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Abstract
Flexible needles with bevel tips are being developed as useful tools for minimally invasive surgery
and percutaneous therapy. When such a needle is inserted into soft tissue, it bends due to the
asymmetric geometry of the bevel tip. This insertion with bending is not completely repeatable.
We characterize the deviations in needle tip pose (position and orientation) by performing
repeated needle insertions into artificial tissue. The base of the needle is pushed at a constant
speed without rotating, and the covariance of the distribution of the needle tip pose is computed
from experimental data. We develop the closed-form equations to describe how the covariance
varies with different model parameters. We estimate the model parameters by matching the
closed-form covariance and the experimentally obtained covariance. In this work, we use a needle
model modified from a previously developed model with two noise parameters. The modified
needle model uses three noise parameters to better capture the stochastic behavior of the needle
insertion. The modified needle model provides an improvement of the covariance error from
26.1% to 6.55%.

I. INTRODUCTION
Needle insertion is one of the most common minimally invasive medical procedures. It is
used in many medical applications such as biopsy, local anesthesia, drug delivery, and
brachytherapy. Rigid needles are typically used, which are unable to maneuver around
bones, nerves, and other obstacles. However, a flexible needle with an asymmetric tip can be
steered inside tissue. In recent years, steerable needles have drawn considerable attention
due to their simple structure and maneuverability [4], [5], [8], [10], [12], [17], [18]. The
needle’s steerability allows corrections to the needle path during an insertion, so fewer
insertion attempts are required to position the needle tip at the desired location. The
maneuverability of steerable needles can also improve the accuracy of the insertion, which
may reduce the possibility of misdiagnosis during a biopsy, or delivery of therapy to the
wrong location. Potential applications of bevel-tipped flexible needles include
brachytherapy [1] and brain surgery [6].

The steerability of a flexible needle comes from the interaction between the asymmetric
bevel tip and the tissue surrounding the needle. When the needle is inserted into soft tissue,
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the bevel tip generates an asymmetric force on the needle, which causes the tip to follow a
nearly circular arc [11]. The direction of the bending is determined by the direction of the
bevel tip. Rotating the needle base around the needle tangent rotates the bevel edge at the
needle tip and, thus, the direction of future bending. If the rotation angle is held constant
during an insertion, the tip of the needle will approximately follow a circular arc with
constant curvature κ. The specific value of the constant κ depends on parameters such as the
angle of the bevel, sharpness of the needle tip, and properties of the tissue. Suppose that a
bevel-tipped flexible needle is rotated with an angular speed ω(t) around its insertion axis
while it is inserted with translational speed υ(t). Using the geometric bending curve of the
needle and the two inputs, ω(t) and υ(t), a nonholonomic kinematic model predicts the time
evolution of the position and orientation of the needle tip [21].

Based on the nonholonomic kinematic model, a stochastic model for the steering of bevel-
tipped flexible needles has been developed and used in [13]–[16]. It uses the unicycle
nonholonomic kinematic model [21] and includes white noises weighted by constants to
capture the nondeterministic behavior of the needle insertion. More accurate models would
improve both image-guided control and path planning. The main purpose of this work is to
determine the model parameters (curvature and noise parameters) using experimental data.
These parameters will be used to inform the path planner of the likely needle tip position
following a planned insertion.

The Fokker-Planck equation (see [3] for general description) corresponding to the stochastic
needle model defines the probability density function (PDF) of the needle tip pose. The
propagation of the covariance of the PDF was previously formulated with first-order
accuracy for robot arms with discrete joints in [19]. Using that formula, we analytically
compute the covariance as a function of parameters for the needle model. Then we match
the theoretical covariance and the experimentally obtained covariance to compute the model
parameters.

II. MATHEMATICAL MODEL FOR NEEDLE STEERING
A. Review of Rigid-Body Motions

The special orthogonal group, SO(3), is the space of 3 × 3 rotation matrices, together with
the operation of matrix multiplication. Any element of SO(3) can be written using the Euler
angles as [2]

where α, β and γ are the ZXZ Euler angles, 0 ≤ α ≤ 2π, 0 ≤ β ≤ π, 0 ≤ γ ≤ 2π. The matrices
Rx(θ) and Rz(θ) represent the rotations by θ around the x and z axes, respectively.

The Euclidean motion group, SE(3), describes rigid-body motions in three-dimensional (3D)
space. It is the semi-direct product of ℝ3 with SO(3). The elements of SE(3) can be written
as [2], [3]

(1)

where R ∈ SO(3) is the 3 × 3 rotation matrix, t ∈ ℝ3 is a 3D translation vector and 0T

denotes the transpose of the 3D zero vector.
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Given a time-dependent rigid-body motion g(t), the velocity of the body-fixed frame written
in body-fixed coordinates can be computed as

where a dot represents the time derivative and se(3) is the Lie algebra associated with SE(3).

The two mappings ∨ : se(3) → ℝ6 and ^: ℝ6 → se(3) relate se(3) and ℝ6 as

and ξ̂ ∨ = ξ, where ξ = (ξ1 ξ2 ξ3 ξ4 ξ5 ξ6)T. The vector ξ = (g−1ġ)∨ contains both the angular
and translational velocities of the motion g(t) as seen in the body-fixed frame of reference.

Let ei, i = 1,…,6 denote the standard basis for ℝ6. The basis given by a set of matrices Ei =
êi, i = 1,…,6 produce elements of se(3), when linearly combined. The elements of SE(3)
then can be obtained by the exponential mapping exp : se(3) → SE(3) as [2], [16]

Therefore, the vector x = (x1 x2 … x6)T can be obtained from g ∈ SE(3) by x = (log g)∨.

The adjoint matrix Adg is defined by the expression

where g ∈ SE(3) is given as in (1), and the skew-symmetric matrix T is given as T = t ̂.

B. Nonholonomic Stochastic Needle Model
Let us consider a reference frame attached to the needle tip as shown in Fig. 1. The z axis
denotes the tangent to the needle tip trajectory, and the x axis is orthogonal to the direction
of infinitesimal motion induced by the bevel tip. The needle bends in the y-z plane. A
nonholonomic kinematic model for the evolution of the frame at the needle tip was
developed in [15], [21] as:

(2)

where κ is the curvature of the needle trajectory and the two inputs, ω(t) and υ(t) are the
rotating and insertion velocities, respectively.

If everything were certain, and this model were exact, then g(t) could be obtained by simply
integrating the ordinary differential equation in (2). However, in practice we obtain an
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ensemble of slightly different trajectories when we repeatedly insert a needle into a soft
medium used to simulate soft tissue [21]. The deviation between the trajectories at the
insertion location can be negligible and will increase as the insertion length increases. A
simple stochastic model for the needle [15], [16] is obtained by letting:

Here ω0(t) and υ0(t) are what the inputs would be in the ideal case, ωi(t) are uncorrelated
unit Gaussian white noises, and λi are noise parameter constants.

By adding one more noise parameter λ3, we define a new nonholonomic needle model with
noise as

(3)

where dWi = Wi(t + dt) − Wi(t) = wi(t)dt are the non-differentiable increments of a Wiener
process Wi(t). The noise parameter λ3 is expected to capture the stochastic behavior in the
rotation around the x axis that the needle model with the constant curvature cannot capture.
The needle model (3) is a stochastic differential equation (SDE) on SE(3). As shorthand, we
write this as

(4)

Similar models arise in various applications [3], [22].

III. COVARIANCE PROPAGATION
We now consider how to determine the model parameters, κ, λ1, λ2 and λ3. In the literature
[13], [15], [16], the noise parameters were set artificially because experimental data was not
available at that time. However, it is desirable to extract the parameters from experimental
data obtained for a specific system. This section derives the equation that relates the
distribution of trajectories and the model parameters.

Corresponding to the SDE (4) is the Fokker-Planck equation that describes the evolution of
the probability density function ρ(g; t) of the ensemble of tip positions and orientations at
each value of time, t [3]:

(5)

where  and ρ(g; 0) = δ(g). In (5), the ‘right’ Lie derivative  is defined for
any differentiable function f(g) as
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For a small amount of diffusion, the solution for the Fokker-Planck equation (5) can be
approximated by a shifted Gaussian function [13], [14], [16]:

(6)

where y = (m(t)−1 ∘ g)∨, and m(t) and Σ(t) are the mean and the covariance of this PDF,
respectively. This approximation is based on the fact that for small diffusion the Lie

derivative is approximated as  [16]. Using this, the Fokker-Planck equation (5)
becomes a diffusion equation in ℝ6. Therefore, (6) is the solution for the diffusion equation.
The probability density function (6) plays an important role in the path planning algorithm
that appears in [13], [14], [16].

We now develop the relationship between (m, Σ) and (h, H) below. m is called the mean of a
probability density function ρ(g) on SE(3), if

(7)

In addition, the covariance about the mean is computed as

(8)

This covariance matrix can also be computed by covariance propagation. The covariance
propagation in [19] is based on the concatenation of a finite number of noisy motions. In the
limiting case of a time-parameterized path of noisy motions, the covariance propagation
formula can be written as [19]

(9)

where D0 = HHT. In principle, m(t) ∈ SE(3) is the mean which is defined in (7). However,
we approximate it using the noise-free path assuming the small diffusion. The noise-free
path can be obtained by integrating (3) with λ1 = λ2 = λ3 = 0. This approximation enables the
closed-form formula for (9) as below.

Consider the special case of insertion with a constant speed (υ0(t) = υ) without rotating
(ω0(t) = 0). In this case, we can write the homogeneous transformation matrix m(τ) as

where h = (κυ 0 0 0 0 υ)T, κ is the curvature of the needle trajectory, υ is the constant
insertion speed and p(τ) = (0, (cos(κυτ) − 1)/κ, sin(κυτ )/κ)T. The rotational part and the
translational part of m(τ)−1 are , respectively.

Since m(τ)−1 ∘ m(t) = m(t − τ) in this special case, the covariance (9) can be rewritten as
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by changing variables, τ′ = t − τ, and then replacing τ′ with τ.

Since D0 = HHT, D0 can be written as

. λi are the noise parameters in (3).
Therefore, we have

where

The covariance can be given as a closed form:

(10)

where

Here S and C denote sin(κυt) and cos(κυt), respectively.
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IV. EXPERIMENTS
We used the device shown in Fig. 2 to perform repeated needle insertions. The needle was
inserted into the artificial tissue by a DC servo motor attached to a linear slide. An additional
DC motor rotates the needle shaft, but this was only used to orient the needle before
insertion in these experiments. A stepper motor attached to the platform holding the artificial
tissue was used to move the tissue between trials. We used a 0.57 mm diameter Nitinol wire
(Nitinol Devices and Components, Fremont, CA, USA) with a bevel angle of roughly 45°. A
telescoping support sheath prevented the needle outside the artificial tissue from buckling
during insertion.

During insertion, images were acquired at 7 Hz from a pair of XCD-X710 firewire cameras
(Sony Corporation, Tokyo, Japan) mounted above the artificial tissue. The image pairs were
then triangulated offline to determine the tip position using a sub-pixel corner finder, which
resulted in sub millimeter accuracy in Cartesian space. We used a transparent plastisol
artificial tissue (M-F Manufacturing Co., Inc., Fort Worth, TX) manufactured from plastic
and softener in a ratio of 4:1. The artificial tissue was approximately 40 mm thick and was
sufficiently transparent for the needle tip to be easily identified. The artificial tissue had a
refractive index of 1.3 and triangulation accounted for refraction assuming that the artificial
tissue’s top surface was horizontal.

The experiment consisted of 100 needle insertions. We inserted the needle 150 mm at 2.5
mm/sec while keeping the rotation angle constant. The needle base then remained stationary
for 1 second to allow the artificial tissue and needle to relax to their final positions. Then the
needle was retracted and the artificial tissue was moved 5 mm perpendicular to the initial
insertion direction to allow the next insertion to generate a new path. The artificial tissue
was moved far enough to ensure that the subsequent insertions did not overlap with previous
paths. This procedure was repeated until 100 trials had been completed. After the first 50
trials were obtained, the artificial tissue was rotated by 180° on the plane so that the final 50
trials were done on the opposite side of the artificial tissue. The artificial tissue and needle
were not replaced during the experiment in order to maintain consistency in the data and
model parameters.

V. DATA PROCESSING AND RESULTS
The needle trajectory near the wall of the artificial tissue cannot be clearly detected by the
vision system for the first 1 to 2 cm because the artificial tissue has limited transparency and
bubbles form around the edge of the artificial tissue. Thus, the first detected position of the
needle tip during each insertion is not exactly the insertion position.

We estimate the insertion point at time t = 0 by extrapolating. First, we fit a circle to the
needle position readings. The use of a circle for extrapolation is reasonable because we
observe a circular trajectory in the needle insertion system. Computation of the best-fit circle
is implemented using the code in [7]. Then we compute the closest point on the circle to the
first detected point. By checking the encoder counts for the insertion length, we can compute
the insertion length for the first detected point. By backtracking from the closest point on the
circle to the first detected point by the recorded length, we can estimate the insertion point.
Each insertion trajectory is translated so that the estimated insertion points for all insertion
trajectories are placed at (0 0 0)T.

In addition to translational matching of the insertion point, we need to align the insertion
directions. Due to the variability of the puncture event at the start of each trial, which is not
modeled here, the directions of repeated insertions are not identical. We can estimate the
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actual insertion direction by computing the tangential direction of the best-fit circle at the
insertion point. Let z be this actual direction. We can compute a vector u as

where × denotes the cross product and z0 is the unit vector along the z axis. The rotation
matrix for alignment is defined as Ra = exp(ûθ) where θ is the angle between z and z0. We
obtain the aligned data by applying this rotation matrix to all position data from each
insertion.

We obtain only the position information of the needle tip using the stereo vision system. The
orientation information can be easily estimated using the best-fit circle again. If we assume
that needle torsion is negligible, the input angle is propagated to the needle tip without delay
or discrepancy. Using this, we can compute the homogeneous transformation matrices for
the needle tip poses.

Let us assume gi(T) represents the ith needle tip pose at time T. Based on (7), we can define
a sample mean ms of gi(T) as

where N is the number of samples. ms can be computed using the iterative method in [20].
Using (8), the sample covariance can be computed as

To evaluate our method, we first tested its performance using simulation data. For given
model parameters, we generate many needle paths by numerically integrating the stochastic
differential equation (3) using the Euler-Maruyama method [9]. We set the time to T = 60 s
and the insertion speed to υ = 2.5 mm/s.

Table I shows 8 cases with different model parameters. In each case, 100 trajectories are
generated, the covariance of the needle tip pose is obtained, and then the model parameters
are computed by matching the covariances obtained by the simulated trajectories and the
analytic equation (10). We implement this matching process by minimizing the following
cost function:

As shown in Table I, the model parameter estimates show that the error is less than 10%
compared to the given values for the parameters.

In order to apply our parameter estimation method to the experimental data, we compute the
covariance of the needle tip pose using the postprocessed experimental data as
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(11)

By matching (10) and (11), the following system parameter estimates are obtained:

(12)

For the verification of these parameters, we evaluate the closed-form covariance matrix (10)
using these estimated parameters. The normalized least-squared error (NLSE) of the closed-
form covariance relative to the sample covariance (11) is 0.0655. The NLSE of Σ2 relative to
Σ1 is defined as ‖Σ1 − Σ2‖/‖Σ1‖.

We now assess the 6.55% error in the covariance given by our stochastic model. We
consider whether this error is due to modeling, experimental error, or the relatively small
number of samples used to compute 6D data. Since the quantity of experimental data that
can be obtained from the same artificial tissue is limited, we use numerically generated data
to investigate the effect of the number of samples. Suppose that our stochastic model with
four parameters (λ1, λ2, λ3 and κ) perfectly describes the needle insertion system. Then using
the parameters in (12) and the Euler-Maruyama method [3], [9], we generate many needle
paths. Taking these paths as experimental data, we follow the same procedure that we used
to estimate the model parameters and the corresponding closed-form covariance. The
difference between the covariance obtained using artificial experimental data (which is
assumed to be perfectly simulated by the Euler-Maruyama method) and the covariance
computed using the closed-form formula is computed. We use 100 sets of 100 needle
trajectories to compute the NLSEs of the covariances and have the mean μ = 0.1137 and the
standard deviation σ = 0.0538 for the NLSEs. It is shown as the first error bar in Fig. 3(a).
After the tests with the different numbers (200, 300, 400 and 500) of sample trajectories, we
also plot the error bars as shown in Fig. 3(a). These error values show the accuracy level that
we can expect when the needle model is perfect. Furthermore Fig. 3(b) shows the error bars
for the NLSEs between the sample covariances and the closed-form covariances. In this test,
we resample the experimental data obtained in Section IV. The NLSEs gets smaller as the
resampling size increases. Comparing Fig. 3 and the 6.55% error that we achieved, and
noticing the decreasing error with the increasing sampling size, we can conclude that the
error is in large part due to sampling effects.

Let us revisit our previous needle model in [13] and [16]. In this model, we employed two
noise parameters λ1 and λ2. By fitting this model to our experimental data, we can estimate
the parameters and obtain the closed-form covariance. The NLSE of the closed-form
covariance relative to the sample covariance (11) is 0.261 (=26.1%), which is much higher
than the error (6.55%) by our new model (3). Therefore, our new model better fits to the
experimental data than the previous one.

VI. CONCLUSION
Using the experimentally obtained trajectories of a bevel-tipped flexible needle, we
estimated the model parameters that are embedded in the stochastic nonholonomic needle
model. We derived the equation that describes how the covariance of the need tip pose is
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related to the model parameters. This formulation is based on the theory of error propagation
[19]. The closed-form covariance as a function of the model parameters was derived for the
case in which the needle is inserted into tissue with constant insertion speed (υ(t) = υ0) and
without rotating (ω(t) = 0).

Using the stereo vision system, the 3D position data of the needle tip were recorded while
the needle was inserted without rotating. Repeating the insertion, we obtained 100 sets of
insertion data. Matching the covariances obtained by the closed-form formula and the
experimental data, we determine the curvature of the needle trajectory and the three noise
parameters which represent the amount of uncertainty in the insertion system. We also
confirmed that our modified needle model in (3) with three noise parameters better fits to the
experimental data than the previous model with the two noise parameters in [13], [16]. The
parameter values that we estimated in this paper were used for needle path planning [14].

The method proposed here may be improved in several ways in the future. First, we can
employ different baseline trajectories. In this paper, we consider only one circular baseline
trajectory. For example, if we insert the needle with a constant rotation velocity ω(t) = ω0 ≠
0, we will obtain a covariance matrix which will be a different form from (10). Considering
both this new covariance and the current covariance (10) may lead to more accurate
determination of the model parameters. Second, the anisotropic property of real tissues
should be considered. The current model (3) assumes that the artificial tissue is isotropic,
although real tissue is anisotropic. Modeling the anisotropy is challenging, but it will be an
essential step for needle insertion to real tissue. Finally, we can increase the accuracy of the
closed-form covariance using a second-order approximation [20]. We leave this work for the
future.
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Fig. 1.
The definition of parameters, inputs and frames in the nonholonomic needle model. Y-Z
denotes the world frame and y-z denotes the body-fixed frame attached to the needle tip.
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Fig. 2.
Experimental setup used to perform 100 needle insertions.
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Fig. 3.
(a) Error bars for the NLSEs between the two covariances obtained by the simulated paths
and by the closed-form formula. (b) Error bars for the NLSEs between the two covariances
obtained by the experimental trajectories and by the closed-form formula.
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