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Abstract
Decisions made under ambiguity may involve a different genetic architecture than those made
under risk. Because gender moderates the effect of genetic polymorphisms on serotonin function
and because there are gender differences in decision-making, the present study examined potential
gender moderation of associations between polymorphisms in important serotonin system
candidate genes (serotonin transporter [SLC6A4] and tryptophan hydroxylase 2 [TPH2]) and
performance on a decision-making task (Iowa Gambling Task, IGT) in healthy, adults (N = 188;
62% women). Subjects were genotyped for the well-studied SLC6A4 promoter variant 5-HTTLPR
and a TPH2 single nucleotide polymorphism in intron-8 (rs1386438). Genotype at rs1386438 was
not associated with performance on the IGT. A significant gender by 5-HTTLPR genotype
interaction effect was detected when decision-making was under ambiguity (i.e. the first block of
20 choices), but not under risk (blocks 2–5). Performance on the first block of 20 choices was not
correlated with performance on subsequent blocks, supporting the interpretation that early
performance on the IGT indexes decision-making under ambiguity, while performance on blocks
2–5 indexes decision-making under risk. These findings suggest that decision-making under
ambiguity and risk may have different genetic architectures and that individual differences in
decision-making under ambiguity are associated with genetic variation in SLC6A4.
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1. Introduction
People routinely make decisions when there is uncertainty about the outcome probabilities
that will result from different choices. Poor decision-making can increase the probability of
engaging in health-risk behaviors and the development of behavioral disorders (Dolan et al.,
2008; Schilt et al., 2008; Tevendale et al., 2008; van der Plas et al., 2008).

There are two types of decisions under uncertainty distinguished by the degree of
uncertainty about outcome probabilities. Decisions under ambiguity are those with unknown
outcome probabilities. Deciding whether to drink a shot of tequila is an example because
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one cannot assign outcome probabilities to the decision. Decisions under risk are those with
known outcome probabilities. Deciding to bet on red while playing Roulette is an example
because the outcome probabilities can be specified.

The Iowa Gambling Task (IGT) is a task with mixed (both gain and loss) gambles (Bechara
et al., 1994) that has been used widely to study individual differences in decision-making. In
the IGT, participants choose cards from four decks that vary systematically in the level of
gain and loss. Initially, outcomes are ambiguous because participants do not yet know the
outcome probabilities associated with choosing from particular decks. As the task progresses
participants learn the outcomes associated with different decks and therefore, at some point,
the IGT begins to assess decision-making under risk (Brand et al., 2007). Although there is
some disagreement about the amount of knowledge participants have about the
contingencies in the IGT and when that knowledge affects performance (Bechara et al.,
2005; Maia and McClelland, 2004), participants should gain knowledge about task
contingencies as the task progresses.

Decision-making under ambiguity and under risk may involve independent brain circuits
and therefore may have different genetic architectures. Decision-making under ambiguity
may involve a “limbic” loop of affective processing, whereas decision-making under risk
may involve a “cognitive” loop (Brand et al., 2006). It may be possible to disentangle the
contributions of the limbic (ambiguity) and cognitive (risk) loops to IGT performance by
analyzing scores obtained early in the task (i.e., ambiguity) separately from those obtained
later in the task (i.e., risk).

The serotonin system contains several genetic polymorphisms that affect aspects of system
function that may be involved in decision-making (Haavik et al., 2008). The serotonin
system innervates many brain areas related to decision-making including the amygdala, the
prefrontal cortex (orbital, ventromedial, and dorsolateral), and striatum (Baumgarten and
Grozdanovic, 1999). Poor decision-making under conditions of risk has been associated with
acute depletion of the dietary amino acid required to synthesize serotonin (tryptophan)
(Rogers et al., 2003), and low serotonin levels are associated with an inability to delay
gratification and detect changes in reward (Denk et al., 2005; van der Plasse et al., 2007).
Finally, genetic polymorphisms in the serotonin system are associated with differences in
amygdala activation to aversive or threatening stimuli, (Brown et al., 2005; Hariri et al.,
2005; Heinz et al., 2007; Lee and Ham, 2008).

An important candidate polymorphism in the serotonin system is the serotonin transporter
linked polymorphic region (5-HTTLPR); a promoter region polymorphism where the
“short” allele is less transcriptionally active than the “long” allele (Lesch et al., 1996).
Genetic variation in the serotonin transporter is associated with individual differences in
ventromedial prefrontal cortex and amygdala activation (Hariri et al., 2005; Heinz et al.,
2005; Heinz et al., 2007) and performance on decision-making tasks (Roiser et al., 2006).

A gene that codes for tryptophan hydroxylase is another promising candidate gene.
Variation in the neuronally expressed tryptophan hydroxylase gene (TPH2) is associated
with individual differences in amygdala activation (Brown et al., 2005), response inhibition
(Stoltenberg et al., 2006), decision-making (Jollant et al., 2007) and executive function
(Reuter et al., 2007).

There is converging evidence that aspects of serotonin function differ for men and women.
Gender differences have been identified in levels of serotonin and of cerebrospinal fluid 5-
hydroxyindoleacetic acid (CSF 5-HIAA; (Ortiz et al., 1988)); serotonin synthesis
(Nishizawa et al., 1997); and binding potential serotonin receptors (Biver et al., 1996).
Furthermore, the genetic architecture of the serotonin system appears to differ for men and
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women (Weiss et al., 2005). There are also gender differences in IGT performance
(Overman, 2004) and in patterns of brain activation during IGT performance (Bolla et al.,
2004).

The present study examined potential associations between 5-HTT and TPH2
polymorphisms on IGT performance in a group of healthy men and women. We
hypothesized that 5-HTTLPR and rs1386483 genotypes would be associated with individual
differences in IGT performance and that these associations would be moderated by gender.
We further hypothesized that these effects were likely to vary depending on whether
decision-making was under ambiguity or risk.

2. Material and methods
2.1. Participants and Basic Procedure

College students (N=200) participating in a larger study on impulsivity and health-risk
behaviors served as subjects. The local Institutional Review Board approved the study and
written informed consent was obtained from all individuals prior to study participation. To
reduce the risk of population stratification, the present analysis included the 94% of
participants who identified themselves as Caucasian (N = 188; 71 men, 117 women). Ages
ranged from 18 to 47 years (M = 22.55, SD = 5.52). Participants were recruited using flyers
and in-class presentations and were compensated $5 for their time.

2.2. Measures
Participants completed a series of questionnaires and computer tasks designed to examine
impulsivity and risky behavior; the A´B´C´D´ version of the Iowa Gambling Task (IGT)
(Bechara et al., 1994; Bechara et al., 2000), with no monetary reward for performance; and
donated buccal cells for genotyping.

2.3. Genetic Analysis
DNA was extracted from buccal cells and used in 20µL PCR reactions with 20–25 ng/ul of
DNA per reaction. The serotonin transporter linked polymorphic region (5-HTTLPR) was
amplified using the following primers: 5-HTTLPR-F: 5’- CGC TCT GAA TGC CAG CAC
CTA ACC -3’ and 5-HTTLPR-R: 5’- GGG ATT CTG GTG CCA CCT AGA CGC -3’. PCR
conditions for 5-HTTLPR were 32 cycles of the following: 94°C for 45 s, 52°C for 45 s, and
72°C for 1 min (Yonan et al., 2006). The intron-8 polymorphism of tryptophan
hydroxylase-2 (rs1386483) was amplified using the following primers: TPH2-F: 5’- GCT
GGC TCT GAA CGT GTA TTT TG -3’ and TPH2-R: 5’- TTT GGC TGA TTT TCC TAA
TTA AT -3’. PCR conditions for TPH2 were 34 cycles of the following: 94°C for 1 min,
52°C for 45 s, and 72°C for 45 s and products were digested using 5.0U SspI (New England
Biolabs). (Stoltenberg et al., 2006). Genotypes were visualized on agarose gels with
ethidium bromide staining under UV light. For technical reasons, genotypes were available
for 187 participants for 5-HTTLPR and 177 participants for TPH2. No other genetic
polymorphisms were assessed for associations with IGT performance in this study.

2.4. Statistical Analysis
Iowa Gambling Task net scores were calculated by subtracting the number of
disadvantageous choices from the number of advantageous choices ((C´ + D´) − (A´ + B´))
for each of five 20-card blocks. Repeated-measures ANOVAs were performed with gender
and genotype as between subjects factors, block as a within subjects factor, and IGT net
score as the dependent variable. Our initial statistical analyses grouped the 5-HTTLPR
genotypes into two categories (S/S + L/S = S/_ and L/L) to conserve statistical power and
because of the evidence of the dominance of the S allele for relatively lower transcriptional
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efficiency. We subsequently ran the same analyses with three 5-HTTLPR genotype groups
and found no differences in the overall pattern of results (data not shown).

3. Results
3.1. Allele and Genotype Frequencies

For 5-HTTLPR, allele frequencies were .56 for the long allele (L) and .44 for the short allele
(S). Sixty-two participants were homozygous L/L, 86 were heterozygous L/S, and 39 were
homozygous S/S. The genotype distribution was in Hardy-Weinberg equilibrium, χ2(2, N =
187) = 0.79, p > .05. For rs1386483, allele frequencies were .73 for cytosine (C) and .27 for
thymine (T). Ninety-six participants were homozygous C/C, 67 were heterozygous C/T, and
14 were homozygous T/T. The genotype distribution was in Hardy-Weinberg equilibrium,
χ2(2, N = 177) = 0.25, p > .05.

3.2. Iowa Gambling Task Performance
Repeated-measures ANOVA, with IGT net scores across five blocks as the dependent
variables and gender, 5-HTTLPR dichotomous (S/_ and L/L) and their interaction as factors,
identified no significant between subjects effects. So, overall (i.e. pooled across blocks) IGT
net score did not depend on gender or genotype.

Within subjects analyses identified a highly significant block effect, F(4, 732) = 54.78, p < .
001. The pattern of net score change over block was significantly linear F(1, 183) = 111.47,
p < .001, with quadratic F(1, 183) = 31.62, p < .001, and 4th order non-linear characteristics
F(1, 183) = 5.01, p < .04. Mean net scores increased relatively linearly from −3.63 in block
1 to 7.02 in block 4 and then regressed slightly in block 5 to 6.52. Overall, these results
indicate participants made more advantageous choices as the task progressed.

Within subjects analyses also identified a highly significant block by gender interaction, F(4,
732) = 6.95, p < .001. Contrasts indicated that the pattern of change across blocks for men
and women was linear F(1, 183) = 16.95, p < .001. Univariate F tests indicated that gender
differences were significant in block 1 F(1, 183) = 7.49, p < .008 and in block 5 F(1, 183) =
9.47, p < .003. Post hoc comparison of means indicated that women had a higher net score
than men in block 1 (−2.28 and −5.46, respectively) and that women had a lower net score
than men in block 5 (4.49 and 9.41, respectively)

The within subjects effect for block by 5-HTTLPR genotype was not significant, F(4, 732) =
0.27, p < .95. Within subjects analyses of the block by gender by 5-HTTLPR genotype,
however, identified a highly significant effect F(4, 732) = 3.89, p < .005, with a quadratic
trend F(1, 183) = 6.39, p < .015. Univariate F tests indicated that the gender by 5-HTTLPR
genotype interaction effect was present only in block 1 F(1, 183) = 13.74, p < .001, when
participants are most uncertain as to which decks are advantageous (i.e. ambiguity, see
Figure 1). In block 1, men with the L/L genotype made the most disadvantageous choices
and women with the L/L genotype made the fewest. Men and women with at least one short
allele (i.e. S/_) performed similarly to each other in block 1 with mean net scores that were
intermediate to those with L/L genotypes. Performance on block 1 was not significantly
correlated with performance on any of the other IGT blocks (see Table 1). Correlations
among blocks 2 – 5 were all statistically significant (all p < .01). This pattern of results is
consistent with the interpretation that performance on block 1 indexes decisions under
ambiguity and subsequent blocks index decisions under risk.

A repeated-measures ANOVA with IGT net score as the dependent variable revealed no
main effect for rs1386483 genotype, F(4, 692) = 0.68, p < .65. There was also no significant
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interaction effect for rs1386483 genotype and gender, F(4, 692) = 0.38, p < .85. As
expected, there was a significant block by gender interaction, F(4, 692) = 3.75, p < .006.

4. Discussion
Our results indicate that performance on the Iowa Gambling Task, when decisions are made
under ambiguity, is associated with 5-HTTLPR genotype; and that the association is
moderated by gender. Men with at least one short allele (S/_) made more advantageous
choices than L/L homozygous men on the first block of the IGT. This finding is consistent
with affective processing studies in which individuals with a short allele exhibit increased
amygdala activation to fearful or ambiguous stimuli (Hariri et al., 2005; Heinz et al., 2007)
and increased amygdala/ventromedial prefrontal cortex coupling (Heinz et al., 2005). In the
first block, S/_ men may have been more sensitive than L/L homozygotes to the first large-
losses of the disadvantageous decks – developing a preference for the advantageous decks
more quickly. Women L/L homozygotes made more advantageous choices on the first
block, which is not consistent with studies of 5-HTTLPR variation and amygdala reactivity.
However, two of the three studies reviewed (Heinz et al., 2005; Heinz et al., 2007) had all-
male samples. More studies on 5-HTTLPR and amygdala activation that explicitly consider
gender are needed to determine if the present finding is consistent with affective-processing
in women.

When the data were analyzed using three genotype groups (i.e. S/S, L/S and L/L, data not
shown), instead of two (i.e. S/_ and L/L), the pattern of results did not change. That is, there
was a significant gender by genotype interaction on IGT net score in block 1, but not in any
of the subsequent blocks. In fact, the mean scores for the heterozygous groups were not
significantly different from the S/S homozygotes for both men and women; a pattern
consistent with dominance for the lower functioning S allele. One interpretation for the
observed pattern of results is that individuals with an S allele primarily use affective cues
when making decisions under ambiguity, whereas, L/L homozygotes are better able to
suppress affective responses due to increased coupling between the anterior cingulate cortex
and the amygdala (Roiser, et al., 2009). This decreased reliance on affective processing may
enable L/L homozygotes to use other decision-making strategies such as heuristics or to rely
on relevant personality traits such as sensation seeking; and the gender difference seen in the
L/L homozygotes may reflect differential use of brain areas and/or decision-making
strategies (Bolla, et al., 2004).

Men homozygous for the L allele appear to be in jeopardy for making disadvantageous
decisions under ambiguity. However, they do not appear to make disadvantageous decisions
under conditions where more information about outcome probabilities is available. When
situations are inherently ambiguous, like decisions to drink alcohol, men with the L/L
genotype might be at greatest risk. This, when coupled with evidence for an initial lower
level of response to alcohol and higher alcohol intake (Hinckers, et al., 2006) and enhanced
sensitivity to the neurotoxic effects of alcohol (Heinz, et al., 2004) suggests that L/L men
may be at elevated risk for alcohol problems. Our pattern of results is consistent with recent
findings that L/L homozygotes may be less sensitive to punishment-related information
when compared to individuals with alternative 5-HTTLPR genotypes (e.g. Blair, et al.,
2008), and with the findings of Bolla, et al, (2004) that men have more activation in the right
lateral orbital frontal cortex, an area implicated in punishment, during IGT performance.
More work is needed to further characterize the mechanisms of decision-making under
ambiguity and special attention should be paid to 5-HTTLPR genotype and gender.

Two recent reports, that used the same data set, have identified an association between 5-
HTTLPR genotype and performance on the IGT (Homberg et al., 2008; van den Bos et al.,
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2008). Women with the S/S genotype chose more disadvantageously than those with the L/L
genotype and this effect was most pronounced as the IGT progressed (i.e. cards 41–50). Our
findings are somewhat consistent with these results, in that we observed women carriers of
the S allele to choose more disadvantageously than women with the L/L genotype. However,
we observed the effect in the early part of the IGT (cards 1–20). Both Homberg, et al.,
(Homberg et al., 2008) and van den Bos, et al., (van den Bos et al., 2008) analyzed the data
in just two blocks (cards 1–40 and 41–100), which may have obscured the effects that we
observed. In addition, neither of these studies tested males, which did not allow testing for a
gender by genotype interaction. The largest sample size in these studies was 89 (Homberg et
al., 2008), in contrast to our more statistically powerful sample of 188 (117 women).
Clearly, further work is required to fully characterize the effects of gender and 5-HTTLPR
genotype on decision-making.

The results of the present study, albeit indirectly, add to convergent evidence that genetic
variation in serotonin components differentially affect serotonin functioning in men and
women (Weiss et al., 2005; Williams et al., 2003). However, because we did not directly
measure any aspect of 5-HT function, we are unable to make clear statements regarding the
relationship between specific aspects of 5-HT function and decision-making.

Our results did not support our hypothesis of an effect of a TPH2 intron-8 polymorphism
(rs1386483) on decision-making. Although TPH2 polymorphisms are associated with
executive function (Reuter et al., 2007) and response inhibition (Stoltenberg et al., 2006), we
did not find an association between rs1386483 and IGT performance. That our finding is
inconsistent with other studies of TPH2 genetic variants (e.g. Brown, et al., 2005; Jollant, et
al., 2007 and Reuter, et al., 2007) may be due to the fact that we did not assess the same
polymorphism.

In the present study, IGT performance was not significantly correlated with several
measures of impulsivity (i.e. Barratt Impulsiveness Scale, version 11 -- total and subscales;
Stop Task performance—Go reaction time, Go Accuracy or Stop Signal reaction time). The
only exception was that IGT performance in block 5 was significantly, but weakly,
correlated with Stop Signal Reaction Time, r = .14, N = 188, p < .05. However, because this
correlation matrix contained 35 comparisons, this result may be the result of a Type II error
and should be interpreted cautiously. At least for those varieties assessed by the BIS-11 and
the Stop Task, impulsivity does not appear to be an important influence on IGT performance
(data not shown).

The present findings are consistent with previous reports of gender differences on the IGT
(Bolla et al., 2004; Reavis and Overman, 2001; Weller, et al., 2009). Within subjects
analyses identified a highly significant block by gender effect whereby women made more
advantageous choices than men in block 1 (i.e. under ambiguity), but by block 5 (i.e. under
risk) women made significantly fewer advantageous choices than men. In fact, scores for
women remained rather constant across Blocks 2 to 5, whereas scores for men showed
gradual and steady improvement. This pattern of results suggests that men were better able
than women to learn the outcome probabilities of their choices as the task progressed.
However, when overall performance is considered, there was no significant gender
difference. Gender differences were revealed only within subject performance across blocks.
This pattern of results demonstrates the utility of dividing IGT performance into blocks,
making it possible to index different decision-making processes. We did not assess other
measures of learning in this study, but we agree with the suggestion by Jollant, et al., (2007)
that the involvement of learning processes in decision-making is important to understand
and requires further study. Gender differences in IGT performance do not appear to be due
to differences in computational skill (Overman et al., 2006), but to differential activation of
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areas of the prefrontal cortex such as the orbitofrontal cortex (Bolla et al., 2004) and the
dorsolateral prefrontal cortex (Bolla et al., 2004; Overman et al., 2006). These studies, when
combined with the literature reporting 5-HTTLPR differences in amygdala activation in
response to threat or ambiguity, suggest that studies specifically designed to identify gender
by 5-HTTLPR interactions in the activation of threat/loss aversion circuitry and in cognitive
processes is necessary to fully characterize these systems.

When interpreting the present results, the following factors should be considered. First, it is
unclear if our findings will generalize to non-Caucasian populations. For 5-HTTLPR,
Gelernter, Kranzier, and Cubells (Gelernter et al., 1997) reported differences in allele
frequencies and linkage disequilibrium blocks in African American, European American,
and Japanese populations. For various TPH2 polymorphisms, Zhou et al. (Zhou et al., 2005)
reported differences in allele frequencies and linkage disequilibrium blocks in Caucasian,
African American, and Native American populations. Second, the present study was limited
by the fact that 5-HTTLPR by TPH2 genotype interaction was not examined. Epistatic
interactions are likely to exist among 5-HT system components (Stoltenberg, 2005);
however, our relatively small sample size limited our ability to test them. Third, other
genetic polymorphisms in the 5-HT system should also be considered. Fourth, we did not
assay hormones or control for menstrual phase, both of which appear to be relevant in the
function of the serotonin system and in decision-making (Birzniece et al., 2006; Reavis and
Overman, 2001; van Honk et al., 2004).

To better understand 5-HTTLPR/gender mechanisms underlying decision-making, future
studies should examine IGT performance in healthy individuals with respect to (a) serotonin
levels (e.g. manipulated by acute tryptophan depletion), (b) amygdala/ventromedial
prefrontal cortex activation, (c) state and trait anxiety, (d) learning, (c) working memory,
and (e) use of heuristics. Future studies would also benefit from studying 5-HTTLPR
genotype and gender with respect to other tasks that assess decision-making under
ambiguity or risk. In addition, decision-making studies should look for a 5-HTTLPR by
rs1386483 interaction, as well as interactions among other serotonin system genes.

Our results suggest that for healthy individuals the transition from decisions under
ambiguity to decisions under risk may take place as early as the second block of the IGT,
which is consistent with the findings of Weller, et al., (2004). Such an effect would not be
identified if performance on the IGT were analyzed as the total net score (e.g. (Must et al.,
2007) or by examining performance in the first and second halves of the task (e.g. (Jollant et
al., 2007). We did not obtain verbal reports from participants regarding their knowledge
about the game, but performance on block 1 (first 20 choices) was uncorrelated with
performance on blocks 2–5, which were all positively intercorrelated, which is consistent
with the ambiguity versus risk distinction.

In conclusion, our study provides evidence for a gender by 5-HTTLPR genotype interaction
effect on decision-making under ambiguity. The observed pattern of results adds to
convergent evidence for differential serotonin functioning for men and women grouped by
5-HTTLPR genotype. However, it is not clear whether this pattern of results was due to
differential 5-HT function in adults or due to neurodevelopmental differences in relevant
brain circuits that preceded task performance. Because the observed interaction was
statistically significant only when outcomes were ambiguous, our finding supports the
position that decisions under ambiguity and decisions under risk may be influenced by
different underlying genetic architecture.
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Figure 1.
Mean net scores (advantageous – disadvantageous choices) on blocks (each consisting of 20
choices) one through five of the Iowa Gambling Task (IGT), for men and women grouped
by 5-HTTLPR genotype (S/_ or L/L). Error bars represent the standard errors of the means.
*** p < .001
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