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Abstract
Systemic Lupus Erythematosus (SLE) is a prototypic autoimmune disorder with a complex
pathogenesis in which genetic, hormonal and environmental factors play a role. Rare mutations in
the TREX1 gene, the major mammalian 3′-5′ exonuclease, have been reported in sporadic SLE
cases. Some of these mutations have also been identified in a rare pediatric neurologic condition
featuring an inflammatory encephalopathy known as Aicardi-Goutières syndrome (AGS). We
sought to investigate the frequency of these mutations in a large multi-ancestral cohort of SLE
cases and controls.

Methods—Forty single-nucleotide polymorphisms (SNPs), including both common and rare
variants, across the TREX1 gene were evaluated in ∼8370 patients with SLE and ∼7490 control
subjects. Stringent quality control procedures were applied and principal components and
admixture proportions were calculated to identify outliers for removal from analysis. Population-
based case-control association analyses were performed. P values, false discovery rate q values,
and odds ratios with 95% confidence intervals were calculated.

Results—The estimated frequency of TREX1 mutations in our lupus cohort was 0.5%. Five
heterozygous mutations were detected at the Y305C polymorphism in European lupus cases but
none were observed in European controls. Five African cases incurred heterozygous mutations at
the E266G polymorphism and, again, none were observed in the African controls. A rare
homozygous R114H mutation was identified in one Asian SLE patient whereas all genotypes at
this mutation in previous reports for SLE were heterozygous. Analysis of common TREX1 SNPs
(MAF >10%) revealed a relatively common risk haplotype in European SLE patients with
neurologic manifestations, especially seizures, with a frequency of 58% in lupus cases compared
to 45% in normal controls (p=0.0008, OR=1.73, 95% CI=1.25-2.39). Finally, the presence or
absence of specific autoantibodies in certain populations produced significant genetic associations.
For example, a strong association with anti-nRNP was observed in the European cohort at a
coding synonymous variant rs56203834 (p=2.99E-13, OR=5.2, 95% CI=3.18-8.56).
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Conclusion—Our data confirm and expand previous reports and provide additional support for
the involvement of TREX1 in lupus pathogenesis.

Introduction
Increased expression of interferon regulated genes and disturbance of interferon alpha (IFN-
α) homeostasis has a major role in the pathogenesis of the prototypic autoimmune disorder,
systemic lupus erythematosus (SLE) (1–3). A perturbation of IFN-α metabolism is also a
major pathogenic feature of the inflammatory encephalopathy, Aicardi-Goutières syndrome
(AGS) (4). After the discovery of AGS-causing mutations in the TREX1 gene, distinct
heterozygous mutations were described in autosomal dominant diseases such as retinal
vasculopathy with cerebral leukodystrophy (RVCL) (5), and familial chilblain lupus (FCL)
(6). Subsequent studies demonstrate that up to 2% of patients with SLE harbor pathogenic
mutations in TREX1 (7). These rare but highly penetrant causative mutations are not
detected in genome wide studies and, thereby, may explain part of the missing heritability of
lupus as well as provide insights into disease pathogenesis.

The shared TREX1 genetics in clinically distinct human disorders points to a common
molecular etiology. Indeed, some AGS individuals also fulfill diagnostic criteria for SLE
and have antinuclear antibodies including those with antigenic specificity for ssDNA and
dsDNA (8). Likewise, some RVCL patients have autoantibodies to nuclear antigens
(unpublished, JPA, PHK).

TREX1 (DNase III) is the major 3′-5′ DNA exonuclease of mammalian cells (9). It has been
proposed to have a major role in cell death processes and genomic DNA degradation where
it may minimize immune activation by self DNA. It is also a key component of the SET
complex, a multitasking protein involved in apoptosis, transcription, nucleosome assembly
and histone binding. This complex is normally associated with the endoplasmic reticulum. It
is mobilized during the cellular response to oxidative damage and is postulated to participate
in the oxidative stress response. A connection between TREX1 and immune activation was
initially suggested in the TREX1 null mice that develop an inflammatory myocarditis
similar to autoimmune cardiomyopathy and produce type 1 IFN (10, 11). Furthermore,
TREX1 deficient cells accumulate single stranded DNA species that may trigger
autoimmunity (12).

The TREX1 gene is located on chromosome 3p21.31 and consists of a single exon encoding
a 314-amino acid polypeptide. It has three conserved sequence motifs, Exo I, Exo II and Exo
III, which form the catalytic site (Fig. 1). TREX1 has a hydrophobic carboxyl-terminal
region, predicted to form a transmembrane helix, likely important in defining its intracellular
localization (5). In addition, the TREX1 protein contains a proline-rich sequence that is
postulated to participate in protein-protein interactions (13) (Fig. 1).

Mutations throughout the TREX1 gene have been identified in patients with several
different human diseases (13). These mutations include null alleles, frameshift mutations
and non-synonymous changes in the catalytic domains and the C-terminal region. In AGS,
most TREX1 mutations are autosomal recessive and diminish the exonuclease activity of the
enzyme, in particular a transition of arginine to histidine at position 114 (R114H). A
homozygous change at this locus (R114H) has been found to have a major effect on
exonuclease enzyme activity (14,15). The heterozygous R114H mutation has been reported
in one individual with SLE (7). Other mutations include D200N and D18N, which have
been reported in AGS and FCL, respectively, and are inherited in an autosomal dominant
manner (Fig. 1). In lupus, most of the mutations reported thus far are heterozygotes and are
usually located outside the catalytic domain in the C-terminal region (7). The functional
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significance of these mutations is unknown. C-terminal frameshift mutations that retain
exonuclease activity are observed in SLE and account for all of the mutations in RVCL
(7,13).

In this study, we evaluated these aforementioned mutations as well as common tagged SNPs
in the TREX1 gene in a large, multi-ancestral cohort of SLE cases and controls. This study
is the first to investigate TREX1 in populations with a higher prevalence of lupus including
African- Americans and Hispanics. Our results confirm and extend the findings in
Caucasians and provide additional support for association of SLE with TREX1 in multiple
ancestries.

Results
To determine if TREX1 is associated with SLE, we genotyped 40 SNPs in the TREX1
genomic region including both previously reported rare SNPs and more common tag SNPs
that capture most of the variation in this region (Table 2). After removing the outliers and
correcting for population stratification, 15864 samples (8372 cases and 7492 controls) were
included in the analysis (Table 1). All SNPs were in HWE and passed stringent quality
control thresholds (see methods).

Observance of rare polymorphisms (MAF<0.01)
Table 3 shows the rare non-synonymous coding SNPs (MAF <0.01) in the TREX1 gene
including some detected only in cases. We observed at least three different types of
mutations in patients that were not detected in the corresponding controls (Table 3). In
Europeans, 5 heterozygous mutations were detected at Y305C in lupus cases but none were
observed in the European controls. In African-American and Gullah patients (together), 5
E266G heterozygous mutations were observed but, again, none were observed in the
corresponding controls. In the Asians, one homozygous and two heterozygous mutations
were observed in lupus cases for the R114H polymorphism, but none in controls. Table 4
describes the ACR criteria fulfilled by these patients and their serologic profiles.
Interestingly, two of these 13 SLE cases were males, of which one carried the homozygous
R114H mutation and developed SLE at 14 years of age (Table 4).

Analyses of polymorphisms with MAF >0.01 and haplotype structure
In addition to these rare SNPs mentioned above, we also evaluated common and tag SNPs
that capture most of the variation in this region, as well as SNPs with MAF >1%. TREX1 is
a small gene with less than 1000 base pairs and one coding exon (Fig 1). Since it is closely
linked to the ATRIP (ATR interacting protein) gene, we selected common SNPs to cover
both (shown in Table 2). Figures 2a and 2b demonstrate the haplotype structure of this
genomic region in European and African cases and controls using SNPs with MAF>1%.
There is a high correlation among all of these common SNPs, especially in the European
population (r-squared > 0.9). Also, more SNPs are polymorphic (MAF >0.01) in the
African-American population than in other racial groups (see Table 2).

Case-control association analysis
In a case control association study, we did not observe significant associations with any of
the selected SNPs using the presence of SLE as a phenotype in any of the racial groups.
Because of similarities between lupus and neurologic conditions such as AGS, we
hypothesized that lupus patients with neurologic manifestations might be enriched for risk
alleles in the TREX1 gene. Indeed, in the European population the presence of neurologic
manifestations (ACR criteria), especially the presence of seizures (79 European cases),
produced significant results at multiple common SNPs when compared with healthy controls
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(Table 5). The haplotype risk alleles (AAAAAA) (Fig 2a, Table 5) were relatively common
in the European population with a frequency of 58% in lupus cases compared to 45% in
normal controls (p=0.0008, FDR q=0.007, OR=1.73, 95% CI=1.25-2.39). In addition, in a
case only study where these 79 SLE cases with seizure manifestations were compared to
2405 lupus patients with no previous neurologic findings, similar haplotype association
results were obtained (p=0.0008, FDR q=0.003, OR=1.75 95% CI=1.25-2.37). Since
neurologic manifestations in SLE also correlate with previous cerebrovascular accidents and
the presence of antiphospholipid syndrome, we evaluated these sub-groups separately but
the results were not significant (data not shown). There was also no evidence of associations
with other ACR criteria, gender or age of onset in any population. Of note, all 5 European
patients with a mutation at Y305C also had at least one copy of this risk haplotype (2
homozygous and 3 heterozygous patients for the risk allele).

We also evaluated SLE samples for an association with autoantibodies (anti-Ro, anti-La,
anti-RNP, anti-Sm and anti-dsDNA). In the Asian population, 567 SLE patients lacking anti-
Ro antibodies were less likely to carry the same common haplotype mentioned above
(AAAAAA) compared to 1260 healthy controls (32% in cases versus 36% in controls
[p=0.01, FDR q=0.03, OR=0.82 95% CI 0.71-0.96]). Interestingly the same haplotype was
observed less frequently among 260 Asian patients with positive anti-nRNP compared with
1260 healthy controls (30% in cases with positive anti-nRNP versus 36% in controls
[p=0.003, FDR q=0.008, OR=0.75, 95% CI=0.61-0.92]). In a case only study, these
comparisons were not statistically significant, although the frequency of this haplotype was
more frequent in Asian cases with positive anti-Ro (335 cases) in comparison to those lupus
cases with negative anti-Ro (567 cases) (36% vs. 32% (p=0.22)) and for anti-nRNP
autoantibody, less frequent in cases with positive anti-nRNP compared to cases with
negative anti-RNP (30% for positives (260 cases) versus 35% for negatives (789 cases)
(p=0.05, FDR q= 0.12)).

In addition, the presence of anti-nRNP in the European population was strongly associated
with another coding synonymous SNP rs56203834 that was extremely rare in the Asian
population. In this subgroup, 269 European cases positive for anti-nRNP were compared
with European controls. The MAF for this SNP was only 1% in controls (Table 2) but 5% in
European cases with positive anti-nRNP (p=2.99E-13, FDR q=5.97E-12, OR=5.2, 95%
CI=3.18-8.56). Furthermore, in case only study, if these 269 cases were compared with 1413
SLE patients with negative anti-nRNP again similar results were obtained (p= 2.74E-06,
FDR q= 2.73E-05, OR=3.33 95% CI 1.95-5.65). In the Hispanic population suggestive
results were also obtained but the number of samples for subset analysis was small.

Discussion
To explore the frequency of mutations in the TREX1 gene and their relationship to SLE, we
evaluated 40 SNPs, including rare variants, previously reported to be associated with several
human diseases in large multi-ethnic sample populations. The large sample size of cases and
controls (>15800) provide enough power to evaluate rare variations in TREX1. One
important mutation described in AGS (R114H) is on the dimer interface of the protein
(14,15). Homozygous mutations at this position (i.e TREX1 R114H/R114H) degrade dsDNA
300-fold less efficiently than TREX1 wild type (16). Although AGS cases are associated
with homozygous R114H mutations, their parents, who are heterozygous carriers of the
mutation, have no abnormal phenotypes reported (17). A heterozygous mutation at this
location has been reported in one European SLE case (7). In our European population, we
identified 9 SLE cases with heterozygous mutations at this locus and 5 heterozygotes in the
European healthy controls (Table 3). In the Asian population, on the other hand, we
identified one homozygous SLE case. In addition, two heterozygous SLE cases were
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detected in the same population, but none in Asian controls. The homozygous case was a
male lupus patient with early onset lupus, positive anti-dsDNA antibody and predominant
skin manifestations, but no neurological manifestations. The latter is intriguing since all
previously reported homozygous R114H mutations have been in AGS patients, who
invariably have had central nervous system disease in early childhood. (Table 4).

We identified 5 European lupus cases with heterozygous mutations at another variant
(Y305C) but none in controls. This is a missense (coding) mutation located outside of the
catalytic domain of TREX1. This polymorphism was previously reported in one European
lupus patient (7). None of these 5 patients were carriers for R114H mutant alleles while all
of them were carriers for the common risk haplotype (AAAAAA) (2 homozygotes and 3
heterozygotes). This suggests a correlation of this common risk haplotype with coding
mutation at Y305C that could be functionally important.

In the African population, we also identified 5 lupus patients with the E266G mutation,
which was absent in African controls (Fig 1). This mutation was detected in Europeans but
as previously reported in European cohorts, there was no significant difference in cases and
controls (Table 3) (7). This association has not been previously reported in the African
population. Overall the coding mutation frequency in our SLE cases was ∼0.5%.

AGS, an autosomal disease (usually recessive but rare dominant case) characterized by
progressive encephalopathy of early onset, basal ganglia calcifications and chronic
cerebrospinal fluid (CSF) lymphocytosis, is also associated with increased levels of IFNα in
the CSF. SLE patients likewise may have high level of IFNα and neurologic manifestations
similar to AGS, including seizures. Indeed, neuroimaging in patients with SLE may show
calcifications, white matter changes, and atrophy, as typically observed in patients with AGS
(18-20). Given these overlapping phenotypes, one may speculate that a common pathogenic
mechanism underlies the neurologic phenotype of AGS and cerebral lupus.

In a recent study, up to 60% of patients with AGS presented with clinical findings such as
skin rash, arthritis, oral ulcer as well as laboratory findings commonly seen in patients with
lupus including ANAs, reduced complement levels, thrombocytopenia, leukocytopenia.
Furthermore, if seizures are taken into account, up to 75% of those patients with AGS
showed manifestations of lupus (21). Because of these similarities, Vries et al. sequenced
genomic DNA of 60 European lupus patients with neurologic manifestations for exonic
TREX1 mutations and identified a novel R128H mutation in one of these SLE patients (22).
Brain magnetic resonance imaging (MRI) of this patient showed generalized atrophy,
extensive symmetric cerebral white matter hyperintensities and cerebellar infarcts, without
evidence for ischemia. This rare mutation is located within the highly conserved second
exonuclease domain (ExoII) of the TREX1 gene.

In our study we also tested this hypothesis and identified a relatively common risk haplotype
in the TREX1 gene among European lupus patients with seizure (58% in SLE cases with
seizure compare to 45% in normal controls). The frequency of this haplotype in normal
European controls was consistent with the HapMap data for the CEU study population
(45%). This haplotype spans 19 kb and covers both TREX1 and ATRIP genes. These two
genes are closely linked and some mRNAs encode ATRIP and TREX1 in different reading
frames. In fact, these two genes previously were considered a single gene (NCBI-35).
ATRIP is an essential component of the DNA damage checkpoint, and binds to ssDNA and
interacts with proteins such as ataxia telangiectasia, Rad3 related protein, and breast-ovarian
cancer susceptibility 1 (BRCA1) (23). It has central role in checkpoint activation in response
to DNA damage and is important for chromosomal stability. Because of the high LD
between SNPs in this risk haplotype in Europeans (Fig 2a), conditional analyses were not
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conclusive; however, analyses on this haplotype suggest that rs11797, a common
synonymous SNP located in the exonic region of TREX1, can better explain the whole
association in this haplotype and therefore the effect likely originates from the TREX1 gene.

There was also evidence for association of certain SNPs with the presence of autoantibodies
in SLE. In particular, there was a positive association with the presence of anti-nRNP in
Europeans for SNP rs56203834 (p=2.99E-13, FDR q=5.97E-012, OR = 5.2, 95%
CI=3.18-8.56). This is another synonymous SNP located in the TREX1 exon and is less than
60 base pairs away from R114H (Fig. 1). Because of low MAF in this SNP, no clear
correlation between this SNP and the common risk haplotype for neurologic manifestation
in European can be detected, and in fact all available European cases with seizure
manifestations were homozygous for the major wild type allele for this SNP, suggesting that
these two effects might be independent. This SNP was extremely rare in the Asian and
African populations while in the Hispanic population the result was suggestive.

In regard to the Asian population, the common haplotype that was associated with
neurologic manifestations in Europeans was also more frequently seen in Asian patients
with this phenotype (42% in cases compare to 38% in controls, p=NS); although it was not
significant. As described in the Results, in the Asian population, this haplotype was less
frequently observed with the presence of anti-nRNP or in patients with absence of anti-Ro
antibodies. In fact this negative correlation with anti-Ro in TREX1 has been previously
reported in the same population (24). The reason for this opposite association between anti-
Ro and anti-nRNP in Asian with the same haplotype is not clear, and requires additional
confirmation. Since SLE is an extremely heterogenous disease, this could be partly related to
different disease manifestations. In complex diseases such as SLE, many subtle inherited
elements could directly or indirectly affect these autoantibodies with subsequent clinical
sequel. Some autoantibodies associated with lupus tend to cluster together and usually result
in specific clinical manifestations. For example, the association of anti-Ro with secondary
Sjogren's syndrome or leukopenia, anti-RNP with Raynaud's phenomenon, and anti-dsDNA
with nephritis have been noted and replicated in many studies. In addition, anti-Ro
antibodies have been reported as one of the independent predictors of neurologic damage in
lupus (25). This correlation could explain our results in regard to the risk haplotype and anti-
Ro antibodies.

Overall, our results with TREX1 indicate a complex relationship between genetic loci, SLE
sub-phenotypes and different population ancestry that demands further studies of this gene.
Our data, combined with the findings in Trex1-deficient mice which develop lethal
autoimmunity accompanied with a high production of type I IFN, suggest that TREX1 is
involved in lupus pathogenesis and probably essential for the prevention of autoimmunity.

Materials and Methods
Recruitment and Biological Sample Collection

The participants were enrolled in the Lupus Family Registry and Repository and Lupus
Genetics Studies at the Oklahoma Medical Research Foundation (OMRF) as described (26)
and by collaborators (27-30). A total of 15864 study participants were used in the current
study (Table 1). Protocols were approved by the Institutional Review Boards at each
respective institution. Patients met four of the 11 revised 1997 ACR criteria for the
classification of SLE (31). Ethnicity was self-reported and verified by principal component
and admixture proportion calculations.
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Genotyping
This genotyping project was part of the Lupus Large Association Study (LLAS) that
involved different investigators and more than 32,000 SNPs. Data were generated using the
Illumina iSelect technology at the OMRF. Genotype calls were made using all samples to
maximize the accuracy of the cluster plots. Following genotype scoring, SNP clusters were
evaluated electronically using the Illumina BEADSTUDIO(r) software package
(http://www.illumina.com). Ambiguous SNP clusters were evaluated manually and SNPs
with poor cluster characteristics were flagged.

Genotypic data were only used from samples with a call rate >90% (average sample call
rate=99.1%) and from SNPs with a call frequency >90% (average SNP call rage=99.0%).
Initial QC analyses were performed by plate, by lot of reagents, and by date genotyped to be
certain that systematic error did not find its way into our data. A sample report was
generated for every sample attempted in the project, including sample barcode, ethnicity,
gender, pedigree information, no calls, calls, call rate, genotype frequency and Gencall
Score. Any sample with previous genotype data was analyzed for concordance. A summary
SNP report was also generated containing chromosome and location, call rate, genotype
frequency, and Gencall score.

Statistical Analyses
Testing for association was completed using PLINK (32). Haploview version 4.0 (33) was
used to estimate the linkage disequilibrium (LD) between markers and haplotypes in the
different racial groups. Conditional haplotype analyses were conducted using the WHAP
program version 2.09 (34). To correct for multiple testing, false discovery rate (FDR)
methods were used and q values were calculated using PLINK (32). Q values correspond to
the proportion of false positives among the results. Thus, q values < 0.05 signify less than a
5% false positive rate and are taken as a measure of significance. For each SNP, missing
data proportions for cases and controls, minor allele frequencies, ORs, 95% CI intervals, P
values and exact tests for departures from Hardy-Weinberg expectations were calculated.
SNPs needed to pass stringent quality control criteria that included: Hardy-Weinberg
proportions (HWP) with a p>0.01 in the controls and >0.0001 for cases, total proportion
missing <5%, and p>0.05 for differential missingness between cases and controls. Samples
with a <90% call rate or increased heterozygosity (>5 std. dev. around the mean) were
excluded from the analysis. The remaining samples were then evaluated for duplicates or
related individuals. Genetic outliers were removed from further analysis as determined by
principal components analysis (35) and admixture proportions calculated using
ADMIXMAP. Principal components were calculated using all SNPs and admixture
proportions were calculated using 347 AIMs.
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Fig 1.
Schematic representation of some important disease associated TREX1 mutations. Coding
synonymous SNP (green); coding non-synonymous SNP (red). Exo 1, 2 and 3 denote
exonuclease domains, PII denotes polyproline II domain, and TM denotes transmembrane
domain.
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Fig 2.
Fig 2a and 2b: European-American (2a) and African-American (2b) haplotype block
structure. Blocks connecting SNP pairs are shaded according to the strength of the linkage
disequilibrium between the SNPs, from 0.0 (white) to 1.0 (bright red), as measured by the
disequilibrium coefficient D′.
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