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Large numbers of expressed sequence tags (ESTs) continue to fill public and private databases with partial cDNA
sequences. However, using this huge amount of ESTs to facilitate gene finding in genomic sequence imposes a
challenge, especially to wet-lab scientists who often have limited computing resources. In an effort to consolidate
the information hidden in the vast number of ESTs into a readable and manageable format, we have developed
EbEST—a program that automates the process of using ESTs to help delineate gene structure in long stretches of
genomic sequence. The EbEST program consists of three functional modules—the first module separates
homologous ESTs into clusters and identifies the most informative ESTs within each cluster; the second module
uses the informative ESTs to perform gapped alignment and to predict the exon–intron boundary; and the third
module generates text file and graphic outputs that illustrate the orientation, exonic structure, and untranslated
regions (UTRs) of putative genes in the genomic sequence being analyzed. Evaluation of EbEST with 176 human
genes from the ALLSEQ set indicated that it performed in-line with several existing gene finding programs, but
was more tolerant to sequencing errors. Furthermore, when EbEST was challenged with query sequences that
harbor more than one gene, it suffered only a slight drop in performance, whereas the performance of the
other programs evaluated decreased more. EbEST may be used as a stand-alone tool to annotate human
genomic sequences with EST-derived gene elements, or can be used in conjunction with computational
gene-recognition programs to increase the accuracy of gene prediction.

[EbBEST is available at http://EbEST.ifrc.mcw.edu]

One of the challenges the Human Genome Project
faces is to identify genes from the megabase se-
quences it generates every day. Some recent studies
(Smith et al. 1996; Ansari-Lari et al. 1997) have
shown that predicting genes de novo via computa-
tion has only a limited success in large scale genome
analysis and by use of expressed sequence tags
(ESTs) significantly improves the power of compu-
tational gene discovery, owing to the phenomenal
growth in EST sequences. One way of taking advan-
tage of ESTs is to integrate computation-based gene
prediction with homologous EST alignment into a
single program, a model the developers of GRAIL
and GeneID are pursuing. Alternatively, a stand-
alone program that defines gene elements only
from EST analysis can also be valuable to general
genome annotation and to bench scientists who
want to have a thorough analysis over a specific
region of the genome. Genotator (Harris 1997) and
PowerBlast (Zhang and Madden 1997) have built-in
functions to annotate genomic sequences with ho-
mologous EST ‘‘hits’’ and even provide results of

Smith–Waterman alignment. However, tagging ge-
nomic sequence with EST hits may generate rather
complicated patterns that are not easy to evaluate,
and the EST tags quickly become overwhelming and
a full spectrum of Smith–Waterman analysis proves
very time consuming when a large number of EST
hits are returned. Therefore, there is a need to de-
velop a specialized tool that can define the fine
structure of a gene from ESTs in an acceptable time
frame and consolidate the information into easily
readable and manageable format, the goal set for the
EbEST program introduced in this paper.

The Program

EbEST is designed to automate EST-based gene
analysis on uncharacterized human genomic se-
quences. It aims at facilitating gene discovery by
extracting as much gene structure information as
possible from ESTs. But it is not a computation-
based gene finding program, because it does not use
the statistic features of gene elements to compute
exons and build gene models. The default thresh-
olds are for human EST sequence on human ge-
nomic sequence. Investigators wishing to use EbEST
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in a cross-species analysis may do so by changing
the thresholds and specifying the species used.
However, we have not established ideal thresholds
for this purpose in this release of EbEST.

The EbEST algorithm (Fig. 3, below) uses two
programs, RepeatMasker and Cross Match, which
are accessible from the EbEST web server. EbEST is
currently provided as a web server (http://
EbEST.ifrc.mcw.edu). Two databases, dbEST at NCBI
and TIGR’s human transcript (HT) database, are
searchable. HT is included to cover known cDNAs
that are not ESTs.

We have evaluated EbEST, using the 176 human
genes from the ALLSEQ set developed by Burset and
Guigo (1996) and the LongSeq set developed in
house. The LongSeq set was built to provide a more
realistic sample of long genomic sequences. We
compared the performance of EbEST with that of
several gene finding programs to determine the rela-
tive strength and weakness of the EST-based ap-
proach versus computation-based gene prediction.
It needs to be noted that the two approaches can be
integrated, and we would expect to see the new ver-
sions of some gene prediction programs having
some functional unit to use EST information as well.

RESULTS

EbEST Performance at Nucleotide Level

First, we evaluated EbEST using 176 human genes in
the ALLSEQ set (Burset and Guigo 1996), each se-
quence of which contains one complete gene. In
addition to the original ALLSEQ set, Burset and
Guigo also provided an ALLSEQ dataset with 1%
sequencing errors that generate a reading frame
shift. EbEST was tested with both the original and
the mutated data sets.

Figure 1 compares the perfomance of EbEST at
the nucleotide level to that of FGENEH, GeneID+,
GeneParser3, and GRAIL2. The data for other gene
prediction programs were ported from Burset and
Guigo (1996) but recalculated on the basis of 176
human genes used in the current study. GENSCAN
was not included for this comparison, because
Burge and Karlin (1997) reported that it has only a
marginal performance lead over the other programs
used in this comparison using the original ALLSEQ
set. EbEST predicted 51% of the exonic nucleotides
with a 93% specificity. The lower sensitivity is ex-
pected, considering the fact that ESTs are only par-
tial sequences of a gene and are biased toward
highly expressed genes. EbEST lost little sensitivity
(43%) or specificity (93%) when the mutated data

set was used. This is in contrast to the other pro-
grams that had a significant drop in both sensitivity
and specificity in the mutated sequences. It needs to
be noted, however, that a new version of GRAIL has
a built-in function to detect reading frameshift er-
rors prior to other computation and should improve
its performance.

EbEST Performance at the Exonic Level

Defining the exact exon–intron boundaries is a sig-
nificantly greater challenge for computer prediction
programs. Table 1 shows the performance of the five
programs tested at the exonic level. The specificity
of all five programs were reduced, in comparison
with the performance at the nucleotide level. The
sensitivity of EbEST was again lower than that of
other programs when tested with original se-
quences. However, the performance of EbEST was
virtually not changed when the mutated data set
was used, whereas the specificity and sensitivity of
other programs dropped significantly. The net result
is that EbEST had much higher accuracy when chal-
lenged with mutated sequences. Impressively, Eb-
EST has the lowest rate of wrong exon (WE), sug-
gesting that when EbEST predicts an exon, it is very
likely to be real.

Identification of 38 UTRs

38 ESTs generated from oligo(dT)-primed cDNA li-

Figure 1 Exon prediction evaluated at the nucleotide
level, by use of the 176 ALLSEQ human genes as test
case. The data for FGENEH, GeneID+, GeneParser 3,
and GRAIL 2 were cited and recalculated from Burset
and Guigo (1996). (Sn and Sp) Sensitivity and Speci-
ficity, respectively. Both the original (unmutated) and
the sequences with 1% reading frameshift (mutated)
were tested.
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braries very often represent the 38 termini of genes,
whereas 58 ESTs may be derived from anywhere in a
gene. This feature makes ESTs particulary useful in
mapping the 38 termini of genes. If the 38 and 58

ESTs from a single gene can be linked together (i.e.,
Washington University–Merck EST project se-
quence clones from both ends), the 58 EST can be
used to further extend the gene region. EbEST iden-
tifies 38 ESTs on the basis of their location within a
cluster and the annotation that the EST comes from
a 38-library. For the 176 ALLSEQ human genes
tested, EbEST identified 71% of 38 UTRs with 92%
accuracy. As with the other metrics of performance,
it was not dramatically altered by the presence of
sequence errors. The sensitivity was 64% and the
specificity was 90% when the mutated sequences
were used. Identification of 38 UTR provides critical
information that can be used for gene modeling,
particularly in long stretches of genomic sequence.

Predicting Gene Structure within Long Stretches
of Genomic Sequence

As more and more genomic sequence is generated,
the ability to predict multigene models will become
increasingly important. Therefore, we developed
the LongSeq collection, each sequence of which
contained between two and six experimentally con-
firmed genes. Not all of the programs can manage
such long stretches of sequence and we were only
able to test GRAIL, FGENEH, and GENSCAN. When
the gene modeling function was selected, GRAIL
and FGENEH predicted only one gene for each of
the 15 sequences in the LongSeq set, whereas GEN-
SCAN was able to build discrete gene models over
long sequences. A representative example is shown

in Figure 2. The genomic sequence
is 100,000 bp long and contains at
least six complete genes; however,
GRAIL and FGENEH built only one
huge gene across the sequence.
GENSCAN built four gene models
that overall correspond well with
the real gene structure, but com-
bined two other nearby genes into
a single one. Interestingly, by use of
ESTs, EbEST flagged correctly the
occurrence of 38 UTR for all six
genes.

The results of exon prediction
are summarized in Table 2. GRAIL
and FGENEH were evaluated with-
out their gene modeling function,
whereas GENSCAN was evaluated

on the basis of the gene models it built. Without the
gene-modeling process, the ability of GRAIL and
FGENEH to predict exons was significantly reduced,
in comparison with the prediction done on the 176
ALLSEQ human genes. With its ability to recognize
gene boundaries, GENSCAN outperformed GRAIL
and FGENEH. The sensitivity of EbEST was lower
than that of GRAIL, FGENEH, and GENSCAN, but
its specificity at nucleotide level was notably higher
than the others. Furthermore, whereas GRAIL and
FGENEH could not identify gene boundaries cor-
rectly when challenged by the LongSeq set, GEN-
SCAN mapped 60% of 38 terminals of the 45 genes
with a specificity of 63% and EbEST mapped 62% of
all the 38 UTRs with a specificity of 88%.

DISCUSSION

With >1.3 million ESTs available from public dbEST,
of which ∼850,000 are human, and a coverage of
>50% human genes (Adams et al. 1995; Hillier et al.
1996), various efforts have been made to use ESTs to
aid gene discovery. For example, PowerBlast (Zhang
and Madden 1997), a versatile and extremely pow-
erful BLAST search engine, not only annotates sub-
mitted sequences with EST hits, but also provides an
elegant graphic tool to enlist detailed high scoring
segment pair (HSP) alignments (or Smith–
Waterman alignments, if the option is chosen) for
each homologous EST (Zhang and Madden 1997).
Genotator provides some similar function (Harris
1997). However, the outputs of these programs are
often rather complicated to review and Smith–
Waterman alignment often proves too time con-
suming to run through when long genomic se-
quences are applied. EST GENOME (Mott 1997) is

Table 1. Exon Prediction Evaluated at the Exonic Level,
Using the 176 ALLSEQ Human Genes as Test Case

Unmutateda Mutateda

Sn Sp ME WE Sn Sp ME WE

FGENEH 0.71 0.68 0.11 0.15 0.31 0.34 0.28 0.20
GeneID+ 0.69 0.65 0.09 0.18 0.27 0.26 0.27 0.30
GeneParser 3 0.61 0.61 0.11 0.14 0.34 0.41 0.28 0.11
Grail 2 0.49 0.53 0.19 0.13 0.24 0.27 0.32 0.13
EbEST 0.37 0.58 0.43 0.02 0.31 0.53 0.43 0.08

a(Sn) Sensitivity; (Sp) specificity. The data for FGENEH, GeneID+, GeneParser 3, and
Grail 2 were cited and recalculated from Burset and Guigo (1996). (For details, see
Methods.)
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another example. It is a handy tool of aligning ho-
mologous ESTs to genomic sequence to identify ex-
ons. But it lacks a friendly user interface (the user
needs to isolate homologous ESTs on their own first)
and a graphic view tool. What was accomplished in
the creation of EbEST is a tool that is easy to use,
time-efficient, and yet robust enough to handle
long stretches of genomic sequence, and one that
generates output that is manageable by scientists
who might not have substantial computing power.

To evaluate EbEST, two sets of sequences were
used as test cases: one is the 176 human genes in the
ALLSEQ set developed by Burset and Guigo (1996),
and the other is the LongSeq set of 15 sequences
generated in-house. Because most of the sequences
in the LongSeq set were generated by genome se-
quencing effort, the composition of genes in this set
should be less biased toward highly expressed genes
and, therefore, provide a more realistic test case for
the raw sequences that are being generated by the
genome sequencing projects. As the evaluation data
revealed, ESTs currently available from dbEST at
NCBI could be used to derive about half of all the
exonic nucleotides in the 176 human genes in the
ALLSEQ set and 32% in the LongSeq genes.

Redundancy is one of the major problems of
using ESTs to find genes in genomic sequences.
When a large number of homologous ESTs are re-
turned, it is time-consuming to evaluate the de-
tailed listing of HSPs or local alignments, especially
for many wet-lab scientists who have a limited bio-
informatics infrastructure and/or experience in ge-
nome analysis. Furthermore, although retrieving
and performing Smith–Waterman alignment on all
homologous ESTs may be practical for analyzing a
few genomic sequences, it is not acceptable for a
tool that is designed to automate homologous EST
analysis on genomic sequences, like EbEST. The Eb-

EST program reduces the workload
of Smith–Waterman alignment by
clustering ESTs into nonoverlap-
ping groups and selecting informa-
tive ESTs within each cluster. Con-
sequently, EbEST can manage to
use the full dbEST and still deliver
results of EST analysis in an accept-
able time frame. Separating ESTs
into nonoverlapping clusters pro-
vides some estimation about how
many genes there are in the se-
quence. However, different EST
clusters do not necessarily repre-
sent different genes. It is possible
that a clone was sequenced from

both 58 and 38 ends, and the sequences did not over-
lap with each other, resulting in two clusters repre-
senting a single gene. One way to detect this is to
take advantage of the fact that the Washington Uni-
versity–Merck EST project sequences most clones
from both ends, and ESTs generated by this project
make up >50% of all human ESTs in dbEST (Hillier
1996). The documentation for the sequencing pairs
may be used to link separate clusters of a single gene
together.

ESTs are error-prone in nature, because they are
generated from single-read sequences with minimal
to no editing, resulting in insertions, deletions, or
substitutions at a rate of 1% or higher in ESTs
(Aaronson et al. 1996; Wolfsberg and Landsman
1997). As illustrated in Results, sequencing error
does not impose a serious problem for the perfor-
mance of EbEST, largely because the Smith–
Waterman algorithm used can tolerate these types
of errors (Smith and Waterman 1981). However,
there are other errors that potentially confound the
homologous EST analysis on genomic sequences,
such as inverted clones, nonspecific priming, anno-
tation mistakes, or intronic or intergenic sequence
contamination. As EbEST uses the strand identity of
ESTs to predict on which strand a putative gene re-
sides, inverted clones or simply incorrectly anno-
tated clones will cause EbEST to assign a gene to the
wrong strand. Within the 176 human genes, EbEST
mapped 39 genes on both strands with nearly the
same exonic structure (data not shown). Because all
genes in the ALLSEQ collection reside on the for-
ward strand, the genes mapped on the opposite
strand are likely to be caused by inversion-induced
error. In fact, 31/39 sequences have many times
more ESTs on the forward strand versus the reverse
strand, with an average ratio of 20:1, confirming the
estimation of the 2%–6% inversion rate found in

Table 2. Exon Prediction, Using the LongSeq Set as
Test Case

Genes

Nucleotidea Exona

Sn Sp Sn Sp ME WE

FGENEH 45 0.54 0.69 0.36 0.46 0.13 0.17
xgrail 1.3c 45 0.50 0.72 0.33 0.49 0.34 0.17
GENSCAN 45 0.74 0.70 0.67 0.65 0.08 0.24
EbEST 45 0.32 0.90 0.24 0.55 0.53 0.02

a(Sn) Sensitivity; (Sp) specificity. All calculations were performed on the basis of 45
experimentally confirmed genes in these 15 sequences. (For details, see Methods.)
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the Washington University–Merck project (Hillier et
al. 1996). The other eight genes have equal or fewer
ESTs on the forward strand versus the reverse strand.
Whether this is the result of inversion or caused by
overlapping of genes on the two strands is not
known. However, the same exonic structure on
both strands is an obvious clue that there may be a
problem.

In addition to defining exonic structure, ESTs
are especially useful in mapping 38 UTRs. Nearly
two-thirds of 38 UTR in the 176 ALLSEQ human
genes and in the LongSeq genes was pinpointed by
EbEST. The current version of EbEST flagged the oc-
currence of 38 external exons on the assumption
that ESTs from oligo(dT)-primed cDNA libraries are
actually 38 termini of genes. However, it is known
that nonspecific priming occurs during cDNA li-
brary construction. The nonspecific priming rate for
the ESTs generated by Washington University–
Merck is estimated to be 1.5%. The specificity of 38

UTR mapping by EbEST is ∼10%, suggesting the ex-
istence of alternative 38 ends and annotation errors.

The strength of EST-based analysis in defining
38 UTR is valuable for analyzing long-stretch ge-
nomic sequence. The existing computational gene-
finding programs are essentially coding a sequence
identifier. This might be part of the reason that
these programs are stronger in predicting internal,
rather than external exons, because many external
exons contain small stretches of coding region or, in
some cases, no coding sequence at all. If there is
only one gene residing in the sequence being ana-
lyzed, the power of these programs to build a correct
gene model is admirable, as evaluated by Burset and
Guigo (1996) using the ALLSEQ set. However, when
these programs were challenged with the LongSeq
set, their power of gene modeling is decreased. GEN-
SCAN stands out in its category because it has inte-
grated the identification of signal sequences, such as
TATA box, Kozak sequence, poly(A) terminal se-
quence, and so forth, into its calculation. Even with
these efforts, the specificity of 38 prediction of GEN-
SCAN is ∼63%. In comparison, the prediction of 38

UTR through EST analysis by EbEST has the highest
accuracy.

In summary, EbEST automates the procedure of
using ESTs to delineate gene structure. By use of real
cDNA sequence, its prediction has an impressively
low rate of false positives. From the point of view of
the experimentalist, this is valuable because the
higher the false-positive rate, the more time and ef-
fort that is spent in the lab chasing the wrong leads.
In conjunction with existing programs, EbEST
should help accelerate gene discovery.

METHODS

The Construction of EST-Tagged Exon

The algorithm implemented in the EbEST program
is illustrated in Figure 3.

Simple sequence repeats or low complexity se-
quences commonly found in genomic sequences
will yield false homology if not removed. Repeat-
Masker (A. Smith and P. Green, unpubl.) was in-
stalled locally and used to mask the repeats. BLAST
was used to identify homologous ESTs. The thresh-
old value was empirically determined with the goal
of keeping false positives at a low level while retain-
ing most of the real positives. Because all sequences
in our test case are human genes, and most ESTs in
dbEST are derived from human cDNA libraries, we
found that we could use a relatively high minimum
threshold of 100 bp overlap with >90% identity or
60 bp overlap with >95% identity without losing
much information (data not shown).

Because many ESTs were generated from oli-
go(dT) primed cDNA library, their strand orienta-
tion may be used to define the strand identity of a
putative gene by the following rules: A 58 EST with
a plus/plus alignment or a 38 EST with a minus/plus
alignment flags a forward strand gene; alternatively,
a 38 EST with a plus/plus alignment or a 58 EST with
a minus/plus alignment flags a reverse strand exon.

Figure 3 Algorithms implemented in EbEST.
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If the orientation cannot be determined (i.e., ran-
dom-primed cDNA library or poor annotation), the
strand identity of the EST-tagged exon (ETE) was
classified as unknown. EbEST builds gene models in
a strand-specific manner. The strand identity was
read from the definition line of GenBank file or
BLAST return file.

ESTs that share common HSPs were grouped
into a cluster so that clusters do not overlap with
each other. Each cluster is treated as an independent
unit in the analysis thereafter. Next, EbEST selects
the most informative ESTs from each cluster. It
starts from the EST that has the highest probability
of homology in the BLAST return file, then sequen-
tially adds one EST at a time according to their prob-
ability rankings from high to low, assessing whether
the EST brings in new HSPs outside the boundary of
known HSPs. If so, the EST is included in the infor-
mative category. Otherwise, the EST is considered
redundant and put into an annotation file. As we
experienced, the informative ESTs are often less
than five for a single EST cluster.

The informative ESTs are fetched from the NCBI
database through its Entrez server, and gapped
alignment is performed by Cross Match (P. Green,
unpubl.), which is based on a modified Smith–
Waterman algorithm. The Smith–Waterman align-
ments are fine-tuned to find an optimal GT–AG pair
that makes the length of derived cDNA matching
the length of the EST while minimizing mismatch.
The final exonic structure is determined by extend-
ing exonic region from one EST to another. We term
these EST-derived exons as EST-tagged exons or
ETEs to differentiate them from pure computation-
predicted exons. The EST that generated the very
first 38 ETE in a cluster was checked to determine
whether it is a 38 EST. If so, the ETE chains derived
from this EST cluster marks the 38 end of a putative
gene.

Finally, EbEST generates a graphic output and a
text file report.

Selection of Test Case of Sequences

The ALLSEQ set

The ALLSEQ set, described in detail in Burset and
Guigo (1996), consists of 570 genes carefully se-
lected to meet ideal criteria: a single gene within the
genomic sequence (<8000 nucleotides), an ATG
start site, an identified stop codon, and no splice
variants. We used a subset of the ALLSEQ collection
(176 human genes) as our test case because ALLSEQ
is a mixture of genes from many different species,

and selecting a common cutoff value for accepting
homology for all the sequences in the collection is
inappropriate. Homology mapping with ESTs from
different species is possible, but will require imple-
menting different thresholds for declaring homol-
ogy. Burset and Guigo (1996) also provided a mu-
tated ALLSEQ set with random 1% frameshift errors.
Both the original and the mutated were used in the
current study. The UTRs were obtained from Gen-
Bank files.

The LongSeq Set

To provide a more realistic representation for ge-
nomic sequences, we developed the LongSeq set.
The criteria for a sequence to be included in the
LongSeq set is that it harbors two or more complete
genes that are experimentally confirmed. The cur-
rent collection was obtained by searching GenBank
(release 101) and has a total of 15 sequences, repre-
senting 45 complete genes. The LongSeq set is avail-
able at http://legba.ifrc.mcw.edu/∼jjiang/index.
htm.

Measures of Performance

The terms and definitions of gene prediction perfor-
mance described in Burset and Guigo (1996) were
used in the current study with slight modification.
The accuracy was measured at both nucleotide and
exon levels. At the nucleotide level, Sensitivity (Sn)
is the proportion of coding nucleotides that have
been correctly predicted, and Specificity (Sp) is the
proportion of predicted coding nucleotides that are
actually coding. At the exonic level, Sn is the pro-
portion of actual exons that are correctly mapped,
and Sp is the proportion of predicted exons that are
actually correct. An exon is defined to be correctly
mapped if it has a correct boundary on both sides.
We also calculated the missing exons (MEs) and the
wrong exons (WEs). ME is the proportion of true
exons that are completely missed by prediction,
whereas WE is the proportion of predicted exons
that do not correspond with any real exon. The Sn
and Sp of 38 UTR mapping was similarly calculated.

For the 176 human genes from the ALLSEQ set,
the accuracy of GRAIL, GeneID+, GeneParser3, and
FGENEH was recalculated by use of the original
dataset in Burset and Guigo (1996). To keep consis-
tence with the evaluation of Burset and Guigo on
the ALLSEQ set, the UTR sequences mapped by ETEs
were not included in the calculation of Sn and Sp.
ETEs that mapped exons out of the gene boundary
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(58 UTR or 38 polyadenylation signal sequences)
were also not included in the calculation.

Even though the sequences in the LongSeq set
were heavily studied, they may still harbor genes
that are either not identified or not experimentally
confirmed. Predicted exons that are out of the
boundary of known genes were ignored.

Computational Gene-Finding Programs Evaluated

To evaluate the performance of gene-prediction pro-
grams on the LongSeq set, we initially considered
including GRAIL2 with Gap3 (Uberbacher et al.
1996), GeneParser3 (Snyder and Stormo 1995), Ge-
neID+ (Guigo et al. 1992), FGENEH (Solovyev et al.
1994), and GENSCAN (Burge and Karlin 1997). Ge-
neID was dropped because it does not perform gene
modeling on sequences longer than 50 kb. We
could not install GeneParser3 on our Sun worksta-
tion, and technical support was not available.
FGENEH (and its exon-prediction sibling FEX) was
kindly installed by Dr. Solovyev (Baylor College of
Medicine, Houston, TX) on our workstation.
GRAIL2 with Gap3 was accessed by running the
xgrail 1.3c client, which is different from GRAIL2
evaluated in Burset and Guigo (1996) in that it has
gene assembly function. GENSCAN was accessed
t h r o u g h h t t p : / / g e n o m i c . s t a n f o r d . e d u /
GENSCAN.html. The current version of the gene-
finding programs evaluated in Burst and Guigo
(1996) and in this study did not use EST. However,
GeneID, GeneParser3, and FGENEH use protein da-
tabase to improve performance.

Visualizing the Results of Gene Structure Analysis

A bioWidgets-based Java applet, which was created
b y t h e b i o W i d g e t s c o n s o r t i u m ( h t t p : / /
agave.humgen.upenn.edu/bioWidgetsJava), was
implemented in EbEST to enable web viewing.
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