example of
a molecular cytogenetic analysis of a neuroectodermal tumor (92). The
skygram was retrieved from the NCBI SKY/CGH database (93). The main
structural alterations observed correspond to centromeric breaks
(chromosomes 13 and 21) followed by fusion to telomeres (chromosomes 8,
15 and 20). Arrows indicate tandem orientation of the fusions. The fusion of
chromosome 21 to chromosomes 8 and 15 classifies as a jumping
translocation.

Fig. 3. Chromosome breaks frequently liberate whole arms Copy number
analysis of 844 liver carcinomas (A) and 1827 head and neck squamous cell
carcinomas (B) were retrieved from the Progenetix database (90). For each
type of carcinoma, gains are indicated in green (right) and losses in red (left).
Blue lines indicate centromere positions. Chromosomes that bear evidence of
centromere fission are indicated with an arrow. Analysis of 3131 profiles
showed a similar preference for whole arm gains and losses in a wide range
of carcinomas (43). The biphasic pattern of chromosome 11q probably is
a result of whole arm amplification followed by loss of the distal segment.

Fig. 5. Classification of segmental defects in tumor samples. Spectral
karyotyping analyses corresponding to 98 human carcinomas from the NCBI
SKY/CGH database (93) were inspected for structural alterations. Samples
without apparent structural alterations (seven cases) or bearing .25
alterations (four cases) were discarded. Alterations were classified according
to breakpoint and fusion products. Multiple copies of the same alteration in
a single sample were counted as a single event, as they correspond to
aneuploid state of entire fusion products and do not involve de novo
breakage. The majority of products involve centromeric fission, and only
a minor proportion can be attributed to telomere–telomere fusion.
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carcinomas points at centromere fission as the mechanism that con-
fers genetic plasticity.

Among the most striking structures resulting from the fusion
between whole arms and intact chromosomes are ITS. Although
ITS can be powerful markers, reliable detection of ITS seems chal-
lenging and even the largest ancestral ITS in our genome (on chro-
mosome 2q13) is distinguished in only 10% of all metaphases (98).
The absence of detectable ITS from a fusion site might therefore
illustrate a technical instead of a biological problem. Although
cancer ITS are rarely examined in detail, the studies done until
now show ITS in tandem fusions between single arms and intact
chromosomes (96). Most ITS are tandem repeats—not the inverted
repeats generated in telomere–telomere fusions—and proba-
bly formed through the capture of a non-telomeric break on a
chromosome end (87).

Telomeres might be the preferred substrate for the chromosome arms
that are liberated in mitosis, because telomeres come preloaded with
components of the NHEJ pathway (55,108) and recombination has little
activity after mitotic exit (31). Although telomere fusion is repressed by
the shelterin complex, the fusion of arms to intact chromosomes shows
that this protection is not waterproof. The fully activated NHEJ machin-
ery on centromeric breaks might circumvent the shelterin inhibition of
the telomeres. Nonetheless, the considerable percentage of isochromo-
somes (Figure 5) illustrates the effectiveness of shelterin, because iso-
chromosomes are formed by centromeric breaks that persist alongside
telomeres until the arm has been replicated and repaired. Recently de-
scribed phenomena such as chromothripsis (109), found in a few percent
of carcinomas, might be ascribed to shelterin function; efficient telo-
mere protection helps the confinement of BFB propagation (Figure 6) to
a small pool of chromosomes, which results in reutilization of broken
chromosome arms and limits copy number states. The high frequency of
breakage in chromothripsis, together with the low percentage of samples
that show this phenomenon, hints at unstable dicentric chromosomes.

ITS have been analyzed extensively in congenital syndromes
(110,111) and evolutionary biology (112,113). Although the origin

of ITS in evolutionary biology is a matter of debate, it is accepted that
congenital ITS are formed in meiosis. Like mitosis, the final meiotic
divisions can suffer from chromosome segregation defects (114); also
in meiosis, spindle defects seem to have a critical role when it comes
to genetic instability. Practically, all congenital ITS result from the
translocation of a single donor segment onto different—random—
chromosome recipients, termed jumping translocations (97,115).
Repair by NHEJ agrees with the random nature of jumping trans-
locations (97,111,115) because this repair pathway non-selectively
fuses unprotected chromosome ends (31). Analysis of jumping trans-
locations in congenital defects again shows whole arm fusion to intact
chromosomes, frequently in combination with isochromosome forma-
tion of the other arm. In conclusion, a single mechanism, centromere
fission, might be responsible for genetic instability on the cellular,
individual and evolutionary scale.
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