Skip to main content
. 2011 May 27;5:54. doi: 10.3389/fnhum.2011.00054

Figure 1.

Figure 1

This figure depicts an emulation-based framework for cognition. The constituent control processes that make up the framework create and operate on emulations. The control processes are described in detail in the manuscript text. The figure shows the control processes operating in a pool of active emulations. Thick arrows represent the movement of emulations out from the emulation generation process into the active pool. The meanings of the numbered arrows are given below. (1) Sensory expectations – the red arrow depicts expectations in active emulations that are fed back to lower-level sensory regions, creating a bias in those regions to quickly interpret incoming sensory information in accordance with expectations. (2) Sensory percepts – the purple arrows show how perception affects associative memory and emulation realization. Perceptions of the current environmental state influence the advancement of active emulations, and trigger associations that can generate new emulations. (3) Difference signals – the yellow arrows indicate the use of difference signals in attention and learning. When incoming sensory information differs from the expectations in emulations, difference signals are generated that can trigger increased attention to the unexpected sensations, and reinforcement learning activity to accommodate the new information. (4) Reinforcement learning – the blue arrow depicts the action of learning signals that update associative memory so that future expectations will take current information into account. (5) Actions and associated environmental predictions – the pink arrow indicates the flow of associations used by emulation generation. Action plans and predictions that make up emulations are derived from associations generated by either real or emulated sensory states. (6) Emulation chaining – the thick arrow shows active emulations as input to associative memory. The expected future environment of emulations can trigger associations that generate new emulations, causing chains of emulations to form.