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Abstract
Statistical models for areal data are primarily used for smoothing maps revealing spatial trends.
Subsequent interest often resides in the formal identification of ‘boundaries’ on the map. Here
boundaries refer to ‘difference boundaries’, representing significant differences between adjacent
regions. Recently, Lu and Carlin (2004) discussed a Bayesian framework to carry out edge
detection employing a spatial hierarchical model that is estimated using Markov chain Monte
Carlo (MCMC) methods. Here we offer an alternative that avoids MCMC and is easier to
implement. Our approach resembles a model comparison problem where the models correspond to
different underlying edge configurations across which we wish to smooth (or not). We incorporate
these edge configurations in spatially autoregressive models and demonstrate how the Bayesian
Information Criteria (BIC) can be used to detect difference boundaries in the map. We illustrate
our methods with a Minnesota Pneumonia amd Influenza Hospitalization dataset to elicit
boundaries detected from the different models.
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1 Introduction
The growing popularity of Geographical Information Systems (GIS) has generated much
interest in analyzing and modelling geographically referenced data. Geographical
referencing depends upon the resolution of the data: when data referencing is done with
respect to the coordinates of the location (e.g. latitude and longitude), we call them point-
referenced, as is common in environmental and ecological studies, while data aggregated
over regions in a map (e.g. mortality rates by counties or zip-codes) are called areally-
referenced or lattice. In the domain of public health, due to patient confidentialities, data are
usually of the latter type and are usually available as case counts or rates referenced to areal
regions, such as counties, census-tracts or ZIP codes, rather than the geographical location
of the individual residences. These regions offer a convenient way of grouping the
population and preserving confidentiality.
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Statistical models for spatial data are primarily concerned with explaining variation,
separating spatial signals from noise and improving estimation and prediction. These models
capture associations or correlations across space depending upon the type of referencing in
the data. For point-referenced datasets, models customarily employ spatial processes to
capture spatial associations as a function of Euclidean geometric objects such as distance
and direction. These models are popular in geostatistics (see, e.g., Cressie, 1993; Banerjee et
al., 2004) and provide spatial interpolation or “kriging” accounting for uncertainty in
estimation and prediction.

For areally-referenced data, the association structures are built upon adjacencies or
neighborhood structures of the regions. Here the statistical models regard observations from
a region to be more similar to those from its neighboring regions than those arising from
regions farther away. These structures underpin spatially weighted regression models and
spatial autoregressive models that have been widely employed for smoothing maps and
evincing spatial trends and clusters. They have been applied extensively in econometrics
(see, e.g. Anselin, 1988, 1990; Le Sage, 1997; Le Sage and Pace, 2009) and public health
(see, e.g., Banerjee et al., 2004; Waller and Gotway, 2004).

Subsequent inferential interest often resides not in the statistically estimated maps
themselves, but on the formal identification of “edges” or “boundaries” on the spatial
surface or map. The ‘boundary’ here refers to those on the map that reflect sharp differences
of the outcome variable between its two incident regions. Detecting such boundaries for
contagious diseases such as influenza, can help surveillance systems control or at least slow
down the spread of the infection and better manage local treatment response (e.g. targeting
vaccine delivery).

In this article, we offer a BIC based spatial autoregressive model to Minnesota Pneumonia
and Influenza Hospitalization data. We identify the boundaries that separate the more
affected areas from the less affected areas. These boundaries could provide information to
the government or other related departments to identify areas of the most rapid change in
incidence and prevalence for adjusting local treatment response (e.g. targeting vaccine
delivery).

2 “Wombling”: Detecting boundaries of abrupt change on maps
This boundary detection problem is often referred to as “wombling”, after a foundational
article by Womble (1951), much like “kriging” obtained its name from the pioneering work
of Krige. For point-referenced models, investigators often seek boundaries that reflect rapid
change on the estimated spatial surface. Applications in the literature include detection of
ecotones in forests (Fortin, 1994) and the edges of distinct soil zones. Fortin and Drapeau
(1995) reported that this technique correctly detects boundaries in both simulated and real
environmental data. For example, raster wombling, also known as lattice wombling,
operates on numeric raster data – where the sampling locations are aligned in a rectangular
grid, forming pixels. Barbujani et al. (1990, 1997) used raster wombling to identify genetic
boundaries in Eurasian human populations. Bocquet-Appel and Bacro (1994) applied a
multivariate approach to genetic, morphometric and physiologic characteristics, and found
that it correctly detected the locations of simulated transition zones. Fortin (1997) delineated
boundaries for tree and shrub density, percent coverage, and species presence-absence.
Recently Banerjee and Gelfand (2006) developed a more formal statistical inferential
framework for detecting curves representing rapid change on estimated spatial process
surfaces.

While wombling methods have been applied extensively to point-referenced data, they are
relatively less visible in areal contexts. Areal wombling, also known as polygonal
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wombling, has been addressed by Jacquez and Greiling (2003a, 2003b) to estimate
boundaries of rapid change for colorectal, lung and breast cancer incidence in Nassau,
Suffolk and Queens counties in New York. They proposed algorithms assigning boundary
likelihood values (BLV’s) to each areal boundary using an Euclidean distance metric
between neighboring observations. This Euclidean distance metric is looked upon as a
“dissimilarity” value. Dissimilarity values are calculated for each pair of adjacent regions,
adjacency being defined as sharing a border. Thus, if i and j are neighbors then the BLV
associated with the edge (i, j) is ∥yi − yj ∥, where ∥ · ∥ is some appropriate metric (for
instance Euclidean for continuous responses, Hamming for binary responses). Locations
with higher BLV’s are more likely to be a part of a difference boundary, since the variable
changes rapidly there.

While attractive in their simplicity and ease of use, the algorithmic approaches do not
account for all sources of uncertainty and can lead to spurious statistical inference. For
instance, public health data are often characterized by extremeness in counts and rates
corresponding to certain thinly populated regions that arises due to random variation in the
observed data rather than any systematic differences. Statistical models assist in capturing
spatial variation and separating them from random noise. A more detailed review of the
existing algorithmic approaches and their deficiencies can be found in Lu and Carlin (2005),
who proposed a statistical modelling framework to carry out areal wombling. They
considered disease count data (Yi, Ei), where Yi and Ei are the observed and internally
standardized expected counts from the ith county and employed a spatial hierarchical model
that is estimated using Markov chain Monte Carlo (MCMC) methods. Statistical inference
proceeds from the posterior distribution of the parameters. Lu and Carlin (2005), and
Wheeler and Waller (2008) investigate different metrics Δij for the BLV and identify
boundaries using the posterior means of the BLV. The CAR model, however, smooths
across all geographical neighbors, and can lead to over-smoothing and subsequent
underestimation of several Δij’s.

To remedy this problem, Lu et al. (2007) and Ma, Carlin and Banerjee (2008) investigated
estimating the adjacency matrix within a hierarchical framework using priors on the
adjacency relationships. However, these models often involve weakly identifiable
parameters that are difficult to estimate from the data. Fairly informative prior knowledge is
required that is usually unavailable. Furthermore, they employ computationally expensive
MCMC algorithms that can be inexorably slow in converging to the desired posterior
distributions.

The current article focuses primarily upon areally-referenced models and detecting
“difference boundaries” on spatial maps. Our current work investigates a middle ground
between the algorithmic approaches that ignore sources of variation and the fully Bayesian
hierarchical modelling approaches that are computationally prohibitive. We treat the areal
wombling problem as one of model comparison and seek to learn about difference
boundaries from the data by considering the influence of each edge on these models. For this
purpose, we employ the Bayesian Information Criteria (BIC) that has become a popular tool
in statistical learning and data mining to approximate the marginal posterior probabilities of
the different models and identify the influence of the edges. Exhausting all possible models
will again become computationally prohibitive, hence we consider a “leave-one-out”
algorithm that assesses the influence of each edge in the map, given all the other edges are
present.

The remainder of the paper is organized as follows. Section 3 we review spatial
autoregression models for areal data analysis. Section 5 discusses the Bayesian inferential
paradigm and the Bayesian Information Criteria. Section 6 illustrates the BIC methodology

Li et al. Page 3

Geoinformatica. Author manuscript; available in PMC 2011 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



for areal wombling using some simulated scenarios as well as an appication to a Pneumonia
and Influenza (P& I) dataset from Minnesota. Finally, Section 7 concludes the paper with
some discussion and indication towards future work.

3 Statistical models for areal data analysis
Areal data are referenced by regions in a geographical map, which can be represented as an
n × n matrix W, whose (i, j)-th entry, wij, connects units in i and j spatially in some fashion.
Customarily wii is set to 0. Possibilities include binary choices, i.e. wij = 1 if i and j share
some common boundary, perhaps a vertex (as in a regular grid). Alternatively, wij could
reflect “distance” between units, e.g., a decreasing function of inter-centroidal distances
between the units (as in a county or other regional map). But distance can be returned to a
binary determination. For example we could set wij = 1 for all i and j within a specified
distance. Or, for a given i, we could get wij = 1 if j is one of the K nearest (in distance)
neighbors of i. While W is often symmetric, it is not necessarily so; for instance, the K-
nearest neighbors example provides a setting where symmetry may be violated. For the
illustrations in this article we will consider a connected map (i.e. no islands) and a
symmetric binary proximty matrix W.

As the notation suggests, the entries in W can be viewed as weights. More weight will be
associated with j’s closer (in some sense) to i than those farther away from i. In this
exploratory context W provides the mechanism for introducing spatial structure into
statistical models. To see this consider the symmetric binary specification for W and let y =
(y1, … , yn)′ be an n × 1 vector of outcomes where yi has been observed in the i-th region.
An intuitively appealing spatial smoother would smooth the obervation in each region by
taking the mean of its neighbors. Thus, each yi would be predicted by the average of its

neighbors, say  with ~ denoting “is a neighbor of” and wi+ being the number
of neighbors of region i. A statistical model for this smoother would relate the i-th

observation to the mean of its neighbors. Specifically, we write , where
wĩj = wij/wi+, ρ is a parameter representing the strength of the spatial association and

 is a stochastic error or noise component for each observation. This error
could be representative of variability from a number of sources including unobserved
explanatory variables, sampling error and so on.

The key problem in statistical inference is to sensibly model spatial associations over the
map while yielding a theoretically valid joint probability distributions. Letting W ̃ be the row-
normalized matrix with entries wĩj, we can write the above model as y = ρW̃ y + ε, whence y
= (I − ρW̃)−1ε. Provided that the inverse exists, we have the dispersion matrix of y as Σ(τ2, ρ,
W) = τ2[(I − ρW̃′) (I − ρW̃)]−1. Using standard eigen-analysis (see, e.g., Banerjee et al.,
2004; Anselin, 1988) it can be shown that (I − ρW̃)−1 exists whenever ρ ∈ (1/λ(1), 1), where
λ(1) is the smallest eigen-value of W ̃. It is also true that λ(1) is real-valued and negative, but
restricting ρ ∈ (0, 1) yields non-negative elements in (I − ρW̃)−1. This seems to be more
intuitive in spatial settings, where negative associations between proximate locations is
difficult to envision. With this restriction on ρ, we obtain a valid joint multivariate Gaussian
distribution y ~ MV N(0, Σ(τ2, ρ, W)). This is called a Simultaneous Autoregression (SAR)
model.

In public-health data analysis contexts, it is often desired to carry out spatial inference after
adjusting for certain important covariates that explain the large-scale variation seen in the
data. This leads to random effect or hierarchical linear models,

Li et al. Page 4

Geoinformatica. Author manuscript; available in PMC 2011 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(1)

where yi is the dependent variable, xi a vector of areally-referenced regressors and ϕi are
spatial random effects that model association between adjacent regions. Thus, we would
now let ϕ = (ϕ1, … , ϕn)′ follow a SAR model, i.e. ϕ ~ MV N(0, Σ(τ2, ρ, W)). A very
important point, at least in our current context, is to note that the SAR models are well-
suited to maximum likelihood estimation but not at all for MCMC fitting of Bayesian
models. In fact, the log likelihood associated with (1) is

(2)

Though ρW̃ will introduce a regression or autocorrelation parameter, the quadratic form is
quick to evaluate (requiring no matrix inverse) and the determinant can usually be calculated
rapidly using diagonally dominant, sparse matrix approximations. Thus maximization can be
done iteratively but, in general, efficiently. On the other hand, we note that the absence of a
hierarchical form with random effects implies complex Bayesian model fitting.

The SAR model, with the help of the proximity matrix, captures spatial associations by
assuming that neighboring regions are likely to exhibit greater association than regions that
are not neighbors. This degree of association is controlled by the so-called spatial
autocorrelation parameter ρ. A consequence of this is that the SAR model smooths the
outcome across neighboring regions to produce maps that better reveal regions where the
response tends to cluster. However, smoothing across all geographical boundaries may lead
to oversmoothing resulting in maps that would tend to conceal difference boundaries.
Arriving at models that are formally selected using a statistical paradigm will deliver the
optimal adjacency matrix Wk and, in the process, would have solved the “wombling”
problem by identifying “true” edges that should not be smoothed across. Indeed these edges
are the “complements” of Wk in being those entries that were 1 in W but are 0 in Wk, i.e.,
edges corresponding to the 1 entries in W − Wk.

Unlike SAR models, a Conditional Autoregression (CAR) specification would model each
effect conditional upon the remaining effects. Such a model specifies conditional
distributions

Besag (1974) proved that these full conditional distributions specify a joint distribution for
the phii’s such that ϕ ~ MV N (0, τ2[D − ρW]−1). Now, one needs to make sure that D − ρW
is positive definite, a sufficient condition for which (see, e.g., Banerjee et al., 2004) is to
restrict ρ ∈ (1/λ(1), 1). Assuncao and Krainski (2009) also provide discussion of the ρ
parameter and explanations that help the practitioner to view the covariance matrix of a
CAR model in a natural way. The CAR model has been especially popular in Bayesian
inference as its conditional specification is convenient for Gibbs sampling and MCMC
schemes. The relationship between the CAR and SAR models in terms of resulting spatial
correlations and their interpretations has been explored by Wall (2001).
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4 Statistical detection of boundary effects
Returning to our primary problem of detecting difference boundaries, we formulate this
problem as one of comparing between models that represent different boundary hypotheses.
A boundary hypotheses corresponds to a particular underlying map specifying which edges
should be smoothed over and which should not. A few issues, however, arise regarding the
exact choice of the model. For instance, consider the hypothesis of no difference boundaries
at all in the map. What model would correspond to this hypothesis?

If we believe there are no difference boundaries at all, should we consider the map as
comprising a single region? This implies having no region-specific effects at all or,
equivalently, W = 0 (the null matrix), thereby reducing (1) to a simple linear regression
model with no random effects and ε ~ MV N(0, σ2I). Alternatively, we could still regard yi as
arising from n different regions but, given the absence of difference boundaries, we would
retain independent regional effects instead of spatial structures in the model. This would
amount to ρW = I so that Cov(ϕ, ε) = 0 and we obtain a linear random effects model with iid
regional effects. The choice is not straightforward and may depend upon the objectives of
the analysis.

Here we will adopt the second approach, where we always retain random effects and
consider models varying in their specification of W that controls spatial smoothing. At the
other extreme all the geographical edges may in fact be difference boundaries. Any
intermediate model that lies between these extremes is completely specified by modifying
the original map to delete some edges.

Ideally we would like to consider a class of models M = {M1, … , MK} representing all
possible models or all possible maps derived from W by deleting combinations of
geographical edges. In other words, let W = {wij} be the adjacency matrix of the map (i.e.,
wii = 0, and wij = 1 if i is adjacent to j and 0 otherwise). Model Mk will be a SAR model with
the adjacency matrix Wk that has been derived by changing some of the 1’s to 0’s in W. This
amounts to dropping some edges from the original map or, equivalently, combining two
regions into one. However, now we encounter an explosion in the number of models. To be
precise, if W is the original geographical map, we have 21′W1/2 models to compare. This is
infeasible and will require sophisticated MCMC Model Composition or MC3 algorithms
(see. e.g., Hoeting et al., 1999) for selecting models. These formal statistical methods will
again become computationally intensive and inconducive for learning of edge effects in
large maps. Therefore, we consider only models that arise by changing only one entry in the
W matrix. This avoids MCMC and resorts to the simpler Bayesian Information Criteria that
requires only the maximum likelihood estimates for the models.

5 The Bayesian information approach
By modelling both the observed data and any unknown parameter or other unobserved
effects as random variables, the hierarchical Bayesian approach to statistical analysis
provides a cohesive framework for combining complex data models and external knowledge
or expert opinion (e.g., Berger, 1985; Carlin and Louis, 2000; Robert, 2001; Gelman et al.,
2003; Lee, 2004). In this approach, in addition to specifying the distributional model f(y∣θ)
for the observed data y = (y1, … , yn) given a vector of unknown parameters θ = (θ1, … , θk),
we suppose that θ is a random quantity sampled from a prior distribution p(θ ∣ γ), where γ is
a vector of hyperparameters. Inference concerning θ is then based on its posterior
distribution,
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(3)

Notice the contribution of both the data (in the form of the likelihood p(y ∣ θ)) and the
external knowledge or opinion (in the form of the prior p(θ∣γ)) to the posterior. If γ is
known, this posterior distribution is fully specified; if not, a second-stage prior distribution
(called a hyper-prior) may be specified for it, leading to a fully Bayesian analysis.
Alternatively, we might simply replace γ by an estimate γ ̂ obtained as the value which
maximizes the marginal distribution p(y ∣ γ) viewed as a function of γ. Inference proceeds
based on the estimated posterior distribution p(θ ∣ y, γ ̂), obtained by plugging γ ̂ into equation
(3). This is called an empirical Bayes analysis and is closer to maximum likelihood
estimation techniques.

The Bayesian decision-making paradigm improves upon the classical approaches to
statistical analysis in its more philosophically sound foundation, its unified approach to data
analysis, and its ability to formally incorporate prior opinion or external empirical evidence
into the results via the prior distribution. Statisticians, formerly reluctant to adopt the
Bayesian approach due to general skepticism concerning its philosophy and a lack of
necessary computational tools, are now turning to it with increasing regularity as classical
methods emerge as both theoretically and practically inadequate. Modelling the θi’s as
random (instead of fixed) effects allows us to induce specific (e.g. spatial, temporal or more
general) correlation structures among them, hence among the observed data yi as well.
Hierarchical Bayesian methods now enjoy broad application in the analysis of complex
systems, where it is natural to pool information across from different sources (e.g. Gelman et
al., 2003). Modern Bayesian methods seek complete evaluation of the posterior distributions
using simulation methods that draw samples from the posterior distribution. This sampling-
based paradigm enables exact inference free of unverifiable asymptotic assumptions on
sample sizes and other regularity conditions.

A computational challenge in applying Bayesian methods is that for many complex systems,
inference under (3) generally involves distributions that are intractable in closed form, and
thus one needs more sophisticated algorithms to sample from the posterior. Forms for the
prior distributions (called conjugate forms) may often be found which enable at least partial
analytic evaluation of these distributions, but in the presence of nuisance parameters
(typically unknown variances), some intractable distributions remain. Here the emergence of
inexpensive, high-speed computing equipment and software comes to the rescue, enabling
the application of recently developed Markov chain Monte Carlo (MCMC) integration
methods, such as the Metropolis-Hastings algorithm and the Gibbs sampler. See the books
by Gelman et al. (2004),Carlin and Louis (2000) and Robert (2001) for details on Bayesian
analysis and computing.

Bayesian inference proceeds by considering a set of models, say M = {M1, … ,MK}, each
representing a hypothesis, and then selecting the best model(s) using some statistical metric.
Assuming that model Mj has parameters, say θj, associated with it and we have specified
priors p(θj∣Mj) for each j, we will seek posterior distributions of the model itself,

(4)

To compare two models, say M1 and M2, we form their posterior odds
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(5)

If the odds are greater than one, we choose model M1, otherwise we opt for M2. The Bayes
factor is defined as

(6)

and represents the contribution of the data towards the posterior odds. Often, we will have
no prior reason to favor one model over another and the posterior odds will equal the Bayes
Factor. Thus, one seeks to evaluate the marginal distribution of the data, given a model, as

(7)

Computation of the marginal distribution in (7) for general hierarchical models can be much
more complicated and has occupied plenty of attention over the last several years. Many of
these methods, while offering better evaluations and approximations, involve
computationally intensive simulation algorithms, such as MCMC methods, that require
much finessing and several thousands of iterations to yield accurate results.

LeSage and Parent (2007) provide a computationally simple and fast approach to evaluating
the true log-marginal likelihood for the SAR model. However, their approach seems to be
best suited to the Zellner g-prior on the regression coefficients and may not be directly
applicable to more general priors. LeSage and Pace (2009; Ch.6) also discuss the issue of
comparing SAR models based on different adjacency matrices W. They rely upon univariate
numerical integration over the range of support for the parameter ρ in the SAR model, which
involves calculating log (det(In − ρW)) for every value of the parameter ρ. Computationally
fast methods to compute the log determinant terms are presented in Pace and Barry (1997)
and Barry and Pace (1999) . Here we approximate the marginal distribution in (7) using the
Laplace-approximation, which avoids the numerical integration over the parameter space.

In edge detection problems, as outlined earlier, we encounter a large number of models.
Hence, a faster approach will be to employ an inexpensive approximation to (7). One such
approximation is based upon a Laplace-approximation and some subsequent simplifications
(see, e.g., Raftery, 1995):

(8)

where dim(Mj) is the number of parameters that are being estimated in the model Mj. The
Bayesian Information Criteria is derived from this approximation as

(9)

Therefore, choosing the model with the minimum BIC amounts to choosing the model with
the maximum posterior probability. In fact, if we consider the models in M then we can
estimate the posterior probability for each model as
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(10)

The advantages of computing the posterior model probabilities as (10) include
computational simplicity and a direct connection with the thoroughly investigated BIC.
While the justification of the approximation (10) is asymptotic in general, this can also be
looked upon as an approximation for a noninformative prior even for moderate and small
sample sizes.

6 Bayesian Information Criteria in SAR/CAR models to detect difference
boundaries: Illustrations
6.1 Simulation Experiments

We illustrate our model comparison approach first with some simulation studies and then
apply it to a real data analysis in Section 6.2. The simulation was set up under two scenarios:
with and without explanatory variables. The spatial adjacency matrix was based on the
Minnesota county map and in another scenario, the 8 × 8 rectangular grid. There are 87
counties and 211 boundaries between counties on the Minnesota map, thus there are 211
different boundary hypotheses in our analysis. We generated data {Yi} from a Poisson
distribution whose true parameter values are known.

Without the explanatory variables, we divided the Minnesota map into six regions, and let μi
∈ {0, 0.5, 1, 1.5, 2, 2.5} with the true difference boundaries mapped on Figure 1. Note that
two of the clusters are shaded white. The one in the interior comprises a single county
(Sherburne) and has mean 0, while the other has a mean of 0.5. This configuration creates a
county with all its boundaries being true difference boundaries. Letting Yi be the simulated
number of cases in county i, we generate {Yi} ~ Poisson(5 exp(μi)) for i = 1, 2, … , 87. Let

 be the expected number of cases, where Oi is the population of county i, and
N is the total number of counties. Assuming equal population in all counties, we take the log
standardized morbidity ratio, yi = log(100 × Yi/Ei), as our outcome variable. Note that this is
essentially a relative rate expressed as a percentage and transformed to a logarithmic scale to
strengthen its Gaussian behavior.

We next fit the model in (1) with yi as the response, where the regression structure consists
only of an intercept, i.e. , and {ϕi}’s follow a SAR and a CAR distribution (see
Section 3). There are 211 different boundary hypothesis in our analysis, as there are 211
edges on the Minnesota County Map and each model arises from deleting (hence not
smoothing across) exactly one geographical edge. We compute the BIC for all these models
using (9), in which the log likelihood is computed by (2). Therefore, each model
corresponds to one edge and the models with higher posterior probabilities provide evidence
in favor of the corresponding edge being a difference boundary.

As we know the 47 true difference boundaries on the map, we are able to obtain the “true”
detection rates (sensitivity) for the BIC approach by declaring the edges corresponding to
the top 47 models as difference boundaries. We compare the results with the existing
methods, e.g. Lu and Carlin (2005) (LC). The average detection rate of the 50 simulated
datasets for the different methods are listed in Table 1. The sensitivity of the BIC based
model comparison approach is competitive with the LC approach, especially when the SAR
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prior probability model is specified for the spatial effects. Indeed, Table 1 reveals that the
detection rate for the BIC based approach using SAR spatial effects differs from the Lu and
Carlin method by only 1.5%. With CAR spatial effects, this difference is slightly higher at
4.6%. Yet, the inferential procedure in LC employs MCMC algorithms that involve
substantially greater computational demands. The BIC based model comparison approach
that we proffer here provides much quicker inference via generalized least squares, while
losing little sensitivity as compared to the LC method.

In another scenario, we conduct the simulation on an 8 × 8 rectangular grid. We partition the
64 rectangular units into 5 areal clusters, as depicted in Figure 2. We assign four grey-scale
values to these five clusters, with the clusters in the lower left and the extreme right column
having the highest true grey-scale value of 5.0. The region in the upper middle has the
lowest true value of 2.0, the upper-left has a true value of 3.0, while the cluster in the lower
middle has a true value of 4.0. Analogous to the previous scenario, we generate {Yi} ~
Poisson(exp(μi)), and use yi = log(100 × Yi/Ei) as the response variable in the model. The
average detection rate of the 50 simulated datasets for the different methods are listed in
Table 1. The detection rate for the BIC based approach using SAR spatial effects differs
from the Lu and Carlin method by 6.2%. With CAR spatial effects this difference is slightly
higher at 14.9%.

We also computed the BLV’s associated with the edges (see Section 2). These are the
absolute difference of the outcomes, i.e. Δij = ∥yi − yj∥, computed for every pair of adjacent
counties. We identified the 47 highest BLV’s as difference boundaries (see, e.g., Jacquez
and Greiling, 2003a; 2003b). The last row of Table 1 presents the average detection rates
from the 50 simulated datasets based upon the Δij’s. These were 84.8% for the Minnesota
county map and 78.5% for the 8 × 8 grid. While the Δij’s seem to provide a simple and
practical way of identifying boundaries for the outcome variable, this procedure is not
model-based and will not apply to our next scenario.

In our final scenario, we assume that there is an explanatory variable associated with the
outcome. In other words, we now set  in (1), where we generate each xi from N(μi,
σ) with μi taking values in 0, 0.2, 0.4, 0.6, 0.8, 1, depending upon where county i lies in the
map in Figure 1, and σ = 0.5. We subsequently fix these generated xi’s and draw the spatial
random effects, i.e. the ϕi’s from a SAR model. Next, we simulate Yi ~ Poisson(exp(θ0 +
θ1xi + ϕi)) with θ0 = 0, θ1 = 5. In fitting the model and carrying out subsequent boundary
analysis, we again use yi = log(100 × Yi/Ei) as our outcome variable, where Ei is as defined
in the preceding scenarios.

When the model accommodates an explanatory variable, as in our current scenario, the
boundary effects of interest pertain not to the outcome, but the residuals after adjusting for
the explanatory variable. Since the residuals are never observed, BLVs defined as Euclidean
metrics between observations is no longer applicable for detecting the difference boundaries
on the spatial residual map. Nevertheless, the BIC based approach and the LC method are
both able to do so. True difference boundaries are unknown in this case. As such, we
compute the rank of each of the 211 models based on BIC, and compare them with the
difference between the spatial residuals produced by LC. Figure 3 plots the difference in
spatial residuals from the LC approach against the rank of the model using BIC. A locally
weighted scatter-plot smoother or “loess” (Cleveland and Devlin, 1988) is also fitted ot the
plot. The figure reveals a very clear decreasing trend indicating that the model with a better
fit (lower BIC) will tend to have larger differences in the spatial residuals from the LC
method. This indicates consistency between the BIC-based methods and the LC method.
Again, we note the computational efficiency of the BIC-based methods as compared to the
LC method.

Li et al. Page 10

Geoinformatica. Author manuscript; available in PMC 2011 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



6.2 Application to Minnesota P& I dataset
We apply our model comparison approach to a Pneumonia and Influenza diagnosis dataset
from the state of Minnesota. Residents of Minnesota who were 65 years of age and older and
who were enrolled in the Medicare fee-for-service program as of December 31, 2001, were
included in our study. This population had been identified as part of a multi-year study
regarding the impact of vaccination on elderly Minnesota residents. The Medicare
Denominator file for 2001 was used to define the cohort. In addition to meeting the criteria
for age and state of residence, to be eligible for inclusion in the study the person had to be
enrolled in both Medicare Part A and Medicare Part B, not be enrolled in a Medicare
Advantage health plan, and not have end-stage renal disease. The Denominator file also
indicated the county of residence for each person. County-level average per capita income
was obtained from the 2000 U.S. Census SF3 file.

Hospitalizations for pneumonia and influenza (P&I) were identified by the Medicare
Provider Analysis and Review (MedPAR) short stay inpatient file for the above Minnesota
residents. This annual file contains one record per hospitalization based on the date of
discharge. Hospitalizations for P&I (Pneumonia and Influenza) were identified using ICD-9-
CM codes 481-487. Rates of P&I hospitalization are traditional measures of the impact of
influenza virus in the elderly population. Boundary analysis might help identify barriers
separating counties that experience different impacts of the influenza virus. Here we studied
the number of hospitalizations from P&I in both influenza and shoulder period among
persons at risk in each county. We adjust for the average income per person in each county
by incorporating it as an explanatory variable in our model. Therefore, the vector x in (1)
has two columns, the other being an intercept. Let Yi be the observed number of

hospitalizations in county i,  be the expected number of cases, where Oi is the
population (age 65 and older) of county i, and N is the total number of counties. Similar to
the simulation study, we take log transformation yi = log(100 × Yi/Ei) as our outcome
variable under study.

The intercept from the SAR model was estimated to be 5.12 (mean) with a 95% credible
interval (4.62, 5.63), while for the CAR model these were 5.13 and (4.63, 5.63) respectively.
The regression coefficient for average income per person was estimated to be −0.017 with a
95% credible interval (−0.037, 0.003) from the SAR model, while they were −0.017 and
(−0.037, 0.002) from the CAR model. The estimate of τ2 from the SAR and CAR models
were 0.097 and 0.095 respectively, while ρ was estimated to be 0.072 and 0.127
respectively. The parameter ρ has different interpretations for the SAR and CAR models and
can be looked upon as a measure of spatial smoothing. It is, however, dangerous to interpret
this as a spatial correlation in the strict statistical sense (Wall, 2004).

Tables 2 and 3 list the adjacent counties having the 50 largest boundary effects, ranked by
their BIC scores from the SAR and CAR models respectively. Forty-six of the top fifty pairs
are present in both tables (although they may not necessarily agree in rank), while four (in
bold) boundaries are unique. The top seven county pairs also agree in their rankings. The
fifty difference boundaries detected by the model comparison approach using SAR spatial
effects are highlighted in Figure 4. Figure 5 reveals a similarly consistent performance
between the SAR and CAR effects in detecting difference boundaries on this map. Models
ranked higher (or that fit better) usually detect boundaries with a big difference in the raw
data, which corroborates our approach. But some of the points with large differences in the
raw data are ranked low in the plot. This could be attributed to the smoothing and borrowing
of strength from neighboring regions that could diminish the strength of the neighboring
regions and dilute the difference in some cases. Figure 6 is the choropleth map of the spatial
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residuals under the model which has a neighborhood structure with fifty detected boundaries
(i.e. non-smoothing boundaries).

7 Discussion and Future Directions
Clearly we have only skimmed the surface of the edge detection problem. In fact, here we
have investigated the Bayesian Information Criteria and its utility in marginal probability
approximations. Still, our approach of formulating the edge detection problem as a model
comparison problem is relatively novel. We view our current work as a relatively simple
data-mining tool that can suggest influential boundary effects in health maps. The use of the
BIC is straightforward in our leave-one-out framework and can prove a useful tool for
spatial analysts.

Our future methodolological investigations will focus upon three directions: (i) more
sophisticated model search algorithms such as MC3 (Markov Chain Monte Carlo Model
Composition) and Bayesian Model Averaging algorithms that exhaust the space of all
models (see Hoeting et al., 1999); (ii) using Bayesian False Discovery Rates together with a
formal Bayesian hypothesis testing framework to make decisions regarding wombling
boundaries, and (iii) to develop alternative nonparametric Bayesian models for areal data
that would facilitate boundary detection.

The third direction merits some further discussion. Instead of incorporating random “edge
effects” (as done in Lu et al. 2007; Ma et al. 2008), one can explore an alternative stochastic
mechanism that would let us detect wombling boundaries by considering probabilities such
as P(ϕi = ϕj∣i ~ j). Clearly using direct CAR specifications will simply not work as it yields
continuous measures for the ϕis, rendering P(ϕi = ϕj∣i ~ j) = 0. The challenge here is to
model the spatial effects in an almost surely discrete fashion while at the same time
accounting for the spatial dependence. A nonparametric Bayesian framework that models
the spatial effects as almost sure discrete realizations of some distribution comes to mind –
the Dirichlet process (Ferguson, 1973) has been employed extensively for modelling
clustered data and presents itself as a natural choice, but how do we accommodate the
spatial dependence? These and other issues will form a part of our future research plans.
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Figure 1.
A map of the simulated data with the grey-scales showing the six different clusters, each
having its own mean. Two of the clusters are shaded white with the one in the interior
comprising a single county (Sherburne) and has mean 0, while the other has a mean of 0.5.
There are 47 boundary segments that separate regions with different means (shades).
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Figure 2.
A 8 × 8 rectangular grid of the true values with the grey-scales showing the five different
clusters. There are a total of 112 boundaries of which 22 are designated as true difference
(“wombling”) boundaries.
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Figure 3.
A simulation example with a single explanatory variable in the model. The x-axis is the
expectation of the absolute difference between the spatial residuals of the adjacent counties
by LC method. The y-axis marks the ranks produced by BIC for the 211 models using SAR
spatial effects. A loess smoothed line is also shown on the plot.
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Figure 4.
Difference Boundaries detected by the BIC based model comparison approach with SAR
spatial effects. Top 50 boundaries corresponding to models with lowest BIC are highlighted.
The map for the CAR spatial effects is very similar and not shown.
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Figure 5.
Plot of model rank (SAR: top panel; CAR: bottom panel) against the absolute difference of
the observed log standardized morbidity ratio. The horizontal axis is the rank of the models
in terms of increasing BIC. The vertical axis is the absolute difference of the observed log
standardized morbidity ratio. A loess smoothed line is also shown on the plots.
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Figure 6.
Choropleth map of residuals from the SAR model. The map from the CAR model is very
similar. Darker colors represents higher value of the spatial residuals after adjusting for the
covariate, which also implies the county is more affected by P&I.
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Table 1

Average detection rate in the simulation study (50 datasets) by BIC-based model comparison approach with
SAR and CAR spatial effects, the LC method as well as a simple ranking based upon absolute differences. The
simulation study was based on MN county map and 8 × 8 rectangular grid respectively.

MN county map 8 × 8 grid

BIC-SAR 77.2 73.3

BIC-CAR 74.1 64.6

LC 78.7 79.5

BLV’s 83.8 78.5
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Table 2

Names of adjacent counties that have significant boundary effects from the SAR model. The numbers in the
first column are the ranks according to their BIC scores.

1 Cook, Lake

2 Itasca, Koochiching

3 Beltrami, Koochiching

4 Steele, Waseca

5 Pope, Stearns

6 Cass, Wadena

7 Todd, Wadena

8 Murray, Redwood

9 Traverse, Wilkin

10 Koochiching, Lake of the Woods

11 Freeborn, Steele

12 Isanti, Sherburne

13 Clearwater, Mahnomen

14 Renville, Yellow Medicine

15 Chippewa, Renville

16 Cottonwood, Murray

17 Isanti, Mille Lacs

18 Koochiching, St. Louis

19 Grant, Wilkin

20 Lyon, Redwood

21 Becker, Mahnomen

22 Cottonwood, Jackson

23 Lincoln, Pipestone

24 Goodhue, Olmsted

25 Cass, Morrison

26 Murray, Pipestone

27 Morrison, Todd

28 Redwood, Yellow Medicine

29 Jackson, Martin

30 Goodhue, Wabasha

31 Otter Tail, Todd

32 Douglas, Pope

33 Becker, Wadena

34 Brown, Renville

35 Kandiyohi, Pope

36 Benton, Morrison

37 Fillmore, Houston

38 Anoka, Isanti

39 Blue Earth, Brown

40 Hubbard, Wadena
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41 Carver, McLeod

42 Clay, Otter Tail

43 Blue Earth, Watonwan

44 Mille Lacs, Morrison

45 Murray, Nobles

46 Dodge, Olmsted

47 Morrison, Stearns

48 Douglas, Grant

49 Dakota, Goodhue

50 Fillmore, Olmsted
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Table 3

Names of adjacent counties that have significant boundary effects from the CAR model. The numbers in the
first column are the ranks according to their BIC scores.

1 Cook, Lake

2 Itasca, Koochiching

3 Beltrami, Koochiching

4 Pope, Stearns

5 Steele, Waseca

6 Cass, Wadena

7 Todd, Wadena

8 Renville, Yellow Medicine

9 Koochiching, St. Louis

10 Clearwater, Mahnomen

11 Isanti, Sherburne

12 Chippewa, Renville

13 Koochiching, Lake of the Woods

14 Freeborn, Steele

15 Murray, Redwood

16 Isanti, Mille Lacs

17 Traverse, Wilkin

18 Cottonwood, Murray

19 Grant, Wilkin

20 Becker, Mahnomen

21 Lyon, Redwood

22 Goodhue, Olmsted

23 Cottonwood, Jackson

24 Redwood, Yellow Medicine

25 Jackson, Martin

26 Goodhue, Wabasha

27 Otter Tail, Todd

28 Lincoln, Pipestone

29 Hubbard, Wadena

30 Carver, McLeod

31 Becker, Wadena

32 Douglas, Pope

33 Anoka, Isanti

34 Cass, Morrison

35 Kandiyohi, Pope

36 Murray, Pipestone

37 Morrison, Todd

38 Brown, Renville

39 Clay, Otter Tail

40 Blue Earth, Watonwan
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41 Dodge, Olmsted

42 Blue Earth, Watonwan

43 Mahnomen, Norman

44 Le Sueur, Scott

45 Benton, Morrison

46 Aitkin, Kanabec

47 Dakota, Goodhue

48 Fillmore, Houston

49 Mille Lacs, Morrison

50 Dakota, Hennepin
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