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Background. Transmitted human immunodeficiency virus type 1 (HIV-1) drug resistance (TDR) mutations

can become replaced over time by emerging wild-type viral variants with improved fitness. The impact of class-

specific mutations on this rate of mutation replacement is uncertain.

Methods. We studied participants with acute and/or early HIV infection and TDR in 2 cohorts (San Francisco,

California, and São Paulo, Brazil). We followed baseline mutations longitudinally and compared replacement rates

between mutation classes with use of a parametric proportional hazards model.

Results. Among 75 individuals with 195 TDR mutations, M184V/I became undetectable markedly faster than

did nonnucleoside reverse-transcriptase inhibitor (NNRTI) mutations (hazard ratio, 77.5; 95% confidence interval

[CI], 14.7–408.2; P , .0001), while protease inhibitor and NNRTI replacement rates were similar. Higher plasma

HIV-1 RNA level predicted faster mutation replacement, but this was not statistically significant (hazard ratio, 1.71

log10 copies/mL; 95% CI, .90–3.25 log10 copies/mL; P 5 .11). We found substantial person-to-person variability in

mutation replacement rates not accounted for by viral load or mutation class (P , .0001).

Conclusions. The rapid replacement of M184V/I mutations is consistent with known fitness costs. The long-

term persistence of NNRTI and protease inhibitor mutations suggests a risk for person-to-person propagation. Host

and/or viral factors not accounted for by viral load or mutation class are likely influencing mutation replacement

and warrant further study.

Although the epidemiology of transmitted human im-

munodeficiency virus type 1 (HIV-1) drug resistance

(TDR) mutations has been studied in a variety of set-

tings [1–5], less is known about whether transmitted

mutations persist without selection pressure from anti-

retroviral therapy (ART). Because many drug resistance

mutations impair HIV fitness [6–10], replacement of

TDR mutations with wild-type variants may confer

a potential survival advantage. This is particularly true

when resistant and wild-type viral populations co-exist,

as typically occurs when resistance develops during

treatment. However, when HIV is transmitted by a sin-

gle drug-resistant virion, the emergence of wild-type

variants requires evolution and back-mutation rather

than emergence of an existing wild-type variant.

Several studies have reported long-term persistence of

most TDR mutations but have also documented re-

placement of certain mutations with wild-type variants

[11–16]. Although valuable, these investigations did not

have sufficient person-years of follow-up to quantify

and compare replacement rates for each therapeutic

drug class.

Improved understanding of how quickly different

mutation classes are replaced by wild-type variants is

important for several reasons.

First, most HIV diagnoses occur during chronic in-

fection, rather than during acute and/or early infection.

By the time genotyping is performed, TDR mutations
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may have waned below the detection threshold for population

genotyping, but persist as minority variants. Therefore, knowl-

edge about mutation replacement rates for each drug class could

help clinicians interpret resistance tests performed during

chronic infection.

Second, the degree to which drug resistance will propagate

among recently infected individuals depends on several factors

including (1) the prevalence of drug resistance among chroni-

cally infected persons who are receiving partially suppressive

therapy and (2) how long TDR persists in untreated persons

and, thus, can propagate even without drug selection. The im-

portance of propagation of transmitted mutations becomes

amplified in resource-limited settings. Without genotyping and

viral load monitoring, patients may initiate incompletely sup-

pressive treatment regimens and sustain prolonged exposure to

them. This leads to additional selection of drug resistance mu-

tations [17, 18], further increasing the risk of resistance propa-

gation and limiting patients’ second-line treatment options.

Third, the interpretation of population-based surveys of TDR

prevalence depends on understanding how long mutations persist

after they are transmitted, because surveys will underestimate

mutations that are quickly replaced by wild-type variants.

To provide more detailed information about persistence of

specific mutations, we analyzed participants in 2 large early in-

fection cohorts with sustained periods of follow-up without

treatment.

METHODS

Study Populations and Settings
We included individuals with acute and/or early HIV infection

who were enrolled in 2 prospective cohort studies: the Options

Project (San Francisco General Hospital, University of California,

San Francisco [UCSF]) and an acute and/or early HIV infection

cohort in São Paulo, Brazil. The studies were approved by the UCSF

Committee on Human Subjects Research and the Federal Univer-

sity of São Paulo Ethics Committee and Institutional Review Board.

All participants gave informed, written consent for participation.

The Options Project is a prospective cohort study of in-

dividuals enrolled within 12 months after HIV antibody sero-

conversion (restricted to within 6 months after seroconversion

since 2003). Participants are enrolled after screening for acute

and/or early HIV infection with use of a combination of clinical

history, serologic testing, and plasma HIV RNA determination,

as described elsewhere [19]. Individuals enrolled during 1996–2009

were included. The São Paulo cohort enrolled patients, starting in

2002, who had experienced seroconversion within the previous 6

months and had evidence of acute and/or early HIV infection by

the Serologic Testing Algorithm for Recent HIV Seroconversion

[20]. Individuals enrolled during 2002–2009 were included.

We included all ART-naı̈ve individuals in each cohort meet-

ing 3 criteria: (1) TDR on initial genotyping, (2) >6 months of

observed follow-up time without ART (>3 months for São

Paulo participants), and (3) >1 follow-up genotype. TDR was

defined according to guidelines for epidemiologic studies [21]

that include mutations known to be selected by therapy and

exclude common polymorphic mutations that may or may not

be selected by therapy.

For ART-naı̈ve patients, we analyzed all available genotypes.

We also included some individuals who had initiated ART.

Here, we analyzed genotypes in 2 instances: (1) patient initiated

ART during early HIV disease, with genotyping performed<10

days after initiation of ART (to minimize the possibility of an

ART-induced mutation being mistaken for a TDRmutation), or

(2) patient initiated but then later stopped ART, with geno-

typing performed .6 months after ART cessation. In the latter

situation, we assumed that the virus population would be evo-

lutionarily fixed during fully suppressive ART. If individuals

started ART a second time, they were censored, and subsequent

genotypes were not assessed.

Clinical and Laboratory Evaluations
Demographic and behavioral data were collected from in-

dividuals in both cohorts with use of standardized interviews.

For Options Project participants, CD41 T cell counts and

plasma HIV-1 RNA levels were measured at baseline and every

3–4 months. For São Paulo cohort participants, these meas-

urements were repeated 3 months after initial determination.

HIV Genotype Determinations
In Options Project patients, baseline HIV-1 population se-

quence genotypes (TRUGENE genotyping system; Siemens

Healthcare Diagnostics) were determined as described elsewhere

[22, 23]. In São Paulo cohort patients, genotypes were per-

formed as described elsewhere [24].

Follow-up genotypes were obtained using a strategy to ac-

curately estimate the time at which baseline TDR mutations

became undetectable by population sequencing while limiting

the number of assays. For each individual, we genotyped the last

available specimen before ART initiation or, for ART-naı̈ve in-

dividuals, the last available specimen. If all baseline TDR mu-

tations were present in the final sample, we did not genotype

intervening specimens. If any baseline TDR mutations were not

detected (indicating a loss), we bracketed backward, first gen-

otyping the specimen closest to the midpoint of the prior 2

specimens. We continued genotyping intervening specimens to

pinpoint the 2 time points bracketing the loss of the mutation.

Time to Replacement of Drug Resistance Mutations.
When a baseline TDR mutation was not detected subsequently,

it was considered to have been replaced. This contrasts to

other approaches that focus on the first appearance of wild-type

variants.

For ART-exposed patients, because we assumed that muta-

tion loss or gain would not occur during effective ART, the
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duration of observation was defined as the total number of days

elapsed since HIV infection minus the number of days of ART.

We estimated a date for each mutation replacement event

with use of midpoint imputation between the date of the last

specimen on which the mutation was detected and the first

specimen in which it was absent. Our primary statistical anal-

yses, however, did not rely on these imputed dates.

Data Analysis
Drug resistance mutations were grouped into 6 categories:

(1) lamivudine/emtricitabine–associated mutations M184V/I;

(2) thymidine analog–associated (TAM) mutations M41L,

D67N, K70R, L210W, T215Y/F, and K219Q/E; (3) T215 partial

revertant mutations T215C, T215D, T215E, T215I, T215S, and

T215V; (4) other nucleoside reverse-transcriptase inhibitor

(NRTI) mutations; (5) nonnucleoside reverse-transcriptase in-

hibitor (NNRTI) mutations; and (6) protease inhibitor (PI)

mutations. We analyzed the T215 partial revertant mutations as

a separate group, because T215Y/F mutations first progress to

T215 partial revertants in one step, then progress to wild-type in

a second step [25]. In each mutation group, a Kaplan-Meier plot

was made of the cumulative probability of mutation re-

placement versus the number of ART-free days since the esti-

mated date of infection, using imputed dates of replacement.

We sought to address several features of these data that make

optimal statistical analysis challenging. First, transmitted mu-

tations that become undetectable before a person’s initial ge-

notype cannot be identified or included in this study. The time

of individuals’ baseline genotypes, therefore, are late-entry times

(also known as left-truncation times). Second, as mentioned, the

exact time of mutation replacement lies between the last geno-

type with the mutation and the first genotype without it. Such

interval-censored data require specialized calculations. Third, an

important a priori predictor that we sought to analyze—HIV

plasma RNA level—changed throughout follow-up (ie, it is

a time-varying covariate), and those changes could impact the

chance of mutation replacement. Fourth, many persons had

multiple baseline mutations, requiring assessment of possible

within-person clustering or dependence.

Methods have been published for fitting parametric survival

models to interval-censored data with clustering but without

time-varying covariates [26] and for interval-censored data with

time-varying covariates but no clustering [27]. We combined

features of these models [28] and added calculations to account

for late-entry times. Details of the calculations and example SAS

code (SAS Institute) are provided in online supplements A and B.

This produced a parametric proportional hazards model that

we used to analyze the association between mutation group and

the hazard of mutation replacement. To control for plasma RNA

levels as a time-varying covariate, for each interval of time

modeled, we used the last RNA level measured at or before the

start of that interval to ensure that RNA levels were predicting

mutation loss rather than reflecting it. Using the NNRTI mu-

tation group as the referent, we computed hazard ratios for

mutation loss over time for the other 5 mutation groups. Our

method allows individual mutations to be assessed singly but

accounts for within-subject correlation in participants with

multiple baseline mutations.

Using this model, we computed the percentage of transmitted

mutations that would be expected to become undetectable by 6

months, 1 year, 2 years, and 3 years after HIV infection, as-

suming a constant HIV plasma RNA level of 40,000 copies/mm3

and assuming that mutations were present at 3 months after

infection (because there were no observations during very early

times due to the aforementioned late-entry phenomenon).

RESULTS

Clinical Characteristics of Participants
Of 697 participants who entered either the Options Project or

the São Paulo cohort during 1996–2009, 676 had baseline gen-

otyping performed (21 individuals had plasma RNA levels that

were too low for genotyping or were lost to follow-up). Of the

676 participants with baseline genotypes, 20 additional persons

were excluded because they began ART .10 days before geno-

typing (n 5 7), had evidence of superinfection with a second

HIV variant (n 5 6), or had missing data (n 5 7). Of the 656

eligible individuals, 136 (21%) had TDR. Of these, a total of 75

persons had a follow-up genotype that could be assessed (the

other 61 individuals either began ART and achieved virologic

suppression [n 5 57] or were lost to follow-up or had missing

data [n 5 4]). The 75 patients with TDR and follow-up geno-

types formed the basis for this analysis (n 5 59 from Options

cohort and n 5 16 from the São Paulo cohort).

Overall, individuals in the 2 cohorts were similar; our sample

was predominantly men whose main risk for HIV acquisition

was sex with other men and who enrolled in the cohorts at

a median of 2.7–3.0 months after HIV infection (Table 1).

HIV-1 plasma RNA levels were slightly higher among São Paulo

patients, but this difference was not statistically significant

(Wilcoxon rank sum test, P 5 .37).

Mutation Replacement Over Time
The 75 participants had a total of 195 baseline TDR mutations

(Table 2). Participants’ genotypes are listed in online supple-

ment C and have been uploaded to GenBank (accession

HQ528536-HQ529037; HQ585024-HQ585055). Over a median

follow-up period of 25 months (interquartile range, 8–41

months), 75% of individuals with transmitted M184V/I muta-

tions exhibited loss of this mutation; the proportion with mu-

tation replacement was 40% for those with T215 revertants, 28%

for those with TAMs, 11% for those with other NRTI mutations

(including K65R), 25% for those with NNRTI mutations, and

20% for those with PI mutations (Table 2).
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In a Kaplan-Meier analysis of time to mutation replacement

(Figure 1), the M184V/I group displayed more rapid re-

placement compared with all other mutation groups, and the

other mutation groups were similar to one another (Figure 1).

Table 2 shows results of our parametric proportional hazards

model (which assumed an exponential parametric form). Be-

cause of the steady state plasma RNA level of 40,000 copies/

mm3, the model predicts that, after 6 months of HIV infection,

68% of transmitted M184V/I mutations that were present at

3 months would wane below the detection limit, whereas<6% of

other mutation groups would wane to this level (Table 2). After 3

years of HIV infection, the model predicts that all mutation

groups except other NRTIs would show.15% replacement and

M184V/I mutations would show 100% replacement.

Predictors of Mutation Replacement
Compared with the NNRTI mutation group, the M184V/I

mutation group had a markedly higher hazard for mutation

replacement (hazard ratio, 77.5; 95% CI, 14.7–408.2; P , .001)

(Table 2). TAMs and T215 partial revertants exhibited a trend

toward elevated hazard of replacement, although neither was

statistically significant. Other NRTI mutations had a lower

hazard, but the CIs around this estimate were very wide. The

hazard for PI mutation replacement was not substantially dif-

ferent from that of NNRTI mutations.

Higher plasma HIV RNA levels were associated with a trend

toward increased mutation loss, but this was not statistically

significant (hazard ratio for replacement per log10. increase in

plasma HIV RNA, 1.77; 95% CI, .90–3.25; P 5 .11).

In addition, we found strong evidence for substantial within-

person correlation in the risk of mutation loss that was not ac-

counted for by plasmaHIVRNA levels (P, .001) or by drug class.

We examined possible departures from the proportional

hazards assumption, including possible change in the effect of

HIV plasma RNA level in the first 6 months after infection

Table 1. Baseline Characteristics of 75 Participants in the Options Project and São Paulo Acute and/or Early HIV Infection Cohorts.

Variable Options Project cohort São Paulo cohort

No. of participants 59 16

Age at cohort enrollment, median (IQR), years 36 (31–42) 30 (24–32)

Male sex, % 95 81

MSM status, % 93 81

Recent injection drug use, % 7 N/A

Estimated duration of HIV infectiona (IQR), months 2.7 (2.4–3.5) 3.0 (2.8–4.8)

Baseline HIV-1 plasma RNA level, median (IQR), copies/mm3 12,710 (2549–79,060) 34,050 (7725–53,350)

Baseline CD4 cell count, median (IQR), cells/mm3 560 (465–693) 469 (372–567)

NOTE. IQR, interquartile range; MSM, men who have sex with men; N/A, not available.
a Duration from estimated date of HIV infection to date of first genotype determination.

Table 2. Frequency of Transmitted Drug Resistance Mutations, by Drug Class, and Proportions Receding to Undetectable Status on
Population Sequencing among 75 Participants Followed Up from Early HIV Infection.

Mutation Group

Observed Data NNRTI M184V TAMs T215 Revertants Other NRTI PI

No. of baseline mutations(no. of patients) 36 (33) 12 (12) 54 (29) 15 (15) 9 (5) 69 (31)

No. replaced by wild-type(% of
total mutations)

9 (25) 9 (75) 15 (28) 6 (40) 1 (11) 14 (20)

Model projections

Hazard ratio for replacement (95% CI) Reference 77.5 (14.7–408.2) 2.54 (.65–9.92) 4.24 (.76–23.51) 0.39 (.024–6.33) 1.12 (.31–3.95)

P – ,.001 .19 .10 .51 .87

Percentage replacement (95% CI)

6 months 1 (0–5) 68 (27–98) 4 (1–9) 6 (2–21) 1 (0–9) 2 (1–4)

1 year 4 (1–15) 97 (61–100) 11 (4–26) 17 (5–50) 2 (0–24) 5 (2–13)

2 years 10 (3–32) 100 (89–100) 23 (9–50) 35 (11–80) 4 (0–47) 11 (4–28)

3 years 15 (4–45) 100 (97–100) 34 (14–67) 50 (17–92) 6 (0–63) 17 (6–40)

4 years 20 (6–56) 100 (99–100) 43 (19–78) 61 (22–97) 8 (1–74) 22 (8–50)

NOTE. Hazard ratios for replacement by wild-type over time are displayed for each mutation group, derived from a parametric proportional hazards model

accounting for time-varying plasma HIV RNA levels and within-subject clustering. The proportion of baseline mutations expected to be replaced at specified times

after HIV infection are also displayed. CI, confidence interval; NNRTI, nonnucleoside reverse-transcriptase inhibitor; NRTI, nucleoside reverse-transcriptase inhibitor;

PI, protease inhibitor; TAMs, thymidine analog–associated mutations.
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versus after 6 months, and did not find strong evidence for

nonproportionality; therefore, we used the simplest model, as-

suming proportional hazards for all covariates. Generalizing

from an exponential model to a Weibull model did not improve

fit substantially.

DISCUSSION

By analyzing a large number of patients with TDR, we were able

to show that the M184V/I mutations become undetectable in

population sequencing substantially faster than do other mu-

tation groups, which are generally similar to one another.

Although rates of replacement for mutations other thanM184V/I

were relatively low, there was still appreciable replacement.

Although NNRTI mutations are assumed to have minimal

effects on fitness, replacement of these mutations occurred

over time. In addition, our results suggest that higher viral

load may promote mutation loss, but this does not account

for the very substantial person-to-person variation that we

observed in the rate of mutation loss.

Prior studies of TDR mutations have reported that re-

placement with wild-type variants occurs but that most muta-

tions are maintained for at least 1–2 years after transmission

[11–16]. The largest and most definitive study grouped all

mutations together and estimated a median time-to-loss of

detectable drug resistance (using population-based assays)

ranging from 4.1 years, using a conservative estimate, to longer

than the lifetime of the individual, using a less conservative

estimate [12]. Although our results might appear to differ from

this estimate, the difference is primarily attributable to our

ability, with larger numbers, to assess groups of mutations

separately. The high rate of replacement that we observed among

M184V/I mutations is consistent with prior reports [11–13, 29]

and almost certainly reflects this mutation’s association with

reduced fitness in the absence of therapy [6, 9, 30]. The relative

stability of thymidine analog–associated, NNRTI, and PI mu-

tations over time is also consistent with other reports [12–14].

We had hypothesized that PI mutations would be replaced

more rapidly than would NNRTI mutations. However, we

found that the PI group had a rate of replacement similar to that

of the NNRTI group, although CIs were wide (HR for re-

placement of PI vs NNRTI, 1.12; 95% CI, 0.3–4.0; P 5 .9). The

slow replacement of PI mutations is notable, because these

mutations, similar to M184V/I, are known to affect viral fitness

[31, 32]. Our group previously performed a partial treatment

interruption study in which patients receiving a stable partially

suppressive regimen discontinued one drug class while main-

taining the other drug classes. Continuation of at least some

ART prevented rapid rebound of archived variants, forcing

HIV to back-mutate in the same way that occurs after the ac-

quisition of a TDR variant. In the study, selective removal of

NRTIs was associated with loss of the M184V/I mutation, and

removing PIs was associated with limited mutation replacement,

even after several years [33]. The mechanism for the persistence

Figure 1. Kaplan-Meier plot of cumulative probability of mutation replacement over time in different classes of transmitted drug resistance mutations
among 75 patients followed up from early infection. Probabilities of mutation replacement for each of 6 mutation groups are plotted against the number
of antiretroviral treatment–free days since the estimated date of HIV infection, as follows: Lamivudine/emtricitabine-associated mutations M184V/I
(solid black line), TAMs M41l/D67N/K70R/L210W/T215Y/F/K219Q/E (solid gray line), T215 revertant mutations T215C/D/E/I/S/V (black dotted line), other
nucleoside reverse-transcriptase inhibitor (NRTI) mutations (gray dotted line), nonnucleoside reverse-transcriptase inhibitor (NNRTI) mutations (black
dashed line), and protease inhibitor (PI) mutations (gray dashed line). TAM, thymidine analog-associated mutations.
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of PI-resistant variants despite fitness costs was investigated by

van Maarseveen et al [34], who argued that viral variants with

both PI mutations and compensatory mutations must travel

through a ‘‘fitness valley’’ to lose both types of mutations— first

reducing fitness in order to ultimately maximize it. Our findings

are consistent with the theoretical framework advanced by these

2 studies and with prior reports of infrequent replacement of PI

mutations [11, 12, 16].

The clinical implication of our finding that PI mutations are

replaced at a similar rate to NNRTI mutations is that one po-

tential advantage of including PIs in first-line ART regimens in

resource-limited settings—namely, faster replacement of trans-

mitted mutations by wild-type and lower risk of spread of re-

sistance—does not appear to be present. The risk of drug

resistance propagation is further amplified by the substantial

fraction of all HIV transmissions that occur from source patients

who have acute and/or early HIV infection [35, 36], implying

that, in many patients with TDR, the available time for mutation

replacement before retransmission may be quite limited.

A second clinical implication of our findings relates to the

rapid replacement of M184V that we observed. Because of the

frequent use of drugs that select for this mutation, should a

patient who has received a new diagnosis of HIV who has

other mutations be assumed to have lamivudine/emtricitabine-

resistant virus even if this is not present on genotyping? The

rapid mutation loss that we observed suggests that the lack of

M184V in this context may be attributable to replacement,

which is supported by a prior study showing that very early

replacement of M184V is common: 11% of persons with early

HIV infection had M184V variants detected using a minor

variant assay but not in population sequencing [37]. Other

studies, however, have shown that genotyping with population

sequencing is usually a reliable guide to choosing therapy for

patients with TDR [38, 39]. One way to reconcile these studies

is that M184V variants may rapidly decrease to levels that are

not clinically significant, leaving a relatively short window

during which clinically important frequencies are missed. Pre-

cise quantitation of the prevalence of M184V variants after the

loss of detection on population sequencing, along with corre-

lation with treatment outcomes, could help better define the

threshold for clinically significant levels of M184V.

In analyzing predictors of mutation replacement, we made 2

observations that together raise interesting questions about

host-virus interactions. First, we hypothesized that higher viral

load would predict faster mutation loss but found only a modest

trend. Second, our study included many persons with multiple

baseline mutations, allowing us to assess whether there are

person-level factors influencing mutation replacement. We

found that, after accounting for viral load and mutation drug

class, there was marked person-to-person variability in the

likelihood of mutation replacement. This suggests that there are

additional patient-level factors driving mutation loss. Our

observations about mutation replacement are consistent with

the concept that viral evolution, rather than being driven ex-

clusively by selective (deterministic) events based only on the

fitness costs of mutations, may also be driven by stochastic

forces. This idea that evolution is influenced by a combination of

factors and that the effective viral population size is not simply

reflected by the plasma HIV RNA level has been supported by

seminal studies [40–42] and helps contextualize our results.

Our study has several important limitations. First, we used

population sequence genotypes rather than more sensitive

methods capable of detecting minor variants. This limits our

ability to assess mutations below the detection threshold of

conventional sequencing, which may persist in the viral quasi-

species in sufficient quantities to remain clinically significant.

This phenomenon has been illustrated by studies of the K103N

mutation among women who received single-dose nevirapine to

prevent vertical HIV transmission [43]. Our inability to detect

M184V minor variants in particular suggests that our data may

underestimate the rate at which replacement with wild-type

virus occurs. Second, we included 11 individuals who received

and subsequently interrupted ART. Because viral evolution is

minimal or nonexistent during effective therapy [44–46], we do

not believe that this affected our central observations. Third,

because of the challenges of identifying patients with very early

HIV infection, we could not determine whether any of our

participants acquired mutations and lost them in the earliest

weeks of infection. Fourth, we did not assess all factors that

might influence replacement rates, such as viral tropism.

Although the effective viral population size discussed earlier is

highly pertinent to analyzing rates of mutation replacement,

estimating this factor is complex and requires measurement of

multiple clonal populations that we did not perform. Finally,

caution should be exercised in generalizing our results from

sexual transmission cases to injection drug use transmission.

Because intravenous infections have been shown to be caused

by a multiplicity of viral variants in most cases [47], whereas the

majority of sexual transmissions are caused by single virions

[48], there may be more rapid replacement of TDR in trans-

missions related to injection drug use.

Overall, our data indicate that transmitted M184V/I muta-

tions are unique in their high propensity to wane below the

detection threshold of population genotyping over time. Clini-

cians assessing new patients should consider the possibility that

mutations not present in baseline genotyping may have been

present previously and may have been replaced with wild-type

viral variants, particularly in the case of M184V/I. Further in-

vestigation is warranted on both host and viral factors that are

influencing mutation replacement.
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