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Several efforts are under way to partition single-read expressed sequence tag (EST), as well as full-length
transcript data, into large-scale gene indices, where transcripts are in common index classes if and only if they
share a common progenitor gene. Accurate gene indexing facilitates gene expression studies, as well as
inexpensive and early gene sequence discovery through assembly of ESTs that are derived from genes that have
not been sequenced by classical methods. We extend, correct, and enhance the information obtained from index
groups by splitting index classes into subclasses based on sequence dissimilarity (diversity). Two applications of
this are highlighted in this report. First it is shown that our method can ameliorate the damage that artifacts,
such as chimerism, inflict on index integrity. Additionally, we demonstrate how the organization imposed by an
effective subpartition can greatly increase the sensitivity of gene expression studies by accounting for the
existence and tissue- or pathology-specific regulation of novel gene isoforms and polymorphisms. We apply our
subpartitioning treatment to the UniGene gene indexing project to measure a marked increase in information
quality and abundance (in terms of assembly length and insertion/deletion error) after treatment and
demonstrate cases where new levels of information concerning differential expression of alternate gene forms,
such as regulated alternative splicing, are discovered.

[Tables 2 and 3 can be viewed in their entirety as Online Supplements at http://www.genome.org.]

The exploitation of single-read sequencing from the
ends of sufficiently expressed mRNAs (popularly re-
ferred to as expressed sequence tags or ESTs; Adams
et al. 1991; Okubo et al. 1991; Wilcox et al. 1991)
has brought to light the existence of many genes
well before the projected completion of the human
genome project in the year 2005 and before the
completion of sequencing efforts in other organ-
isms (Adams et al. 1992; Matsubara and Okubo
1993; Venter 1993). Additionally, EST data have fa-
cilitated large-scale expression studies (Okubo et al.
1992, 1994; Adams et al. 1995). EST sequencing has
enabled the construction of a physical map of the
human genome (Hudson et al. 1995), as well a gene

map that localizes many genes with respect to the
markers of the physical map (Schuler et al. 1996).
The utility of EST data has also been increased
greatly by the establishment of centralized data-
bases (Boguski et al. 1993; Benson et al. 1994).

Because they are primed to hybridize to the
poly(A) tail of mRNAs, 38 ESTs usually capture re-
gions of the mRNA untranslated region (UTR) that
have been thought to contain less conservation
than the coding regions. The goal has been that
genes could then be reliably indexed using the 38

UTR/EST as a gene fingerprint; however, the vast
quantity of EST data and its fragmented nature pose
an obstacle to harvesting the full potential from this
data source. Hence, several projects are in progress
to construct information frameworks, called gene
indices, where the EST data and the known gene
sequence data can be consolidated and placed in a
correct pathologic and mapping context. A few of
the more widely known efforts in this area are Uni-
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Gene (Boguski and Schuler 1995; Schuler et al.
1996) from NCBI; the TIGR Human Gene Index
(HGI) from the Institute for Genomic Research
(http:// www.tigr.org/tdb/hgi/hgi.html); the Merck–
Washington University Gene Index (Williamson et
al. 1995; Eckman et al. 1998; http://www.merck.
com/mrl/merck gene index.2.html); and the
GenExpress project (Houlgatte et al. 1995). Algorith-
mically, these projects all comprise some form of
cluster analysis where the sequence similarity of
ESTs is used to place or link the sequences into in-
dex classes. Below, in our discussion on the creation
of index classes and the partitioning of class mem-
bers into subclasses, we use the terms group, class,
and cluster interchangeably.

The structures of current gene indexing projects
follow one of two patterns. Strict gene indices, of
which the primary example is the TIGR HGI, are
generally constructed using sequence assemblers
(Sutton et al. 1995). These assemblers have stringent
matching criterion to join sequences into common
classes, and hence they effectively prevent chime-
rism and contamination from tainting most index
groups. On the other hand, this strictness results in
a more fragmented representation of the data that
often disallows divergent ESTs that sample alterna-
tive forms of the same gene to be folded into the
same index class (http://www.tigr.org/ hgi/
hgi info.html). In HGI these are linked as being
splice variants only in those cases where the ESTs
match fully sequenced genes with known isoforms
in a full-length gene sequence database, the Ex-
pressed Gene Anatomy Database (EGAD; White and
Kerlavage 1996). In loose gene indexing projects (of
which UniGene, Merck Gene Index, and GenEx-
press are examples) sequences are grouped into
common classes if they share overlap above a cer-
tain threshold. Sequence similarity searching pro-
grams such as BLAST (Altschul et al. 1990), FASTA
(Pearson 1990), or variants of the Smith–Waterman
algorithm (Schuler et al. 1996) are used to find and
quantify sequence overlap. The benefits and draw-
backs of loose methods complement the strict
methods: A single index class can contain multiple
splice forms of the same gene, but chimeras and
other artifacts may cause sequences from different
genes to be in the same class (Houlgatte et al. 1995).
In addition to these gene indexing projects, other
tools have been developed that cluster DNA se-
quence or remove redundancies from sequence sets
(Parsons 1995; Grillo et al. 1996). Some of us (J.
Burke and W. Hide) are involved in the develop-
ment of STACKdb, a hybrid approach to gene index
construction (see Discussion). Significant research

has also been put into the grouping of protein se-
quence where domain structure complicates the
analysis (Sonnhammer and Kahn 1994; Worley et
al. 1995; Adams et al. 1996; Sonnhammer et al.
1997).

Several studies have been performed on small
data sets of ESTs where corresponding full-length
sequence was available (multipass or fully se-
quenced transcripts, positionally cloned genes, and
full-length genomic sequence). These studies noted
the presence of chimerism, clone reversal, internal
priming, introns, and alternative splicing within
groups of transcripts. Error rates were estimated for
lane-tracking and chimerism, clone reversal, inter-
nal priming, insert size annotation, and other fea-
tures (Aaronson et al. 1996; Hillier et al. 1996;
Wolfsberg and Landsman 1997).

In contrast, our analysis does not assume the
availability of full-length sequence. We leverage the
fact that the presence of ESTs containing artifacts or
that sample polymorphic loci or gene isoforms of-
ten introduce sequence that is unalignable (incon-
sistent) with the rest of an index class. Instead of
relying on sequence similarity to known genes for
feature detection, these inconsistencies can be used
to partition the index class members such that in-
consistent transcripts are in different subclasses.
Damage is contained when transcripts that are im-
properly joined due to the presence of artifact are
segregated into disparate subclasses. When cDNA li-
brary information is associated with subclass mem-
bership, the subclass structure becomes a powerful
method for candidate gene selection because the li-
brary composition of a subclass is often tissue, de-
velopmental state, or disease-specific even when the
composition of the greater index class is diverse.

RESULTS

Here we detail the behavior of the subpartition and
diversity reports analysis when presented with some
types of sequencing and cloning errors. To gauge
the quality of final consensus after treatment by our
method, the increase in assembly length and de-
crease in insertion and deletion errors is quantified.
The rate of fragmentation (singleton clusters) is
compared with current gene indexing projects, as
well, and results are given from a related analysis
schema that attempts to find examples of genes that
overlap on opposite strands. Finally, we demon-
strate that differential expression tests can be made
more sensitive by accounting for polymorphism
and regulated alternative splicing.

We choose UniGene as a base gene index due to
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its high quality, wide acceptance, and convenient
cross-listing of mapping and sequence information.
The UniGene index clusters are processed individu-
ally to extract reliable consensus sequences and to
mine novel or tissue-specific isoforms and polymor-
phisms in the transcript data. Figure 1 shows a sche-
matic of the processing applied to UniGene clusters,
and Table 1 details the structure of the data set be-
fore and after processing with comparative numbers
given for the TIGR HGI. Each UniGene release cor-
responds to a GenBank release (ftp://ncbi.nlm.
nih.gov/repository/UniGene/Hs.info); hence, Gen-
Bank version numbers provide a convenient way to
refer to UniGene versions. The data set used in this
report is primarily UniGene101. When an example

of a UniGene cluster is discussed or when statistics
are given, the UniGene version number from which
they are derived is always stated.

In processing, for each UniGene cluster, the di-
versity of the transcripts is analyzed as assembly is
performed. The transcript diversity analysis quanti-
fies the within-cluster sequence variation and parti-
tions the cluster into a minimal number of inter-
nally consistent subclusters. If further analysis is
necessary, the resulting error-resistant assemblies
can then be characterized by inspection of tran-
script diversity reports that show the patterns of
similarity between subgroups. The computer pro-
gram that generates the reports and performs the
diversity analysis is called CRAW, a synthesis of two
other programs CONF (diversity statistics) and
DRAW (visual reports), and we use the term CRAW
report for the presented method of visualizing tran-
script divergence.

Quality Control in Gene Index Construction

Through CRAW processing we attempt to detect
and fix artifacts automatically. Realizing that
matching gene or genomic sequence is not available
for all clusters, it is important that the analysis not
rely on the availability of the full gene sequence. To
get this functionality the ability to automatically
classify the type of error is sacrificed for the ability
to automatically detect and correct the error. In the
event that a possible error is detected the nature of
the error can be explored through inspection of the
transcript diversity report (i.e., the CRAW report).
Conjecturing the type of artifact when full gene se-
quence is available is within the scope of other work
(Aaronson et al. 1996; Hillier et al. 1996).

Chimerism refers to the artificial fusion of se-
quences from two different sources and can arise by
faulty cDNA cloning or incorrect lane tracking in
the sequencing process; we use the term chimeric
EST for an EST derived from a chimeric clone. Figure
2 shows 34 sequences in a CRAW report for a cluster
from UniGene101. The cluster was automatically
partitioned into two consistent subgroups throwing
out one sequence (GenBank accession no.
AA015595) as being inconsistent with the two es-
tablished subgroups. Similarity searching with
BLAST against the NCBI nucleotide nonredundant
database (http://www.ncbi.nlm.nih.gov/BLAST/
blast databases.html) indicates that the second
subgroup, consisting of sequences represented by
GenBank accession numbers N20971 to AA076342,
is highly similar to the 38 end of mouse mRNA for
talin, whereas the first subgroup, consisting of se-Figure 1 Schematic of UniGene processing.
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quences T90923 to AA136000, is identical to the
coding region of human tubulin a-6 chain. Se-
quence AA015595 is a putative chimeric sequence
within which the first 110 bases (contained in the
first 5 positions of the CRAW report) are moderately
similar to the 38 UTR of mouse talin mRNA. The rest
of the sequence is highly similar to human tubulin.
Additional evidence that AA015595 is a chimeric
EST is that STSs from two different chromosomes
have strong matches to the sequence: The first 119

bases match perfectly with STS G03681, which
mapped to chromosome 22, and 125 bases in the
tubulin matching region are identical to STS
G21948, which mapped to chromosome 9. No 58

end EST is available for this sequence within dbEST.
It is important to note that the inconsistency was
detected and corrected automatically but that the
decision that the error was caused explicitly by chi-
merism was based on inspection of the CRAW re-
port and analyses of mapping information and se-

Table 1. Structure of UniGene Data Set Before and After CRAW Treatment
Is Applied

UniGene 101 Structure

1. 11,751 multipass/full-length gene sequence
2. 213,885 38 ESTs
3. 270,012 58 ESTs
4. 26,995 other ESTs
5. 522,643 total number of sequences subjected to

clustering
(= 1 + 2 + 3 + 4)

6. 45,918 number of index groups resulting from
UniGene clustering

Index Structure of UniGene After Treatment with CRAW Analysis

7. 9,671 UniGene clusters that are singletons (containing
9,671 sequences)

8. 359 UniGene clusters ignored by this study (containing
106,810 sequences)

9. 35,888 remaining UniGene clusters subjected to
analysis

(containing
406,162 sequences)

10. 41,268 non-singleton subgroups resulting from
CRAW analysis

11. 58,070 singleton subgroups after treatment (includes 9,671 singleton
UniGene clusters from 7)

12. 13.96% percent singleton sequences [(100 * 11)/406,162]

Index structure of TIGR Gene Index v. 2.3

13. 619,528 ESTs
14. 6,635 HTs
15. 626,163 total number of sequences subjected to

indexing
(= 13 + 14)

16. 41,268 THCs (non-singletons)
17. 135,140 singleton sequences
18. 21.81% percent singleton sequences (100* 17/15)

UniGene 101 contained 11,751 gene sequences, 213,885 38 ESTs, 270,012 58 ESTs, as well as 26,995 EST
sequences not classified at 38 or 58. Of the total 45,918 UniGene 101 clusters, 9,671 were singletons (con-
tained only one transcript). Of the larger clusters, 359 were excluded from our analysis. The remaining 35,888
(=45,918 1 9,671 1 359) clusters were subjected to our processing and from these the CRAW analysis
generated 99,338 subgroups, of which 58,070 (including the 9,671 singleton UniGene clusters) were single-
ton subgroups. A total of 415,833 sequences were input into our analysis so we measure a fragmentation rate
of 13.96% (percent of sequences isolated from subgroups = 58,070 2 100/415,833).
For comparative purposes, structure information on TIGR Gene Index is included. The TIGR Gene Index inputs
626,163 sequences and results in 135,140 singletons, a fragmentation rate of 21.81%. The reduced frag-
mentation rate of the CRAW-processed UniGene 101 is suggestive; however, the comparison is not rigorous
because the initial data sets are different and our analysis ignores 359 of the initial 45,918 UniGene clusters.

NOVEL SPLICE FORM/CANDIDATE GENE DISCOVERY IN ESTs

GENOME RESEARCH 279



quence similarity with sequences in public data-
bases.

Because clone direction annotations can be mis-
labeled and due to the error rate present in the di-
rectional cloning process, the CRAW analysis does
not use the directional or endedness information in
automated decision making although this informa-
tion can optionally be included in the CRAW report

for human or further auto-
mated analysis. Figure 3A
shows the CRAW report for a
UniGene101 cluster that con-
tains a clone reversal. The EST
AA044777 is labeled as being
58 but clusters with the 38

ESTs, is in the same direction,
and has a poly(A) tail. Figure
3B shows a UniGene101 clus-
ter where 38 ESTs align with
the 58 end of a gene. The
group contains three gene se-
quences of human nuclear
factor I (NFI) and 10 ESTs.
Clone 347657 is oriented in
the direction opposite that of
clones 415069 and 754600 so
it is possible that a clone in-
version event exists; however,
38 ESTs N91775 and H97782
also align with the 38 end of
the gene sequences. This sug-
gests the possibility that in-
stead of a clone inversion, the
cluster contains ESTs of a gene
overlapping NFI on the oppo-
site strand. This ambiguity be-
tween clone inversion and
gene overlap motivated us to
investigate the overlap case
further.

Overlapping Genes on
Opposite Strands

As seen above, the axiom that
the 38 ESTs/UTRs can be used
to fingerprint genes can be
flawed when the 38 UTRs of
different genes overlap on op-
posite strands and the exist-
ence of such cases has been
noted (Ashworth 1993; Tsai et
al. 1994; Houlgatte et al.
1995; Hillier et al. 1996). Here

we attempt to identify cases where such overlap oc-
curs to flag ‘‘problem’’ index groups and, more im-
portantly, to understand any functional or evolu-
tionary benefits of overlap. Because UniGene is in-
dexed primarily by 38 UTR and because the 38 UTR is
thought to contain less conservation than the 58

UTR we have concentrated our search on the 38 ends
of genes.

Figure 2 Example of a CRAW report (text format) for a cluster afflicted with EST
data derived from a possibly chimeric clone. The 34 sequences shown can be
represented as two consensus sequences and an outlier sequence without infor-
mation loss. The cluster was automatically partitioned into two consistent sub-
groups showing one sequence (GenBank accession no. AA015595) as being
inconsistent with the two established subgroups. Similarity searching with BLAST
against the NCBI nonredundant database indicates that the second subgroup,
consisting of sequences representing GenBank accession nos. N20971 to
AA076342, is highly similar to the 38 end of mouse mRNA for talin. The second
subgroup, sequences T90923 to AA136000 are identical to the coding region of
human tubulin a-6 chain. Sequence AA015595 is a putative chimeric sequence
within which 110 bases (contained in the first 5 positions of the CRAW report) are
highly similar to 38 UTR of talin mRNA. The rest of the sequence is highly similar
to tubulin.
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First a data set of 38 UTRs of known genes and
another processing schema was used. We performed
a search of UniGene101 for genes where the coding
sequence positions are annotated. A total of 11,139
genes were isolated in this manner. The sequence
annotations were used to extract the 38 UTRs, and
known repetitive elements were filtered out of the
data set of UTRs. For this analysis the UniGene clus-
tering was not used; we reclustered the data set us-
ing d2 cluster (Hide et al. 1994; J. Burke, D. Davi-
son, and W. Hide, in prep.) and performed CRAW
analysis on the resulting clusters. The clusters that
had matching UTRs in different orientations were
flagged as being possible cases of overlap on oppo-
site strands, and when available, mapping informa-
tion was used to confirm that the different genes
were within close proximity. The 11,139 genes were
put into 4,780 clusters. Table 2 shows 21 cases of
possible overlap that were found according to the
above rules, of which 11 were verified as being ad-
jacent using mapping information. Overlapping

similarities were checked for the AUUUA mRNA
degradation motif (Akashi et al. 1994; Salehi-
Ashtiani and Goldberg 1995) or its reverse comple-
ment to ensure that this documented phenomenon
did not cause the overlap; and, of Table 2 entries,
only human tumor necrosis factor was found to
contain this motif. More precise mapping informa-
tion offers stronger evidence that the observed
matches are not simply due to some unannotated
mobile element, such as an Alu sequence. Not all
candidates selected were confirmed as being close
according to the mapping information. For ex-
ample, TPR (translocated promoter region), repre-
sented by GenBank accession numbers X66397 and
U69668, and MGDF (megakaryocyte growth and de-
velopment factor), represented by GenBank acces-
sion number U70136, are found on different chro-
mosomes according to public mapping information
and share a 100% identical inverse overlap of 142
bases in the 38 UTR. Despite not being adjacent on
the chromosome, the two genes possibly have a cor-

Figure 3 Examples of clusters from UniGene101 possibly containing clone reversal errors. (A) A cluster of retina-
specific ESTs contains a clone reversal error. (B) A cluster containing ESTs that overlap the human nuclear factor I
(NFI) gene. More information is need to decide whether this cluster contains a clone inversion event or is an example
of genes overlapping on opposite strands.
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related function; X66397 TPR is involved in the ac-
tivation of oncogenic kinases, and U70136 TPR is a
growth factor. Other possible functional associa-
tions include accession numbers L41816 and

AB000410 (calcium/calodulin-dependent protein
kinase I and hOGG DNA damage repair-associated
protein) and M63960 and U53174 (protein phos-
phatase 1 and cell cycle checkpoint control pro-

Table 2. Putative Cases of Gene Overlap in the 3*UTR (Truncated)

Accession no.
hoG/direction

Annotation and
functional notes Chr.

Map
information

Overlap
(% identity)

X66397 TPR (tpr) mRNA, involved in
activation of oncogenic kinases

1 GDB:1006915

U69668 human nuclear pore
complex-associated protein TPR
(tpr) mRNA

1 GDB:1006915

R.C. U70136 megakaryocyte growth and
development factor

3 3q26.3–q27 142 bases (100%)

M63960 human protein phosphatase-I (PPPI)
catalytic subunit mRNA, complete
coding sequence

J04759 human PPPI a subunit (PPPIA) mRNA,
38 end

11

X70848 human mRNA for PPPI catalytic
subunit

S57501 PPPI catalytic subunit
R.C. U53174 human cell cycle checkpoint control

protein mRNA, complete coding
sequence

231 bases (99%)

U40282 integrin-linked kinase (ILK) 11 11p15.5
R.C. U25816 TATA-binding protein-associated

factor 30
11 11p15.5

R.C. U13991 TATA-binding protein-associated
factor II 30

11 11p15.5 25 bases (100%)

L39891 Homo sapiens polycystic kidney
disease-associated protein (PKD1)
gene

16 16p13.33

U24497 human autosomal dominant PKD1 16 16p13.3
L33243 H. sapiens PKD1 mRNA 16 16p13.3
R.C. L48546 H. sapiens tuberin (TSC2) gene 16 16p13.3 STS:

G27421
61 bases (100%)

L41816 CaMK I
R.C. AB000410 hOGG1, involved in the repair of

oxidative DNA damage
58 bases (100%)

S70154 human t-complex polypeptide 1 gene 6 6pter
R.C. X52882 cytosolic acetoacetyl–coenzyme A

thiolase
6 G30038,

G11124;
6q25.3

92 bases (98%)

Using the annotation, the 38 UTRs of full-length genes were extracted from UniGene 101 and subjected to cluster analysis. Twenty-one
cases of possible gene overlap in the 38 UTR were isolated by looking for reverse complement matches in clusters. The R.C. notation
prefixing the accession number signifies that the relative orientation is opposite that of genes without R.C. Where multiple accession
nos. match the same gene, all are listed. Annotation, chromosomal assignment and mapping information, and number of bases
overlap with sequence identity of match are given when available. For brevity, only a small portion of the result is shown here. The
full table may be viewed as supplementary information at http://www.genome.org.
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tein). Although the possibility that these two ex-
amples are due to an undocumented Alu or similar
event is not ruled out because of a lack of precise
mapping information, the related functions and the
high level of identity of the sequence matches raise
the possibility of another coregulatory function for
38 UTRs.

Measuring Increasing Information Quality
and Abundance

Through processing, diversity analysis, and assem-
bly, the quality and abundance of information in a
gene index can be enhanced. UniGene selects the
longest transcript within a cluster to be the repre-
sentative of the index class and, hence, hopefully,
the gene. In the case where no full-length gene se-
quence exists in an index class it is obvious that
individual ESTs can sometimes be assembled to ob-
tain a longer representation of the sampled gene
sequence. Additionally, redundancy can be used to
detect and correct insertion and deletion errors pre-
sent in individual sequences to form a cleaner rep-
resentative sequence. To measure the effectiveness
of our analysis, we chart the number of ESTs in an
assembly of a subgroup against the length of the
resulting assembly. Figure 4A is generated by pro-
cessing only ESTs (both 38 and 58) in clusters from
UniGene98 and plotting the average and median
assembly length versus the number of ESTs in the
assembly. The effective assembly length can be
doubled by having <10 sequences in an assembly,
and effective length can be increased >400% by hav-
ing <50 sequences. The final category (50) includes
all assemblies made from 50 or more ESTs. The ef-
fective assembly length approaches the actual aver-
age gene length: The sequences classified as multi-
pass or full-length in UniGene101 have an average
length of 2102 and a median length of 1695 bases.
To measure the effectiveness of insertion/deletion
removal, we similarly plot the length of the longest
ORF in an assembly (Fig. 4B). Because 38 EST typi-
cally contains sequence from the UTR of the
sampled gene we performed the processing only on
58 ESTs from UniGene98 and plotted the average
and median length in residues of the longest ORF in
an assembly. The effective ORF size generated from
EST fragments surpasses 50% of the full-length gene
maximal ORF: The sequences classified as multipass
or full-length in UniGene101 have an average maxi-
mal ORF length of 478 residues and a median length
of 367 residues. Another indicator that the improve-
ment seen is not simply due to longer transcripts
coincidentally resulting in longer ORFs is that the

percentage gain in ORF length corresponds directly
with gain in assembly length over the smooth re-
gions of the graphs in Figure 4. For example, both
ORF length and assembly length were improved
50% by processing a cluster with 10 ESTs. The
jagged lines toward the end of both plots are due to
higher variance of the sample mean and sample me-
dian associated with smaller sample sizes for the
larger clusters.

The CRAW process partitions an index cluster
into subclusters where each subgroup contains
unique sequence information that might be lost or
contaminated if only a single consensus is chosen to
represent the entire cluster. Thus, a comparison of
the number of subgroups generated against the
number of original groups presents a measure of in-
formation preservation. As seen in Table 1, 45,559
UniGene101 clusters were subjected to processing,
resulting in 99,338 subgroups (including single-
tons)—an increase of 53,779 representatives. Addi-
tionally, the rate of fragmentation is small in com-
parison to assembler approaches to gene indexing.
The rate of resulting singletons from the TIGR HGI
is 21.83% or 135,140 singleton groups out of a total
626,163 sequences input. CRAW analysis of Uni-
Gene clusters resulted in a fragmentation rate just
over half of the TIGR HGI—13.96% or 58,070
singleton genes out of a total 415,833 sequences in-
put. The reduced fragmentation rate is suggestive;
however, the comparison is not rigorous because
the initial data sets are different and our analysis
ignores 359 of the initial 45,918 UniGene clusters.

Automatically Culling New Gene Forms
from Transcript Data

Because EST sequence generation is a sampling of
sufficiently transcribed genes, one would expect to
happen upon alternate gene splice forms, polymor-
phisms, and gene families. As is the case with clon-
ing and sequencing artifacts noted above, these
phenomena can introduce inconsistent (unalign-
able) regions into a cluster and inconsistent se-
quences can be partitioned into disparate subclus-
ters. In addition to increasing the sensitivity of ex-
pression studies, the subpartition provides a rapid
method of screening regulated alternative splicing
vesus constitutive splicing.

Figure 5 illustrates how the subpartition and
CRAW analysis accommodates for multiple splice
forms of a single gene. This CRAW report for a Uni-
Gene101 cluster shows 30 transcripts that can be
represented as four consensus sequences and five
outliers without information loss. Some sequences
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were deleted from Figure 5 for brevity. The cluster
contains five full-length mRNAs each correspond-
ing to a different splice form of RBP-MS (Shimamoto
et al. 1996) a gene-sharing homology to the RNA-
binding domain of the Drosophila couch potato gene.
One mRNA, corresponding to type 4 RBP-MS, is not
sampled by any ESTs and splice forms 2 and 3 are
constitutively expressed as they contain transcripts
from various tissues and developmental states.

Analysis of the composition of subclusters
formed by CRAW analysis reveals many cases where
an index cluster with diverse library content is par-
titioned into subclusters with library content spe-
cific to a certain tissue, developmental stage, or dis-
ease state. In many of these cases, the subclass struc-
ture adds sensitivity to gene expression specificity
studies because biologically significant specificities
to disease or developmental states can be found at
the subcluster level that would be missed at the
greater cluster level. To illustrate this, Figure 6
shows a UniGene101 cluster containing ESTs de-

rived from calcium/calmodulin-dependent protein
kinase (CAMK). This gene is also listed in Table 3. Of
the 17 cluster members, 7 sequences (from four dis-
tinct clones) from an ovary tumor library form a
clear subgroup. If one were to seek cancer-specific
genes by looking at the original UniGene index
cluster, the level of specificity to cancer libraries
would be ∼53% = [100 2 (9/17)]%; however, at the
subcluster level the specificity level is 100%. Speci-
ficity levels also can be calculated by counting the
number of distinct clones represented from each li-
brary, but this does not change the results for this
example significantly. Table 3 lists 78 UniGene101
clusters in which the membership of a subcluster
was specific to libraries of a specific disease state or
tissue. The first 41 entries highlight cancer-specific
forms, whereas the remaining 37 examples are from
various libraries. Fishers (2 2 2) Exact Test (Rice
1988) is used as standard practice to test a null hy-
pothesis of nonspecific gene expression (Audic and
Claverie 1997; http://www.ncbi.nlm.nih.gov/

Figure 4 (A) Length of consensus sequences resulting from CRAW assembly/analysis on 58 and 38 ESTs from
UniGene98 after CRAW processing. The x-axis denotes the number of sequences in the UniGene cluster; the y-axis
represents consensus length. By forming an assembly with between 10 and 15 ESTs the length of the resulting
contig can be doubled on average. Assemblies made from clusters containing >45 ESTs result in contigs that are
400% longer than unassembled sequences. The effective assembly length approaches the actual gene length in
UniGene101: the sequences classified as multipass/full-length have an average length (l) of 2102 and a median
length (m) of 1695 bases. (B) Length of the maximal ORF was measured after performing CRAW assembly/analysis
on 58 ESTs from UniGene98 clusters. The longest ORF of the resulting consensus sequence (in residues) is plotted
against the number of 58 sequences in the cluster. The axes are as in A. The effective ORF size generated from EST
fragments easily surpasses 50% of the full-length gene maximal ORF length: the sequences classified as multipass
or full-length in UniGene101 have an average maximal ORF length (l) of 478 residues and a median length (m)
of 367 residues. The improvement shown is the result of both assembly of ESTs into longer contigs and the
correction of insertion and deletion errors using sequence redundancy.
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ncicgap/fisher.html); and for the first 13 entries of
Table 3, we include Fisher significance levels to test
the null hypothesis that the alternate gene form is
not differentially expressed with respect to cancer
libraries. Many cases of subgroup specificity, how-
ever, occur in clusters of ESTs that match no full-
length gene sequence (data not shown) and these
should be prime candidates for early sequencing.

The ability of CRAW to automatically isolate al-
ternate gene forms does not absolve the biologist of
responsibility. Once an alternate gene form has
been suggested, it is important to validate that it is

biologically relevant and is not simply naturally oc-
curring noise like amplification of a chance aberrant
splicing or an immature transcript that contains in-
trons. Another caveat is that library sampling bias
sometimes leads to less specific results. For example,
in searching for the cancer-specific version of genes,
some register as having a splice form exclusively
found in ovary tumor libraries. As of January 1998
there were 29,931 ESTs in UniGene derived from
ovary libraries but only 4,899 of these came from
non-cancer libraries (http://inhouse.ncbi.nlm.n-
h.gov/cgi-bin/UniGene/lbrowse?ORG=Hs). With

Figure 5 A set of ESTs from UniGene101 that sample an alternatively spliced gene. CRAW report for a Uni-
Gene101 cluster of 30 transcripts that can be represented as four consensus sequences and five outliers without
information loss. Four sequences, representing GenBank accession nos. R36192, R36098, R63398, and R63347,
were deleted for brevity. The cluster contains five full-length mRNAs each corresponding to a different splice form
of RBP-MS, a gene-sharing homology to the RNA-binding domain of the Drosophila couch potato gene. One mRNA,
corresponding to type 4 RBP-MS, is not sampled by any ESTs and splice forms 2 and 3 appear to be constitutively
expressed. Black lines indicate gaps in the multiple alignment, black bars indicate indeterminate sequence, red bars
indicate divergence from the sub-group consensus, and all other colors indicate discrete domains of sequence
similarity.
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>80% of ovary ESTs coming from cancer libraries, it
would be difficult to tell from the existing EST data
whether a splice form was ovary cancer specific or
simply ovary specific.

DISCUSSION

We have noted that artifacts and alternate gene
forms can introduce unalignable regions into clus-
ters of transcripts and have used a technique (imple-
mented in the CRAW program) to automatically
perform an optimal partition of a cluster into sub-
clusters such that the subclusters contain only
alignable (consistent) regions. One advantage of
these methods is that they can be effective even
when the cluster members are ESTs that correspond
to no sequenced gene. Additionally, we have given
a visual representation of this partition and the di-
vergence of sequences between and within subclus-
ters. We have demonstrated that these methods can
be used to ameliorate the damage to index clusters
caused by artifact and that previously uncharacter-
ized gene isoforms can be isolated. In many cases,
the isoforms isolated by CRAW analysis are ex-

pressed differentially with respect to disease state,
developmental stage, and tissue.

The schema shown in Figure 1 to get UniGene
cluster information to the CRAW program has been
scaled down from the data processing schema de-
veloped for STACKdb (Hide et al. 1997; R. Miller, A.
Christoffels, J. Barker, and W. Hide, in prep.). CRAW
is one of the tools used in STACKdb to address some
of the organizational difficulties inherent in gene
index construction. Sequences are put into loose
groupings by similarity threshold (similar to mini-
mal linkage clustering) (Johnson and Wichern
1992) and then segmented further into subclusters
by CRAW analysis (comparable to maximal linkage
clustering). The rationale for the application of
CRAW in STACKdb is that index classes are safe
from artifact, whereas gene isoforms and polymor-
phisms are isolated automatically but can still be
viewed in the context of the entire index class. In
contrast, the strict assembler-based approach (the
method used in the current TIGR Gene Index) re-
sults in clusters that are accurate and relatively safe
from chimerism and artifact, but information about
the patterns of similarity between alternate gene

Figure 6 CRAW output (Java version) for a UniGene101 cluster with a cancer-specific alternative gene form.
Subgroup 1 (in green) ESTs are identical to CAMK. The green regions of subgroup 2 are identical to subgroup 1
sequences, and the blue region of subgroup 2 diverges. This is an example of how effective subparitioning can add
sensitivity to gene expression specificity studies. If one were to seek cancer-specific genes by looking at the original
UniGene index cluster, the level of specificity to cancer libraries would only be ∼53% = (100 2 9/17)%; however,
at the subcluster level, the specificity level is 100%.
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forms is lost and index classes are fragmented.
Methods that group sequences based on only a simi-
larity threshold (e.g., see Houlgatte et al. 1995; Sch-
uler et al. 1996) without further processing result in
clusters that cannot be represented accurately by
one representative sequence and also will be vulner-
able to damage caused by chimeric clones and other
artifacts. By offering a method that partitions arti-
fact and divergent gene forms to disparate sub-
classes, it is often possible to correct for error and
isoforms without disrupting the global structure of
similarity threshold-based indexing projects. An-
other benefit seen in STACK is that the ability de-

couple the representative sequence generation and
error-checking from the actual sequence clustering
allows the introduction of higher error sequence
into index construction resulting in higher gene se-
quence sampling. Decoupling also allows for easy
integration with other gene indexing projects, as
seen in this paper and its treatment of UniGene.

There is room for improvement in our method
of detecting alternative gene forms. An unusually
high sequencing error rate or failures in the multiple
alignment process can cause sequences to be mis-
takenly excluded from membership in the ‘‘correct’’
subcluster. Development of a system to perform

Table 3. Some Disease-State/Tissue-Specific Gene Forms Isolated through CRAW Analysis

Some Library-Specific Forms with a Matching Gene in Public Databases

Fisher
significance
level

Internal
no. Library specificity

Accession nos. of
matching genes

Common gene name;
functional notes

0.007 32615 ovary tumor U66063, L07044 CAMK
0.01 1591 ovary tumor D26156, D29175 transcriptional activator

hSNF2b
0.015 32240 parathyroid tumor M60974 growth arrest and DNA

damage-inducible protein
0.022 4362 cancer, various

(cervical, colon)
M88579, Z11773 zinc finger protein zfp-35

may act to control gene
activity during prophase

0.026 2335 cancer, various
(cervical, prostate)

X87613 skeletal muscle-abundant
protein

0.033 25477 cancer, various
(cervical, colon,
endometrial)

M29204 binds to GC-rich sequences
in epidermal growth factor

0.040 17876 cancer, various (colon,
liver)

X16396 NAD-dependent
methylenetetrahydrofolate
dehydrogenase

0.045 717 ovary tumor U18291 CDC-16, cell division control
0.046 11462 ovary tumor U49785, Y11151 dopachrome tautomerase

(tyrosine-related protein 2),
tumor antigen

0.057 10942 parathyroid tumor D83702 human brain mRNA for
photolyase homolog,
UV-induced DNA damage
repair

0.115 22783 cancer, various (ovary,
prostate)

X79201 SYT, implicated in
development of synovial
sarcomas

0.2 1266 ovary tumor X70218 protein phosphatase 4
(formerly X)

1.0 28992 skin tumor I Z48804 ocular albinism gene

Functional and library information for 78 UniGene 101 clusters, where subcluster membership was specific to libraries of a specific
disease state or tissue. The first 41 entries highlight cancer libraries; the remaining 37 examples are from various libraries. For brevity,
only the first 13 entries are shown. The full table may be viewed as supplementary information at htp://www.genome.org.
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more accurate automatic discrimination of alternate
splice forms is the focus of a separate group (A.
Christoffels and W. Hide, in prep.). Another pos-
sible improvement in CRAW would be the use of
sequence quality information, as is done in the
PHRAP package, so that partitioning decisions are
only based on high-quality regions in sequence. In-
clusion of clone linkage information in the CRAW
analysis would most likely lead to improved perfor-
mance as well. One simple alternative to CRAW that
was investigated was to define the subclusters by
allowing a sequence assembler, like TIGR assembler
or PHRAP, to make consistent assemblies and then
to multiply align the resulting assemblies to obtain
information about how the subgroups were related.
One problem encountered was that the sequence
assemblers were not reliable in assigning sequences
to the appropriate subgroups even in cases where
such assignments existed (data not shown but avail-
able from us upon request).

EST generation is a biased and limited sampling
from variable locations of genes in the process of
transcription. Also, the sampling distribution of
ESTs from the various libraries is not entirely under-
stood. These problems, along with the error inher-
ent in current EST generation technology, make it
difficult to draw solid biological conclusions from
EST data alone. Despite these challenges, EST data
have contributed much to gene discovery and ex-
pression studies; hence, the methods that we pre-
sent to rapidly assist in containing damage caused
by artifact, and increase the sensitivity of differen-
tial and specificity expression tests should be valu-
able to those that are attempting to harvest EST data
to its full potential.

METHODS

Processing the UniGene set required additional
tools and a processing schema (Fig. 1). Each Uni-
Gene cluster was subjected to a further clustering by
d2 cluster (Hide et al. 1994; J. Burke, D. Davison,
and W. Hide, in prep.). Ignoring sequences with <50
nondegenerate bases, we placed two sequences to-
gether if they share a region of 50 bases with at least
90% identity. Subsets of the cluster that do not
share the above level of overlap (such as occurs
when 58 and 38 ESTs do not overlap but are in the
same index class) are put into separate subclusters.

After being correctly oriented and split into
overlapping subgroups, all subgroups correspond-
ing to a UniGene cluster are aligned using TI-
GR msa (http://www.tigr.org/pub/sofware/
TIGR msa) using a MasPar massively parallel com-

puter. Some larger clusters were not processed
because of their size (see Table 1). The induced mul-
tiple alignment was then subjected to CRAW analy-
sis for further partitioning into subgroups and con-
sensus generation for each subgroup. Note that
there is a difference between subgroups formed be-
cause of lack of overlap in the d2 cluster step of
processing and subgroups formed during CRAW
analysis, but we use the term subgroup to denote
both events. Next we elaborate on the subpartition-
ing process in CRAW.

Group Partitioning Strategy

A decision to put two sequences into the same sub-
clusters is contingent on their consistency. Two se-
quences are pairwise-inconsistent if a global align-
ment of the sequences contains a region of suffi-
cient mismatch. This definition defines a property
of sequences that is dependent on the results of an
alignment algorithm. The fact that in many cases,
there is more than one optimal alignment and that
the alignment is dependent on the parameters and
the type of alignment algorithm used makes the
above definition of consistency more of a conven-
tion and less of an explicit definition. We define
that a sequence is always pairwise consistent with
itself. More formally, given the above conventions,
two sequences that have been globally aligned, and
three parameters [(W) Window Size; (SIM) Similar-
ity Threshold; and ignore first], the two sequences
are pairwise consistent provided that—except for
the first and last ignore first bases—there is no
contiguous region of length W in their alignment
such that the sequences have less than (SIM 2 100)
percent identity. According to the user’s choice, the
definition of similarity and mismatch may or may
not allow for gaps at positions internal to both se-
quences. In examples shown in this report, internal
gaps are counted against the allowable mismatch.
The ignore first parameter is needed because of
quality problems at the ends of sequences. Two se-
quences are also pairwise inconsistent if they do not
overlap over enough internal region. A set of more
than two sequences is consistent if and only if every
sequence in the set is pairwise-consistent with the
consensus sequence derived for the set, letting the
pairwise alignment between the sequence and the
consensus be induced by a multiple alignment of
the subgroup.

Groups of sequences are partitioned into sub-
groups such that every subgroup is consistent. It is
important to construct an optimal subgrouping
such that the number of resulting subgroups is
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minimal because the trivial solution of breaking a
group of N sequences into N singleton subgroups
would be consistent by our definitions but would be
biologically uninformative. To accomplish a near-
optimal subgrouping, maximal consistent sub-
groups are constructed via a greedy algorithm until
all sequences in a group have been placed into a
consistent parent subgroup. The initial state is that
all sequences are unassigned to subgroups. An ini-
tial ‘‘seed’’ sequence of a subgroup is found by gen-
erating a consensus from all unassigned sequences
and selecting the unassigned sequence with the
highest level of identity to the consensus. The seed
is also taken to be the initial consensus of the sub-
group. After the initial sequence is chosen, the sub-
group is iteratively grown by adding the next se-
quence consistent with the subgroup and reevalu-
ating the consensus after the sequence is added.
This continues until no more sequences may be
added to the subgroup, at which point there are two
possibilities: If there are sequences left that have not
yet been assigned to a subgroup, then another sub-
group is started; otherwise, the process stops.

The amount of information that can be lost to
artifact or alternate gene forms is bounded above by
the fact that no subgroup member contains a win-
dow of length W of less than (100 2 SIM) percent
identity with the subgroup consensus. Regions of
internal sequence are found by looking for regions
in the alignment where windows of gapped region
s i z e ( G R S ) c o n t a i n o v e r c e i l i n g
(GAP PERCENT*G R S) gaps. The analysis in
this paper used parameters G R S = 15 and GAP-

PERCENT = 0.9. If several unrelated sequences re-
sult in a poor quality alignment, a simple majority
consensus generation rule might sample the se-
quences such that a consensus is generated that is
consistent with each individual sequence in the
group even when some sequence pairs or subsets
contain a high degree of mismatching. To prevent
this, the consensus sequences are generated by an
early bias-weighted method (details of this are avail-
able from us on request).

Databases, Searches, and Results Processing

BLAST and FASTA searches, as well as search results
reporting and filtering, are performed with Gene-
World software from Pangea Systems (http://
www.pangeasystems.com); the Java CRAW viewer is
part of the Pangea Systems bioinformatics open
platform. Filtering for repetitive elements in Over-
lapping Genes on Opposite Strands (in Results) was
done with the CENSOR program (Jurka et al. 1996).
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