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Selective expression of a gene product (mRNA or protein) is a pattern in which the expression is markedly high,
or markedly low, in one particular tissue compared with its level in other tissues or sources. We present a
computational method for the identification of such patterns. The method combines assessments of the
reliability of expression quantitation with a statistical test of expression distribution patterns. The method is
applicable to small studies or to data mining of abundance data from expression databases, whether mRNA or
protein. Though the method was developed originally for gene-expression analyses, the computational method
is, in fact, rather general. It is well suited for the identification of exceptional values in many sorts of intensity
data, even noisy data, for which assessments of confidences in the sources of the intensities are available.
Moreover, the method is indifferent as to whether the intensities are experimentally or computationally derived.
We show details of the general method and examples of computational results on gene abundance data.

It is well established that a eukaryotic cell’s genomic
DNA and expressed mRNA are present in a variety of
abundance classes (Britten and Kohn 1968; Galau et al.
1977; Hames and Higgins 1985). Very wide differences
in gene expression level, that is, in intracellular mRNA
copy number or in amount of gene product, are pos-
sible within the same cell. For example, it has been
estimated that the copy numbers of expressed genes
can vary from 1 to ∼200,000 (Patanjali et al. 1991). For
many genes, such differences in abundances can be
detected coarsely through experimental rehybridiza-
tion kinetics or can be estimated from the rates of pro-
tein synthesis of specific enzymes (Galau et al. 1977).
More modern abundance detection techniques are also
available (Singer and Berg 1991; Adams 1994; Wilkins
et al. 1997). The same cell type, as well as different cell
types, may exhibit different patterns of gene expres-
sion when exposed to different conditions (Singer and
Berg 1991; Adams 1994; Lodish et al. 1995; Wilkins et
al. 1997). Assessing differences in expression patterns,
therefore, can be used to gauge differences in cell
physiology and tissue behavior, intrinsically or in re-
sponse to many different kinds of stimuli.

Because gene expression is central to modern biol-
ogy, it is expected that delineations of patterns of gene
or protein expression among normal and diseased
states will have increasing importance in medical di-
agnostics and therapy (Anderson et al. 1984; Anderson
and Seilhamer 1997). The conjunction of large-scale
biology technologies (e.g., genomic sequencing or pro-
teomics) and the need for new pharmaceutical targets
has motivated the development of computational

methods for detecting unusual expression patterns.
Among the patterns of interest is selective expression,
in which the expression (mRNA or protein) in a spe-
cific tissue is at a significantly different level than the
other tissues. Selective expression is of particular inter-
est because it may be correlated with fundamental bio-
logical phenomena or disease processes.

Two stereotypical selective expression situations
are possible: up, in which expression is elevated in a
specific tissue when compared with the levels in other
tissues; and down, in which the expression in a specific
tissue is reduced significantly when compared with the
levels in other tissues. Although mixed situations are
possible, they will not be discussed in this article (see
Fig. 1 for diagrammatic representations). The exten-
sion of the techniques for identifying up or down se-
lective expression to the mixed cases is straightfor-
ward.

Up selective expression may be an important in-
dication that the gene has been activated specifically,
up-regulated, or its product elevated differentially in
association with certain phenomena or agents affect-
ing a particular tissue’s biology. Similarly, down selec-
tive expression is either a significant down-regulation
or a nearly complete inactivation of the gene (e.g., tu-
mor-suppressor loss of function) in association with
specific biological events. Such broad phenomena as
morphogenesis, differentiation, metabolic alteration,
mutagenesis, bacterial and viral infection, physiologi-
cal stress, disease, drugs and therapeutic interventions,
etc. can manifest or cause selective expression effects.
A particular example at SmithKline Beecham Pharma-
ceuticals was the discovery of a novel cathepsin gene
(cathepsin K) being selectively up-expressed in an os-
teoclast library and subsequently shown to be involved
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in bone resorption (Bossard et al. 1996; Drake et al.
1996; Zhao et al. 1997). This experimental finding sig-
nificantly motivated the development of this selective
expression detection computational method.

This article presents a robust computational
method that identifies genes or proteins that are ex-
pressed selectively (see Fig. 2 for a representation of
selective expression in real data). The method is not
restricted to gene or protein expression data, though
such expression data is among the more natural con-
texts for this approach. The method is generally appli-
cable to any kind of intensity data in which a distin-
guishable data source (e.g., tissue, library, assay, drug,
dose, time, etc.) can be associated with each intensity
value (e.g., gene or protein abundance, activity, bind-
ing strength, fluorescence, etc.). If assessments of reli-
abilities, that is, confidences, in the sources are avail-
able, these can be utilized to make more reliable pre-
dictions. The intensities can be experimentally
determined values, computationally derived values
[e.g., from expressed sequence tag (EST) data (Myers
1994)], or combinations. The method is indifferent to
the experimental or computational lineages of the data
to be analyzed. All that is required are triples of asso-
ciated values: intensity, source, and source confidence.
Conveniently, a set of values can be organized gener-
ally as a two-dimensional matrix of intensities, in
which each column corresponds to each source (with
its associated source confidence), and each row corre-
sponds to each entity for which intensities are assessed,
for example, intensity in row versus column, corre-
sponding respectively to abundance of gene versus li-
brary, binding strength of drug versus tissue, biological

activity of drug versus dose, and so forth. The method
is applicable as well to intensities from the same source
(column), for example, different genes’ abundances
(row) in a particular library (column), binding strength
of different drugs (row) in the same tissue (column),
biological activity of different drugs (row) at the same
dose in the same tissue (column).

Foundations

Before presenting the approach, we delineate four es-
sential concepts to provide a conceptual footing for the
selective expression identification method:

1. “Intensity” is a non-negative numerical quantity
that is representative of the phenomenon of inter-
est. For example, intensity could be a drug’s binding
affinity, a compound’s activity in a screen, or a
gene’s “abundance,” such as the gene product’s
copy number (molecules or concentration of
mRNA) or amount of protein expressed, and so
forth. Intensity can be either an experimentally
measured quantity or a quantity that is calculated
from analyses of EST assemblies. [Assemblies are
computational constructs comprising EST compo-
nents from sequenced libraries that have been com-
bined to represent putative genes (Adams et al.
1994; Burks et al. 1994; Myers 1994).]

2. “Source” is the identification of the source of the
“intensity” data. It can be, for example, a cDNA li-
brary or a tissue that provides a set of expression
intensity or abundance values (Anderson et al.
1984; Adams et al. 1994; Anderson and Seilhamer
1997) of the genes being compared. If a source is
manipulated experimentally or edited in any way,
for example, a subtracted or normalized cDNA li-
brary, it should not be included in the analysis lest
its pattern of expressed genes is artificially skewed.

Figure 2 Selective expression example from real data. The re-
sults shown in this example are for an actual assembly, which is
highly homologous to mRNA for a 23-kD highly basic protein.
Intensities (abundances) are plotted vs. sources (libraries) in ar-
bitrary order. The single exceptionally large intensity compared
to the other intensities in the source set was detected by the
algorithm as a strong selective expression.

Figure 1 Selective expression types. Examples of selective ex-
pression stereotypes—up, down, and mixed—are diagrammed.
Intensities vs. sources from a source set are plotted in arbitrary
order. In each diagram, it is presumed that the outstanding in-
tensities are exceptionally large or exceptionally small, when
compared against the other intensities; hence, selective expres-
sion. Selectively expressed intensities are indicated by encircled
symbols.
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This exclusion principle can be relaxed if all the
sources being compared have been manipulated in
the same way.

In general, sources are considered independent
of each other with no intrinsic ordering. However,
this is not always true when the sources can be
ranked according to an external experimentally
controlled variable, e.g., time, age, dose, disease
staging, treatment concentration, etc. In these situ-
ations it is natural, although not required, to order
the sources by ascending control variable values.

3. “Source set” comprises a subset of the sources
among which intensities can be compared. In par-
ticular, selective expression is a marked difference of
intensity in a single source from a baseline level of
expression established by the gene’s intensities in a
particular source set (see Fig. 1 for stereotypical ex-
amples). The selective expression concept does not
require, however, that comparisons be made against
all known sources. Instead, a carefully chosen subset
of the known sources can be considered, especially
as selective expression is a relative, not an absolute,
assessment. Care must be exercised in choosing
source sets so as not to bias the selective expression
prediction. Recognizing this, choice of source set
enables the biological context for expression com-
parisons to be tailored to the biological questions
being asked—organ systems versus one another, tis-
sues versus one another (e.g., endothelium versus
smooth muscle or fibroblast), drug dose responses
versus one another, effects of compounds versus
one another, human versus nonhuman species, and
so forth. It is the careful matching of source set to
the relevant biological question that should mini-
mize artifactual biases being introduced.

All the intensities from the same source are
scaled by the source’s maximum observed intensity.
This is done to make intensities from different
sources within the source set commensurably com-
parable, which is necessary if intensity patterns
across sources are to be identified.

4. “Source confidence” represents the quality, reliabil-
ity, and knowledge of error or the relative trust that
can be attributed to the source. When source con-
fidences are quantitated in some fashion, we call
them “source quality weights.” For example, a larger
weight would be associated with a carefully har-
vested and rapidly preserved tissue (high quality)
than with a poorly captured or slowly preserved one
(low quality). A cDNA library sequenced in depth is
a more reliable source, hence has a larger weight,
than the same library sequenced to a lesser depth.
An edited or normalized cDNA library should be
considered a low confidence source unless all the
sources in the source set have been manipulated
equivalently. We note that any consistent source

quality weighting scheme can be used, but care
must be exercised. If the weights are not faithful to
the reliabilities of the sources, any results depen-
dent upon them may be improperly distorted. As
explained in the Algorithm and Details sections (be-
low), a selective expression assessment can take into
account the weights of the different sources consti-
tuting the source set.

The focus of this work is not on the molecular
details of the processes of gene expression or protein
synthesis. Rather, we are interested in comparing rela-
tive levels of mRNA transcripts or protein products.
Despite the inherent difficulties in measuring precisely
which mRNA species are translated and in what rela-
tive proportions, reliable enough information on ex-
pression levels can be obtained (Adams 1994; Ander-
son and Seilhamer 1997; Herbert et al. 1997). More-
over, the established experimental techniques of cDNA
and EST sequencing, especially when employed on a
large scale, can provide ESTs that can be combined
computationally into assemblies (Adams et al. 1994).
Assemblies can be interpreted as putative expressed
genes, though with widely varying levels of confidence
in the assignments to genes (Burks et al. 1994; Myers
1994). Abundances of expressed genes or assemblies
obtained from sampling are dependent on the depth of
the sampling (Lewins and Joanes 1984; Bunge and Fitz-
patrick 1993) and contribute to inaccuracies in the
computed intensities (Myers 1994). We note that this
sampling depth issue (Audic and Claverie 1997) can be
viewed as a source reliability problem.

Statistical Considerations

In general, the problem of identifying selectively ex-
pressed intensities in multisource data can be viewed as
an outlier identification problem in a different guise.
We choose to adopt the view of outlier employed by
Barnett and Lewis (1978a) and others (Grubbs 1969):
“But what characterizes the ’outlier’ is its impact on the
observer (it appears extreme in some way)” (Barnett and
Lewis 1978b). Identification of an outlying intensity is
not the endpoint of the analysis. Rather, statistical out-
lier identification is one component of a larger analysis
scheme that includes additional (e.g., biological) con-
siderations.

Statistical objectivity can be introduced through
the concept of discordancy: “... an observation will be
termed discordant if it is statistically unreasonable on the
basis of some prescribed probability model.” (Barnett
and Lewis 1978c). This relies on choosing a probability
model for the data so quantitative assessments of out-
liers against the model can be done. We choose to in-
terpret a resulting discordancy significance probability
as a relative strength of confidence in the statistical
identification. An advantage of this interpretation is
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that it makes it possible to consistently order the re-
sults from statistically insignificant, to weak, to strong.
Thus, the rank order of the relative confidences of
identification is preserved. This confidence ordering is
critical because there is little knowledge of the extent
to which the statistical test’s probability model may be
inappropriate.

At the current state of biological understanding,
the actual form of any underlying probability distribu-
tion (if one exists at all) is entirely unknown (Singer
and Berg 1991; Lewin 1994). Moreover, even if the con-
cept of an underlying intra-source intensity distribu-
tion is appropriate, very little can be said about distri-
butions that may be governing inter-source intensity
comparisons. Nonetheless, it could be assumed that
certain distributions can reasonably describe inter-
source intensity comparisons. Because intensities are
nonnegative, well-known distributions on the non-
negative real axis could be chosen, e.g., exponential,
gamma, log normal. However, the discordancy tests
associated with these distributions suffer from the ne-
cessity to estimate parameters (Barnett and Lewis
1978a). Neither the available intensity data nor theo-
retical knowledge support the estimation of distribu-
tion parameters in this inter-source sampling problem.
As expression intensities are bounded, a practical way
exists for the choice of a distribution: Assume a distri-
bution defined on a finite domain, whose shape is
simple, and for which a discordancy test independent
of the distribution’s parameters is available. The Dixon
discordancy test for uniform distributions meets these
criteria (Barnett and Lewis 1978a). Uniform is a reason-
able choice because it confers only a very weak bias in
distribution shape or in central tendency. How we em-
ploy this test for selective expression is described in the
Details subsection of Results.

Outline of the Selective Expression Algorithm

The previous discussions have set the stage for the
identification of selective expression in data compris-
ing triples: intensity, source, and source quality
weight. First, an overview of the algorithm is given.
Then, the mathematical details of the key steps (steps
4–7) are explained in the Details section.

Step 1—Minimum Source Quality Criterion

For an entity’s collection of intensities to be analyzed
from the source set (e.g., a particular gene’s abun-
dances in a source set of libraries), select the intensities
from only those sources whose corresponding quality
(i.e., trust, reliability, or relevance) exceeds a minimum
threshold. Because the method seeks to identify an en-
tity’s exceptional intensity in a source set, it would
make trifling sense to attempt such an identification
when there is not at least a minimal quality met by the
individual sources. Though there is no intrinsic

method for setting a minimum quality threshold, sci-
entific judgments concerning the reliabilities or rel-
evances of the sources and the nature of weighting
schemes can be used to make this determination. Of-
ten, as data are being accumulated, a source’s quality
will change with the data collected, requiring the se-
lective expression algorithm to be reapplied.

Step 2—Minimum Number of Sources Criterion

There must be at least a predetermined minimum
number of intensities, for example, 10, surviving step
1, each of which exceeds appropriate detection limits
(discussed below). If this occurs, continue with further
analysis. Generally, it is not possible, practically or
theoretically, to reliably identify exceptional values in
data sets that have too few elements (Barnett and Lewis
1978a; Hawkins 1980). In practice, we consider 10 to
be a prudent minimum number of intensities, i.e.,
enough to make confident identifications of excep-
tional intensities. However, a number below 10 (but
more than two) can be analyzed for discordancy, if one
is willing to accept lower confidences in the assess-
ments (Barnett and Lewis 1978a). Plots of theoretical
statistical significance of discordancy (such as Figs. 3
and 4, which are discussed in Details) can show the
rate at which statistical significance degrades with de-
creasing source set sample size.

Several points should be made concerning inten-
sity detection limits. If an intensity appears to be ab-
sent from a particular source, then either (1) the inten-
sity is actually not expressed in the source, or (2) the

Figure 3 Dependence of the Dixon theoretical statistical sig-
nificance probabilities on the sample separation ratio at fixed
number of samples taken. The logarithms of the Dixon theoreti-
cal statistical significance probabilities for discordancy in uniform
samples (Barnett and Lewis 1978a) are plotted against the
sample separation ratio t e [0.8, 0.995], (equations 1–6). Each
theoretical curve (right) is at a different fixed number n of
samples, n = [10, 20, ... , 100], respectively. t near 1 reflects a
largest sample being widely separated from the next largest
sample when compared to the separation of the largest and
smallest samples (see Fig. 6).
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intensity is indeed expressed but is smaller than the
minimum intensity that can be measured, the detec-
tion limit. In the second case, because the intensity is
not truly absent but instead occurs below the detection
limit, it is recorded as absent. However, trusting an
absent intensity amounts to accepting point 1 as the
explanation over point 2. To decide quantitatively to
trust an intensity as being absent from a source, that is,
how to trust “absence of evidence as evidence of ab-
sence,” is outside the algorithm being discussed even
though this issue is intrinsically linked to the issue of
source quality. The general problem of estimating con-
fidences of unobserved events has a long history in the
statistical literature, yet remains unwieldy (Robbins
1968; Bunge and Fitzpatrick 1993). Adopting a philoso-
phy that maintains that absent intensities can be
trusted as genuine absence seems prudent only for very
high quality sources with very low detection limits.
This is the philosophy we adopt in practice, and all
absent or subdetection limit intensities are therefore
ignored. This has the effect of being overly conserva-
tive in the direction of generating too many false nega-
tives. However, the method does not require adopting
this philosophy.

Step 3—Discordancy Statistical Test

The quantitative identification of exceptional intensi-
ties occurs in this step. Apply a statistical test of dis-
cordancy (Barnett and Lewis 1978a), which may em-
ploy the source qualities from step 2, as a means to
identify an exceptional intensity. Use the resulting sta-

tistical significance to score how exceptional the puta-
tive discordant intensity is. The mathematical details
of the discordancy test and how the source quality
weights are incorporated are explained in the Details
section. We note that the method is applicable to ex-
ceptionally small intensities (down-selective expres-
sion) as well as exceptionally large intensities. The sub-
sequent discussions focus on the exceptionally large
intensity case (up-selective expression) to frame ideas.
The down case will be discussed in Details.

Step 4—Adjustment Due to Intensity Baseline

Apart from the putative discordant intensity, the other
intensities among those being compared can be char-
acterized as being clustered about a baseline level (see
Fig. 5, which is discussed further in Details, for illus-
trations of the effects of different baseline positions).
Adjust the step 3 statistical test of discordancy accord-
ing to the difference between the baseline position and
the maximum allowed intensity. The adjustment to
the statistical significance is to increasingly downgrade
it as the baseline becomes closer to the maximum al-
lowed intensity. The motivation and reasoning behind
the baseline-dependent adjustment is based on the dy-
namic range of the values being increasingly com-

Figure 4 Dependence of Dixon theoretical statistical signifi-
cance probabilities on the number of samples taken at fixed sepa-
ration ratios. The logarithms of the Dixon test theoretical statis-
tical significance probabilities (equation 6) are plotted against the
number of points n in a sample, [10, 11, ... , 100]. Each theo-
retical line (right) is at a different fixed sample separation ratio
t = [0.5, 0.8, 0.9, 0.95, 0.99], respectively. From the family of
lines, the rapid decrease in statistical significance probability with
increasing sample size n is apparent. This effect is stronger the
closer t is to unity.

Figure 5 Discordancy statistical significance adjusted for base-
line position. Synthetic intensity data vs. source for several differ-
ent baselines, [0.25, 0.5, 0.75, and 0.9], are plotted. In each case,
the number of samples (n = 22), the maximum intensity (xn = 1),
and the t rad i t iona l D ixon s ign i f i cance probabi l i ty
[log10(sp) = 120] are kept fixed. Constant Dixon statistical sig-
nificance, regardless of baseline position, is achieved deliberately
in these synthetic data by adjusting xn 11 according to equations
1–6. Hence, the gap (xn 1 xn 1 1) necessarily decreases as the
baseline increases; yet, the traditional Dixon statistical signifi-
cance remains unchanged. The closer the baseline is to the maxi-
mum allowed intensity (i.e., 1), the less statistical confidence we
can have in an outlier assessment. As can be seen in each panel,
the baseline adjusted statistical significance decreases as the base-
line increases toward the allowed maximum. The erosion of sta-
tistical confidence from the traditional Dixon significance as base-
lines are continuously increased toward the allowed maximum is
plotted in Fig. 7 (see also Table 1).
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pressed, hence less mutually distinguishable, the closer
the baseline is to the allowed upper limit. Because the
discrimination of values is necessarily eroded as the
effective dynamic range is compressed, the confidence
in outlier detection should be eroded correspondingly.
This is explained further with an illustrative example
in Details.

Step 5—Minimum Intensity Gap Criterion

A fundamental ingredient in discordancy assessment is
the separation between the largest and the next-to-
largest intensities, which we call the gap (see Fig. 6 and
Details step 3). If the gap is below or near the resolving
power of the technique providing the intensity data,
there is a necessarily negligible confidence in the as-
sessment of discordancy, regardless of the discordancy
statistical significance. This is because a gap commen-
surable with the intensity measurement technique’s re-
solving power means that the difference between the
values constituting the gap is indistinguishable from
measurement noise. Therefore, a minimum gap crite-
rion should be applied in conjunction with the discor-
dancy statistical test from step 4. Whereas there is no
objective formula for establishing the minimum gap
criterion, scientific judgment can be used to set the
minimum gap threshold that takes into account the
accuracy and resolving power of the technique that
provides the intensity data.

Step 6—Overall Confidence in Selective Expression Determination

The gap from step 5 should be combined with the base-
line adjusted statistical significance of discordancy
from step 4 to provide an overall confidence of selec-
tive expression. This is accomplished by applying a de-
cision function of both the baseline adjusted statistical
significance and the gap. The decision function ranks
the assessment into low (weak), medium (moderate),
or high (strong) confidence of selective expression.
However, if either a minimum baseline adjusted dis-
cordancy significance was not met or a minimum gap

was not exceeded, then selective expression is not con-
sidered as being exhibited. How such a decision func-
tion is constructed and employed is explained in De-
tails.

We note that there is no intrinsic method to de-
termine the mathematical forms of decision functions.
Even if there were such, the situation would still re-
main that there is no intrinsic objective technique to
determine what separates the overall confidences,
weak from strong. Nonetheless, there is practical utility
in assigning confidences, however imperfectly, to sepa-
rate weak from strong predictions of selective expres-
sion. An interpretation of the strength of a result is
often used for setting priorities for further analyses of
the data or new experiments.

RESULTS
Here we present the mathematical details of the algo-
rithms’s key steps (3, 4, and 6), as well as examples of
the algorithm applied to synthetic and real data.

Details of the Key Steps of the Algorithm

Step 3—The Discordancy Test for Identifying Exceptional Intensities

As discussed in Statistical Considerations (above), we
choose a Dixon test (Barnett and Lewis 1978a) for the
statistical test of discordancy among the sources being
compared within the source set. Further comments are
warranted concerning the Dixon test. The first graph
in Figure 1 diagrammatically shows a source set of in-
tensities having a single exceptionally large intensity.
Such data can be sorted in ascending order and replot-
ted as in Figure 6. When values are sorted, the relative
separation between the largest value and the remain-
ing values becomes clearer. [We note that it is common
practice for various analysis purposes such as assessing
extremes, determining likelihoods of exceptional val-
ues occurring, distinguishing populations, etc., to or-
der the elements of data sets sequentially when the
data are intrinsically unordered or nonsequentially re-
lated (Gumbel 1958; Barnett and Lewis 1978a; Sachs
1982; Poschel et al. 1995).] The size of the gap between
the largest and next largest value divided by the dis-
tance between the largest and smallest values (see Fig.
6) is an obvious measure of the separation of the largest
value from all the other values. This separation ratio
(equation 4 below) is the core of the statistic employed
in the Dixon test for a single largest discordant value
among uniform samples (Barnett and Lewis 1978a). It
captures the logical underpinnings of the test.

We consider as well the more general Dixon test
for the mth largest discordant value in a set of n uni-
form samples (1 ø m < n). However, for application to
selective expression, the single largest value test (m = 1)
is sufficient. Hence, the mathematical details for only

Figure 6 Separation of a largest value from the others and the
basic measures for the Dixon test. This diagram displays the sepa-
ration of a largest value from the others when the values being
compared are sorted from smallest to largest, xi 1 1 ø xi. The
separation ratio t, is the distance between the largest and the
next-to-largest values (gap = xn 1 xn 1 1) divided by the distance
between the largest and smallest values (xn 1 x1). The ratio t is
fundamental in the Dixon test for discordancy (Barnett and Lewis
1978a), which assesses statistically how exceptionally large the
largest value is compared to the others. See equations 1–6 in
Algorithm Details. In the examples, fmax = 1.
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the single largest value form of the Dixon test are pre-
sented. In the case of the more general mth largest dis-
cordant value Dixon test, the appropriate changes in
the formulas for the degrees of freedom and the sepa-
ration ratio-dependent statistic (Barnett and Lewis
1978a) can be employed. The more general case is ap-
plicable to the problem of simultaneously identifying
more than one selectively expressed intensity in a col-
lection of intensities.

Step 3—Mathematical Details

For a selected entity (e.g., gene), let the vector f8 com-
prise the intensities from the n different sources of the
source set which are to be analyzed after step 2. Let q
be the vector comprising the corresponding source
quality weights from step 2. The elements of f8 and q
are real numbers ù0. The sequential order of the vec-
tors’ elements is arbitrary as the order of the sources in
the source set can be arbitrary. However, once an order
of sources is chosen, the elements of f8 and of q must
appear in the same order, as the respective correspon-
dences between qualities and sources must be main-
tained. Define vectors f and fdown from f8 as follows:

fmax = maximum possible ~$f*%! (1a)

f = f*/fmax (1b)

fdown = 1 − f*/fmax (1c)

{f8} represents all the intensities that could occur in the
source set. Thus, fmax is the maximum possible inten-
sity that can be observed in principle over the source
set. This can be based on either experimental consid-
erations (e.g., maximum signal possible from the in-
tensity measuring instrument) or on how the intensity
data are chosen to be normalized. When, for example,
the intensities from a source represent gene-expression
abundances as a fraction of total genes that could be
expressed in a source, the maximum possible intensity
is 1. Typically, we take fmax = 1, and this is used in the
examples. However, it may not be possible to know the
maximum in principle, in which case the maximum
observed in the source set will do for fmax.

We note that essentially the same method that is
used for the identification of exceptionally large inten-
sities (i.e., up-selective expression) can be employed
with minor modifications for the identification of ex-
ceptionally small intensities (i.e., down-selective ex-
pression). For down-selective expression, replace the
vector f (equation 1b) throughout the following dis-
cussion by the vector fdown (equation 1c). Though the
mathematical form of the algorithm is unchanged by
using fdown in place of f, identifying exceptionally
small values is fundamentally, and practically, differ-
ent from identifying exceptionally large values. This is
because there can be intensities in f that are so minute
(though still above a very small detection limit) as to

be measurements indistinguishable from noise, mak-
ing them useless as reliable values in a discordancy test.
One way to remedy this difficulty is to restrict f to
comprise only those values that are considerably larger
than the detection limit. However, once equation 1b is
used, the same baseline adjustment technique used for
f (step 4) can be applied to fdown.

Define x as the vector that comprises the n ele-
ments of f sorted in ascending order, that is, xi 1 1 ø xi.
Next, compute the Dixon critical statistic Tcritical from
the elements of x (equations 3–5, below). Then use the
Dixon test (equation 2, below) to compute the discor-
dancy significance probability of the largest intensity
among these intensities being compared.

According to the Dixon test for a single largest
value in n independent samples of a uniform random
variable (Barnett and Lewis 1978a), the significance
probability (sp) that the largest sample is discordant,
that is, exceptionally large, is given by

sp = P @t ù Tcritical# = 1 − *0

Tcritical
F2,2n−2~z!dz (2)

where P is probability; t represents any possible value
of (n 1 2)t/(1 1 t) for fixed n, F is the standard statis-
tical F distribution with 2 degrees of freedom and 2n 1

2 (Sachs 1982), and where

gap = xn − xn − 1, (3)

t = gap/~xn − x1!, ~the separation ratio! (4)

Tcritical = ~n − 2!t/~1 − t! (5)

The interpretation of significance probability, sp, is the
natural one: The smaller the significance probability,
the more exceptionally large is the largest value, xn,
when compared against all the other values of x. The
significance probability given by equation 2 can be re-
duced algebraically (Barnett and Lewis 1978a) to the
very simple form:

log10~sp! = ~n − 2! log10 ~1 − t! (6)

Equation 6 conveniently quantitates the theoreti-
cal statistical significance that the largest sample is ex-
ceptionally large. Evaluations of equation 6 across
sample separation ratios t at various fixed sample sizes
n are shown in Figure 3. The significance probability
decreases markedly as the separation ratio t approaches
1. Moreover, this effect is stronger, the larger the
sample size n. For a fixed sample separation ratio t, the
logarithm of the significance probability decreases lin-
early with the number of samples n as t < 1, as shown
in Figure 4.

Note that the conventional Dixon definition of
the separation ratio t effectively normalizes the sepa-
ration between the largest and next-to-largest intensi-
ties by the range spanned by all the intensities being
compared. This is what confers an apparent dynamic
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range indifference to the Dixon test. However, we re-
iterate that the effective dynamic range of the analyzed
intensities with respect to a maximum allowed inten-
sity is important to the algorithm. The mathematical
details of the adjustment we make to the Dixon test to
remedy the test’s otherwise indifference to dynamic
range is discussed in the Step 4 Details below. It can be
shown numerically and analytically that

D log~sp! ≈
 log~sp!

t
Dt

≈
 log~sp!

t
D @~xn − xn−1!/~xn − x1!# (7)

Thus, D log(sp) is small for changes in gap or in any of
x1, xn11, or xn. This obviates replacing any of x1, xn11,
or xn by respective source quality weighted estimates in
the computation of t in equation 4 above. However,
roles for q persist in steps 4 and 6.

Step 4—Details of the Baseline Adjustment

To amplify what was discussed in step 4 of the Algo-
rithm Outline section, the position of the baseline,
that is, a level that characterizes the nonextreme values
of a collection of intensities, should affect the confi-
dence of the selective expression determination: The
closer the baseline is to the maximum intensity that
can occur, the less confident we should be in a discor-
dancy detection. If the dynamic range is too com-
pressed, then the measurements would all become es-
sentially indistinguishable because the accuracy of real
measurements is always limited. Hence, discordancy
detection would be meaningless in such a situation,
regardless of how discordancy is computed, because
separation between the values involved would be in-
distinguishable from numerical or measurement noise.
However, the Dixon test is indifferent to the dynamic
range of the data, as noted in step 3. [Indifference to
dynamic range is not idiosyncratic to Dixon tests, but
is inherent generally to any excess/spread, range/
spread, or deviation/spread discordancy statistical test
(Barnett and Lewis 1978a]. So, even if the dynamic
range is compressed, as long as the difference between
the largest and the next-to-largest values is proportion-
ally compressed, the Dixon test outlier significance is
unchanged. Thus, we must modify the traditional
Dixon test to correct for erosion in confidence in dis-
cordancy detection as a compression in dynamic range
occurs.

To do this, we adjust the Dixon separation ratio t

by a _baseline compression factor l.9 l ∈ (0, 1) is de-
signed to attenuate the traditional Dixon t (equation
4) so that the adjusted t is diminished:

tadjusted = lt (8)

We choose l to be a sigmoidal function of baseline
with the parameters of the sigmoid chosen so that l

remains approximately unity until the baseline en-
croaches substantially on the maximum allowed inten-
sity:

l = F1 + Sx̂baseline

c DbG−1

(9)

where c is the value of x̂baseline for which l = 0.5, that
is, the sigmoid’s point of inflection, and b > 0 controls
the steepness of l decay with increasing x̂baseline. In
practice, we typically use c = 0.8 and b = 10 in equation
9. x̂baseline is a source quality weighted estimator of x
baseline that excludes the putative extreme value xn,
for example, a weighted average:

x̂baseline = (
i=1

k

qixiY(
i=1

k

qi (10)

In equation 10, k = n 1 1 insulates the baseline es-
timate from the possible undue influence of a putative
extreme value xn. k = n 1 2 if the baseline estimate is
to be independent as well of the gap between the larg-
est and next-to-largest intensity. Though we prefer
quality-weighted baseline estimates, one can choose to
ignore quality differences in x̂baseline, and therefore,
substitute unity for the qi. In which case, equation 10
becomes a simple average.

For this t adjustment, any function can be chosen
that has the effect of substantially diminishing outlier
significance when baselines encroach upon the maxi-
mum allowed intensity. We find sigmoids to be espe-
cially convenient. Thus, the traditional Dixon outlier
significance probability (equation 6) is adjusted for the
baseline by the simple formula:

log~spadjusted! = ~n − 2! log~1 − tadjusted! (11)

This is an approximation given equations 6 and 8.
To illustrate, consider the examples plotted in Fig-

ure 5 and analyzed in Table 1. Each row represents a
different, yet related, set of intensities. In each ex-
ample, the source set size is held constant at n = 22, and
the maximum intensity xn is held fixed at 1. Source-
quality weights are unity for simplicity. For each ex-
ample (row), the minimum intensity x1 is set to the
value in the first column. For illustrative simplicity, x1

is also taken to be the baseline estimate x̂baseline be-
cause the nonextreme values are so narrowly clustered
near x1 in these examples. Quality weights are not
needed in these simplified baseline estimates.

Each example set of synthetic intensity values cor-
responding to x̂baseline (i.e., x1) values of 0.25, 0.5, 0.75,
and 0.9, respectively are plotted in Figure 5. xn11 (col-
umn 2) is computed by using equations 4, 3, and 6 to
ensure that the traditional Dixon statistical signifi-
cance probability remains fixed at log10(sp) = 120 even
through x1 is different in each example. The gap = xn 1

xn11 is in column 3, and the baseline adjustment fac-
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tor computed using equation 9 with b = 10 and c = 0.8
is in column 4. The loss of statistical significance, de-
noted Dlog10(sp), is the difference between the baseline
adjusted statistical significance and the traditional
Dixon significance:

D log10~sp! = log10~spadjusted! − log10~sp! (12)

The effects of the baseline adjustment factor l on
the traditional Dixon significances are shown in col-
umns 5–7. In Figure 7 the Dlog10(sp) is plotted as a
continuous function of baseline encroaching toward
the maximum allowed intensity. As desired for base-
line adjustments of significance, the erosion in statis-
tical confidence reflected by the loss of significance
probability Dlog10(sp) becomes substantial when the
baseline encroaches upon the maximum allowed in-
tensity (i.e., 1).

An important general principle is illustrated by
these examples: Though the traditional Dixon statisti-
cal significance probability can remain extremely
strong (e.g., 10120) even as the dynamic range of the
data is compressed ever smaller (represented here by
the baseline coming ever closer to an allowed maxi-
mum), a baseline compression adjusted significance
probability can nonetheless reflect the erosions of sta-
tistical significance that should occur in data whose
dynamic range is substantially compressed.

Whereas there is no intrinsic method to determine
how much outlier statistical significance probability
ought to be attenuated, scientific judgment concern-
ing data accuracy, the resolving power of intensity

measurement techniques, and the dynamic range of
intensity data can be used to design significance ad-
justment functions.

Step 6—Decision Function

Design a decision function d, 0 ø d ø 1, as discussed
qualitatively in step 6 of the Algorithm section. d near
0 is interpreted as very weak overall confidence,
whereas d near 1 is very strong overall confidence in
selective expression detection.

To construct d, we need to introduce normalized,
transformed versions of the gap (equation 3) and sig-
nificance probability (equation 11) that are contained
in [0,1]. Those gaps which meet a minimum gap
threshold (gthresh) are rescaled linearly between a mini-
mum gap threshold gthresh and the maximum possible
gap of 1 (equations 1b and 3):

g = H0, if gap ø gthresh
~gap − gthresh!/~1 − gthresh!, if gap > gthresh

(13)

Analogously, linearly transform the baseline compres-
sion adjusted significance log10(spadjusted) (equation
11) between the weakest-to-strongest statistical signifi-
cances that one is willing to accept, that is, between
log10(sp)thresh and log10(sp)`, respectively. The lower
bound log10(sp)` is the statistical significance beyond
which stronger significance is essentially inconsequen-
tial. Denoting s, (0 ø s ø 1), as this transformation
gives:

s = 5
0, if log10~spadjusted! ù log10~sp!thresh

1, if log10~spadjusted! ø log10~sp!`

log10~spadjusted! − log10~sp!thresh

log10~sp!` − log10~sp!thresh
, if log10~sp!thresh

< log10~spadjusted! < log10~sp!`

The choices of gap and significance probability
thresholds are up to the user. To be conservative, we
often choose log10(sp)thresh = 15 instead of the more
conventional 13. For log10(sp)` we have found that
120 is a reasonable choice allowing the significance
probability a dynamic range of 1015.

d is designed to capture the biological notions of
confidence, which are summarized in Table 2. Either a
log10(spadjusted) or a gap weaker than their respective
thresholds (equations 13 and 14) is not selective expres-
sion, and d is immediately 0 in such cases. In Table 1,
d is moderate even when s is strong if, in conjunction,
g is weak. This reflects an erosion of confidence that
should occur when a gap is near the intensity measure-
ment’s resolving power, as discussed in the Step 5 De-
tails. Also, note that d is strong when g is strong even if
s is weak. A strong gap confers strong confidence in
this case because even a weak s is still a significance
probability that is stronger than a rather conservative

Figure 7 Erosion of confidence increases as the baseline posi-
tion increases toward the maximum. The number of samples
(n = 22), the maximum intensity (xn = 1), and the traditional
Dixon significance probability [log10(sp) = 120) are kept fixed
throughout this example as in Fig. 5. The resulting erosion of
confidence, i.e., the loss of statistical significance Dlog10(sp) from
the traditional Dixon value, is plotted continuously as the base-
line increases toward the allowed maximum intensity (see also
Table 1).
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threshold (e.g., log10(sp)thresh = 15). Thus, there is no
a priori requirement that d be symmetrical with respect
to s and g. We prefer in practice an asymmetry that
gives more importance to large gap values as long as
log10(spadjusted) is stronger than a conservative thresh-
old.

A decision function that incorporates these prin-
ciples is

d~g,s! = 1 − F~1 − s!a ~1 − g!b

Sd~1 − g! + ~1 − d! ~1 − s!

~1 − g! + ~1 − s! DgGf

(15)

where a > 0, b > 0, g > 0, and d (0 < d < 1) are indepen-
d e n t p a r a m e t e r s c h o s e n e m p i r i c a l l y , a n d
f = (a + b + g)11. Observe that the term in brackets
amounts to a numerical version of a logical and of
three terms, the third term of which amounts to a nu-
merical logical or of two terms blended in a proportion
controlled by d. The function d is contained in [0,1].

Typically, we choose a = b = g = 1.5 and d = 0.3.
Figure 8 shows this decision function d plotted as a
series of constant d contours in (g,s) space. Calibrating

ranges of d contours against weak to strong archetypes
of the user’s choosing is up to the user. Though there is
no intrinsic method for setting break points between
weak, moderate, and strong confidences, in practice we
take these to be 1/3 and 2/3, respectively.

It is noted that the decision function is somewhat
analogous in character to document retrieval similarity
functions as defined by Salton for information retrieval
from databases (Salton 1989). These similarity func-
tions are highly nonlinear functions of weighted com-
binations of Boolean-like query vectors and document
information content feature vectors. As in the decision
function, each feature is a scalar between 0 and 1, and
the function returns a scalar between 0 and 1. Retrieval
similarity functions provide a means by which re-

Table 1. Effect of Baseline Position on the Adjusted Dixon Statistical Significance Probability

Baseline xn!1
a gapb lc tadjusted = ltd log10(spadjusted)e Dlog10(sp)

0.25 0.32 0.68 1.00 0.90 120.00 0.00
0.50 0.55 0.45 0.99 0.89 119.32 0.68
0.75 0.78 0.22 0.66 0.59 17.75 12.25
0.90 0.91 0.09 0.24 0.21 12.07 17.93

See Step 4 of the Details section for a discussion of these examples and explanations of the columns and equations employed. See Fig.
5 for the accompanying plots of synthetic intensities vs. source. See Fig. 7 for a continuous graph of Dlog10 (sp) vs. baseline.
aEquation 3.
bEquation 3.
cEquation 9.
dEquations 4, 8, and 9.
eEquation 11.
fEquation 8.

Table 2. Selective Expression Confidences According
to a Decision Function

Scaled gap ga

weak
(g ≈ 0)

strong
(g ≈ 1)

Scaled signal
probability, sb

weak
(s ≈ 0)

weak
(d ≈ 0)

strong
(d ≈ 1)

strong
(s ≈1)

moderate
(d ≈1)

strong
(d ≈1)

See Step 6 of the Details section for a discussion; equation 15
is a representative function for d.
aEquation 13.
bEquation 14.

Figure 8 Decision function for selective expression of overall
confidence. The decision function [d(g,s), equation 15] is plotted
as constant d contours in the space of (g,s) coordinates, each ù0
and ø1. (g,s) Respective linear transformations of gap and base-
line adjusted log10(sp) between the weak thresholds and strong
limits (equations 13 and 14). Overall confidence of a selective
expression is assessed by the value of the decision function, weak
being associated with d near 0 and strong associated with d near
1. Typically, we assign overall confidences as weak when
0 ø d < 0.33, moderate when 0.33 ø d < 0.66, and strong when
0.66 ø d ø1.
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trieved documents can be ranked in order of similarity
to a given multicomponent query. Analogously, the
decision function provides a means by which intensity
patterns can be ranked in order of confidence in their
being selective expression.

Application of the Selective Expression Algorithm

Selective expression detection results will be illustrated
through a set of examples. The examples are shown in
Figure 9, with source qualities and corresponding in-
tensities in Table 3, and computed numerical results
summarized in Table 4. Though these intensity and
source quality data are synthetic, they are representa-
tive of real examples derived from a large database of
gene abundances and library qualities.

To convey the effects of various components of
the algorithm, each example of Figure 9 and Table 3 is
constructed deliberately to have very similar qualita-
tive patterns of intensity versus source. Yet, the ex-
amples are different in overall confidence of selective
expression. Each example has the same source set (size
n = 15) and, moreover, exactly the same separation ra-
tio (t = 0.67) before any adjustments are made for base-
lines. Hence, these examples have by design exactly
the same traditional Dixon statistical significance
probability before baseline compression adjustment.

Table 4 shows the effects of the algorithm’s com-
ponents. For example, the effects of adjusting the sta-

tistical significance probability for baseline can be seen
by comparing each example after adjustment for base-
line (case b) against its respective case unadjusted for
baseline (case a). Example 3 is the only case in which
statistical significance probability is changed nonneg-
ligibly by baseline adjustment. This can be appreciated
by observing in case 3b the effects of baseline on l,
hence on t, when compared against the reference case
1a.

Examples 2 and 3, however, have markedly
smaller gaps than does example 1. These diminutive
gaps are responsible for the respective decision func-
tion values being much smaller even though the dis-
cordancy statistical significance probabilities (with or
without baseline adjustments) are not changed much.
The exception is case 3a, which has an ample loss of
significance probability due to baseline adjustment.
Though the 3b gap is the same as 3a, 3b’s decision
function is zero because baseline adjustment of its sig-
nificance probability has resulted in its log10(spadjusted)
not meeting the minimum statistical significance cri-
terion of log10(sp)thresh = 15.

Taken together, these examples illustrate how
qualitatively similar intensity versus source patterns
can have different overall confidences of selective ex-

Figure 9 Examples of synthetic, yet realistic, intensity (abun-
dances) vs. source (library) data for genes. (A) Example 2 (d) and
example 1 (s) are compared; (B) example 3 (d) vs. example 1
(s); (C) source qualities corresponding to the intensities. In A and
B, the putative selective expression occurs in the third source. The
numerical values of the data along with the computed baseline
estimate x̂baseline and separation ratios t are presented in Table 3.
The accompanying selective expression algorithm summarized
calculations are in Table 4.

Table 3. Examples: Synthetic, yet Realistic, Intensity
(Abundance) and Source (Library) Quality Data
for Genes (Assemblies)

Source Quality

Example

1 2 3

1 0.26 0.19 0.35 0.64
2 0.27 0.29 0.39 0.68
3 0.22 0.92 0.71 1.00
4 0.20 0.24 0.37 0.66
5 0.26 0.37 0.43 0.72
6 0.65 0.31 0.40 0.69
7 0.29 0.21 0.35 0.64
8 0.26 0.10 0.30 0.59
9 0.26 0.30 0.40 0.69

10 0.26 0.23 0.37 0.65
11 0.21 0.35 0.43 0.72
12 0.28 0.22 0.36 0.65
13 0.26 0.21 0.36 0.64
14 0.25 0.26 0.38 0.67
15 0.22 0.17 0.34 0.63
x̂baselinea 0.25 0.38 0.66
gapb 0.55 0.28 0.28
tc 0.67 0.68 0.68
tadjusted

d 0.67 0.68 0.58

See Fig. 9 for the corresponding intensity vs. source plots. We
set fmax = 1 in these examples. See Results for the baseline
estimate equation. See Table 4 for the accompanying algo-
rithmic calculations summarized.
aEquation 10 with k = n 1 1.
bEquation 3.
cEquation 4.
dEquation 8.
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pression determination. The decision function values
depend on the baseline of the data and the size of the
gap, even when the expression patterns have essen-
tially identical unadjusted discordancy significance
probabilities. By analyzing these examples, it can be
seen how the qualitatively stronger overall confidence
of selective expression of example 1 as compared to
examples 2 and 3 (which is informally conveyed in Fig.
9) is quantitated through the decision function.

Also, to convey the appearances of stereotypical
selective expression patterns in real gene expression
data, intensity versus source plots of some actual ex-
amples of algorithmically detected extremely strong,
strong, and weak overall confidence selective gene ex-
pression are shown in Figure 10. Calculations corre-
sponding to these examples are shown in Table 5. In
these particular examples, baseline adjustment has no
effect because the baselines are well below 0.5 of the
maximum intensity. Hence, the discordancy statistical
significance probabilities are the same as the unad-
justed ones.

From Table 5, the t are decreasing from example A
to C, with the larger decrease being from example B to
C. That the statistical significance probabilities de-
crease so dramatically with this series of t values is
because of the considerable size of the n involved. The
marked difference in log10(sp) between A and B is
caused much more by the difference in n than in t.
However, the substantial difference in log10(sp) be-
tween B and C is caused by the difference in t more
than the difference in n. These differences are not sur-
prising given the nonlinear dependence of log10(sp) on

t in equation 6 (visualized in Figs. 3 and 4). Clearly, A
is an extremely strong overall confidence selective ex-
pression determination, as can be recognized visually
in Figure 10 and quantitatively in Table 5. That the d
for C is half that for B is due to both the gap and the
log10(sp) in combination being weaker in C than B.

Figure 10 Stereotypical examples of selective expression in real
abundance data as detected by the algorithm. Intensities (abun-
dance) vs. source (library) for three assemblies from a real data-
base of sources and assembly abundances are plotted. (A) An
extremely strong overall confidence of selective expression (de-
cision function d = 1.0); (B) strong overall confidence of selective
expression (d = 0.75); (C) weak overall confidence of selective
expression (d = 0.31). Calculations from the algorithm are sum-
marized in Table 5.

Table 4. Examples: The Selective Expression Algorithm Applied to Synthetic, yet Realistic, Data

Example
Baseline
adjusted la gapb tc log10(sp)d d e Comments

1a no 0.55 0.67 16.26 0.33 reference example
1b yes 1.00 0.55 0.67 16.27 0.33 same as 1a; l has no effectf

2a no 0.28 0.68 16.26 0.24 d different from 1a due to
gap only

2b yes 0.99 0.28 0.68 16.28 0.24 d different from 1a due to
gap; l has no effectf

3a no 0.28 0.68 16.26 0.24 d different from 1a due to
gap only

3b yes 0.87 0.28 0.58 14.90 0.00 d different from 1a due to
l1adjusted log10 (sp) > 15,
hence d = 0g

The example identification (1, 2, or 3) corresponds to Fig. 9; whether a baseline compression adjustment was omitted (a) or used (b)
in the discordancy computation (equation 6 or 11). The intensities and source quality weights are from Table 3.
aEquation 9.
bEquation 3.
cEquation 4.
dEquation 6 or 11.
eEquation 15. Equation 9 sigmoidal parameters are b = 10 and c = 0.8. The parameter values in the decision function d (equations
13–15) are a = b = g = 1.5, d = 0.3, gthresh = 0.25, log10(sp)thresh = 15, and log10(sp)` = 120.
fl has no effect, as the baseline (i.e., ∼0.3, Table 3) is distant from the maximum allowed intensity (i.e., 1).
gl has non-negligible effect, as the baseline is near (i.e., 0.67, Table 3) the maximum intensity.
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To understand the data it can be useful to dissect
the various contributions to the decision function as
done above. However, the real
power of the decision function is
its utility in qualitatively ranking
selective expression patterns in
large-scale data in a way that is not
only easily automated, but objec-
tive and consistent.

To convey the application of
the algorithm to large-scale data,
results from a large database of as-
semblies are depicted in Figure 11
(see equations 13–15). Each assem-
bly that is identified by the algo-
rithm as being selectively expressed
is plotted (bubble symbol) accord-
ing to its transformed gap (equa-
tion 13) and statistical significance
(equation 14) values. Note the rela-
tively small number of high confi-
dence selectively expressed assem-
blies (d > 0.66). The decision func-
tion values provide an objective
means by which assemblies can be
rank ordered by their selective ex-
pression confidence. This is useful
in setting priorities for further
analysis or experimentation. More-
over, by focusing attention on as-
semblies with the strongest selec-
tive expression confidences, fol-
low-up efforts may be more
efficiently concentrated on a rela-
tively small subset.

DISCUSSION
We have shown that selective ex-
pression can be identified robustly
by the presented algorithm. The al-
gorithm uniquely combines a sta-

tistical test of discordancy, source reliability weighted
adjustments for baseline levels of the intensities, and

Figure 11 Selective expression in large-scale data. Results of the algorithm applied to a
large database of assembly expression data are indicated. Each assembly is plotted as a point
according to its gap (equation 3) and statistical significance log (spadjusted) (equation 11).
Those assemblies identified by the algorithm as being selectively expressed are plotted using
bubble symbols. When these assemblies’ gap and log(spadjusted) are transformed using
equations 13 and 14, respectively, the resulting (g,s) fall within the (g,s)-unit square; hence,
these assemblies are selectively expressed. The area enclosed by the rectangular region
bounded by gthresh ø gap ø 1, gthresh = 0.3, on the abscissa and by 120 ø
log10(spadjusted) ø 15 on the ordinate is colored using a conventional spectrum. The col-
oring is according to the confidence of selective expression, i.e., the strength of the decision
function d(g,s) (equation 15) corresponding to [gap, log(sp)] within the rectangle. The
confidence (d) color coding is blue for low, yellow–orange for moderate, and red for high.
The red region directs the eye to the assemblies with the strongest confidence of selective
expression. However, those assemblies identified by the algorithm as being not selectively
expressed, i.e., not meeting the minimum gap criterion or not meeting the minimum
statistical significance criterion [log10(sp)thresh = 15], are plotted as solid dots in
[gap,log(sp)] coordinates. These gap and log(spadjusted), when transformed by equations 13
and 14, fall outside the (g,s)-unit square, hence, to the left or above the colored rectangular
region in gap,log(sp)]-space. The weakest possible statistical significance as a function of gap
is the curve plotted in magenta. This upper-bound curve represents log(sp) (equation 6)
when the number of intensities equals the minimum number of sources criterion, namely
n = 10, where xn 1 x1 is as large as possible, i.e., 1; hence, t = gap (equation 4).

Table 5. Stereotypical Examples of Selective Expression in Real Data as Detected by the Algorithm

Example No. x̂baseline
a lb gapc td log10(spadjusted)e d f Overall confidence in S.E.

A 87 0.03 1.0 0.78 0.78 156.0 1.0 very strong
B 41 0.10 1.0 0.66 0.67 118.8 0.7 strong
C 47 0.20 1.0 0.34 0.34 18.5 0.3 weak

See Fig. 10 for corresponding intensity vs. source plots. See Results for discussion. The equations’ parameter values are the same as
those used in Table 4.
aEquation 10 with k = n 1 1.
bEquation 9.
cEquation 3.
dEquation 8.
eEquation 11.
fEquation 15.
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adjustments for the separation of the largest from the
next-to-largest intensity (gap) to give an overall assess-
ment of confidence in selective expression detection.
The algorithm achieves this by combining the various
ingredients—statistical discordancy, baseline compres-
sion adjustment, and gap—into a decision function
that takes into account all these in a consistent and
reliable manner. We have also argued that any one or
two of these ingredients alone are insufficient for reli-
able selective expression determination. It is the deci-
sion function and its ability to assess the confidence of
the prediction that is the true strength of the algo-
rithm. Incorporating biological knowledge into the de-
cision function strengthens the overall algorithm. It
minimizes the risk of statistical artifacts causing a false-
positive determination.

The algorithm is generally applicable to expression
data whether derived from DNA, RNA, or proteomics.
Though the algorithm was developed originally for
analyses of gene expression, it is in fact rather general,
being applicable to many kinds of intensity data asso-
ciated with sources and, preferably, for which reliabili-
ties of the sources can be assessed. Moreover, the algo-
rithm is indifferent as to whether the intensities are
experimental or computationally derived. The algo-
rithm is well-suited to be used with large databases and
large numbers of sources. The algorithm’s work is lin-
ear in both the number of database entries and in the
number of sources considered.

The algorithm has been successfully implemented
to analyze large databases of gene abundances rou-
tinely. Computationally identified strong selective ex-
pression is a relatively rare phenomenon among the
gene abundance databases being analyzed. Yet, it is
frequent enough to suggest plentiful opportunities for
additional analysis. A number of biologically and phar-
macologically interesting selectively expressed genes
have been identified for further confirmatory experi-
mentation.

There are several areas in which extensions can be
made. The first is to include consideration of knowl-
edge of uncertainties in individual intensities. This will
become extremely important in considering values
close to the detection limit or if the signal-to-noise
ratio is low. The second extension is to calculate the
sensitivities of the decision function to slight changes
in t or gap. Errors in the expression data lead to uncer-
tainties in both t and gap; these uncertainties could be
propagated into the decision function calculation.
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