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Most of the work in evolutionary game theory starts with a model of a social situation that gives rise to a par-

ticular payoff matrix and analyses how behaviour evolves through natural selection. Here, we invert this

approach and ask, given a model of how individuals behave, how the payoff matrix will evolve through natural

selection. In particular, we ask whether a prisoner’s dilemma game is stable against invasions by mutant gen-

otypes that alter the payoffs. To answer this question, we develop a two-tiered framework with goal-oriented

dynamics at the behavioural time scale and a diploid population genetic model at the evolutionary time scale.

Our results are two-fold: first, we show that the prisoner’s dilemma is subject to invasions by mutants that

provide incentives for cooperation to their partners, and that the resulting game is a coordination game similar

to the hawk–dove game. Second, we find that for a large class of mutants and symmetric games, a stable gen-

etic polymorphism will exist in the locus determining the payoff matrix, resulting in a complex pattern of

behavioural diversity in the population. Our results highlight the importance of considering the evolution

of payoff matrices to understand the evolution of animal social systems.

Keywords: evolutionary game theory; prisoner’s dilemma; hawk–dove game; behavioural dynamics;

two-tiered model
1. INTRODUCTION
Evolutionary game theory (EGT) is one of the fundamen-

tal tools to study how behaviour and traits of organisms

evolve by natural selection. An evolutionary game is

defined by different genetical strategies and their fitness

(i.e. reproductive output) when they interact with each

other. The genotypes increase or decrease in frequency

according to their fitness given the frequencies of

other strategies in the population. This process fre-

quently (but not always) leads to an evolutionarily stable

strategy (ESS), which is a strategy that, when fixed

in the population, cannot be invaded by alternative

strategies.

Earlier EGT models in biology tended to assume that

the genetical strategies correspond to actual behaviours

[1], or simple conditional rules that prescribe a certain

behaviour given the state of the individual and the inter-

action (e.g. the tit-for-tat strategy [2]). More recent

work has focused on interactions where individuals’ be-

haviour is not directly determined by their genes, but

instead reflect the outcome of a dynamical process

where the players respond to each other according to

proximate mechanisms that prescribe their behaviour

[3–7]. In particular, Roughgarden [8] calls for an expli-

citly two-tiered conception of behavioural evolution: the

first tier describes the dynamics of behaviour within

the time scale of an interaction where individuals can

adjust their actions in response to the context and the

behaviours of others. The second tier, on the other
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hand, is defined by the usual evolutionary game, with

the distinction that the fitness values of the individuals

are determined by the result of the behavioural dynamics

in the first tier.

A two-tiered conception of behavioural evolution calls

for more explicit models of proximate mechanisms of

behaviour, instead of relying on implicit assumptions

and ad hoc interpretations of ESS outcomes. Further-

more, the introduction of behavioural dynamics opens

the door to new questions that have been overlooked pre-

viously, but have important evolutionary consequences.

The first such question is what the dynamics at the behav-

ioural tier look like. The two-tiered approach allows

dynamics where individuals may coordinate their actions

and act in concert with each other even if their fitness

interests are not aligned completely [6,9], and explicitly

model the evolution of other-regarding motivations [10].

In this paper, we are concerned with a second, comp-

lementary question; namely how the payoffs from the

social interaction themselves can evolve. To be more precise,

we make a clear distinction between the ‘behavioural game’,

which consists of the observable actions and material pay-

offs to the individuals, and the ‘evolutionary game’, which

is played between genetical strategies at the population

level. The same behavioural game can give rise to many

different evolutionary games, depending on how behaviour

is determined and whether individuals interact with each

other repeatedly, etc. Most work in EGT is concerned

with taking a given behavioural game and transforming it

into different evolutionary games by adding different rules

for decision-making. In contrast, we fix the decision-

making rule, and look instead at how the payoffs from the

behavioural game can evolve. To our knowledge, only one

previous study [11] has taken up this question before.
This journal is q 2010 The Royal Society
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We illustrate our argument with a simple example below; a

more general treatment is provided in the following sections.

(a) A motivating example

Consider two male birds that defend adjacent territories.

Each one can either fight (F) or make peace (MP) with

the other [12]. Fighting is costly in terms of time and

energy, and carries the risk of injury. Making peace

avoids these costs, but when a bird tries to make peace

unilaterally, it loses its territory to its fighting opponent.

This description of the possible behaviours and their

material consequences constitutes the behavioural game,

which in this instance has the familiar structure of the

prisoner’s dilemma:

male 2

make peace (MP) fight ðFÞ
MP 3;3 0;5

male 1
F 5;0 1; 1:

ð1:1Þ

The payoffs to the first and second males are given by

the first and second number in each cell, respectively.

They stand for the material costs and benefits individuals

experience as the result of the social interaction—for

example, the territory area of an individual after the

interaction minus any effort spent on fighting.

When confronted with such a behavioural game, evol-

utionary game theorists have to make several decisions to

translate it into an evolutionary game and ask which beha-

viours will emerge from natural selection. The most basic

EGT assumptions are to take a very large population,

match every individual at random to play the behavioural

game only once and let the action of the individual be

determined by its genetic locus. Under these assumptions,

the evolutionary game looks exactly the same as the behav-

ioural game, and it is easy to see that the alleles for fighting

will increase in the population, as they have a higher fitness.

On the other hand, if the behavioural game is being

played repeatedly, there can be other types of alleles

that prescribe conditional behaviour, such as the

tit-for-tat strategy [2,12], where individuals behave

aggressively against fighting neighbours but not peaceful

ones (e.g. [13]). In this case, the strategies in the evol-

utionary game include different conditional strategies.

The fitness of each strategy will depend also on factors

such as how many rounds of the game are played, whether

the game is played against the same opponents, and so on.

Thus, one can construct many evolutionary games from a

single repeated behavioural game by adding new decision

rules as possible evolutionary strategies, so that even if the

behavioural game is a prisoner’s dilemma, the evolutionary

game rarely is.

Another way the evolutionary game can be trans-

formed is to not change the decision-making rule, but

alter the payoffs from the behavioural game itself. For

example, take a population playing game (1.1), where

initially all individuals fight, and suppose that one of the

males (say male 2) carries a mutation that reduces the

level of testosterone in circulation during territorial con-

tests. Suppose that due to this mutation, male 2 ‘pulls

his punches’ when fighting and displays reduced aggres-

siveness outside its territory. Label this modified

fighting strategy F*. As a consequence, the mutant

male 2 would leave a larger share of the territory to
Proc. R. Soc. B (2011)
male 1 even when the latter is not fighting. In this case,

the payoff matrix of the behavioural game between the

mutant male 2 and resident male 1 might look like this:

male 2

MP F*

MP 3;3 1:5; 3:5
male 1

F 5;0 1;1:

ð1:2Þ

In the conventional EGT, the new strategy F* would

be added to the evolutionary game, leading to a sym-

metric 3 � 3 evolutionary game matrix, with the choice

between F, MP and F* determined genetically. In this

scenario, the residents who play F would not play differ-

ently against the F* mutant; hence the mutant would

not be favoured against the resident. In contrast, the

two-tiered approach allows male 1 to change its behaviour

depending on whether it encounters a mutant male 2 or a

resident one. In particular, suppose that male 1 is able to

recognize that his payoff is higher when making peace

than fighting and adjust its behaviour to take advantage

of this higher payoff. Then the outcome of the behaviour-

al game (1.2) would be the mutant male 2 playing F* and

male 1 playing MP, which yields a payoff 3.5 . 1 to the

mutant genotype. Hence, the mutant allele will be

favoured against the resident, and natural selection will

lead the population away from the prisoner’s dilemma

behavioural game we started with.

The simple example above illustrates how the two-tiered

conception of EGT opens up new ways to transform the

evolutionary game. These possibilities bring with them a

number of issues that need to be dealt with, such as how

much information individuals have, and whether and

how they can commit to various actions; we take up

these issues as we introduce the general model below and

also in §4. In the sections that follow, we introduce our

formal two-tiered framework with goal-oriented dynamics

at the behavioural tier and a population-genetic model at

the evolutionary tier. We then present an analysis that gen-

eralizes the intuition from the motivating example above.

In particular, we show under which conditions mutants

can successfully invade a prisoner’s dilemma game by pro-

viding incentives for their opponents to cooperate. The

resulting behavioural games are similar to the hawk–dove

game. Furthermore, a genetic polymorphism can be main-

tained in the population, leading to a diversity of games

and behavioural outcomes. We conclude with a discussion

of our assumptions and the implications of our results.
2. THE FRAMEWORK FOR PAYOFF MATRIX
EVOLUTION
Consider a social interaction between two individuals,

such as the territorial competition described above. Indi-

viduals in such an interaction might have different roles

(e.g. territory holder versus floater, or male versus

female). The role of the individual might be determined

genetically (e.g. male versus female) or environmentally

(e.g. territory holder versus floater). Likewise, the actions

available and the payoffs from those actions might be the

same (resulting in a symmetric game, as in the game

(1.1)) or different for the two roles. An allele that affects

the entries in the payoff matrix can find itself in either role

and in general might have different effects in each role.
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To describe the frequency dynamics of alleles that

affect the payoff matrix, we build a single-locus, diploid

population genetics model. We have two alleles, A and

B, and thus three genotypes: AA, AB and BB, which we

index with A, H (for heterozygote) and B, respectively.

We denote a game by Gij when genotype i is in role 1

and genotype j is in role 2. We assume that two individuals

are randomly matched to play a game, and afterwards

each is assigned a role in the interaction. We define rij

as the probability that genotype i plays role 1 when

paired with genotype j. By this definition, rij ¼ 1 2 rji,

and thus rii ¼ 0.5.1

(a) The behavioural outcome

We assume for simplicity that the payoff from the focal

game is the main determinant of an individual’s fitness.

The outcome of the game is determined by a behavioural

dynamics where individuals adjust how much time they

allocate among the two actions as a function of their pay-

offs. In particular, denote the fraction of time the role 1

player allocates to its action 1 by x1; similarly, denote by

x2 the fraction of time role 2 allocates to its action 1

(x1, x2 [ [0,1]). We will assume that the players adjust

their allocations during behavioural time to maximize

their own payoff (termed ‘individual play’ in [6]).

Hence, the behavioural dynamic is given by

dx1

dt
¼ @u1

@x1

ð2:1Þ

and

dx2

dt
¼ @u2

@x2

; ð2:2Þ

where u1 and u2 are the payoffs to the role 1 and role 2

players; in a bimatrix game, the payoffs will be linear in

x1 and x2. We assume that the players will rapidly come

to an equilibrium point of the behavioural dynamics.

These dynamics are mathematically equivalent to a two-

population bimatrix game, and therefore any stable

equilibrium of the behavioural dynamics will correspond

to a pure strategy Nash equilibrium (NE) of the game

[14,15]. We label the outcome of game Gij with Vij,

which is a vector with two components, representing the

payoff to each player. Thus, Vij,1 is the payoff to the

role 1 player, and Vij,2 is the payoff to role 2.

The behavioural dynamics allow individuals to discern

their actual payoffs and adopt new actions when confronted

with new games. The behavioural dynamic in our model is

essentially a repeated game with a very fast succession of

stage games, which allows individuals to adjust their actions.

Note that the key assumption is that players can discern

local (but not global) variation in their payoffs, and adjust

behaviour ‘myopically’. As emphasized in §1, this behav-

ioural plasticity is crucial to our model; in the absence of

it, mutants that provide incentives to their opponents

cannot ever benefit from doing that.

(b) The pairwise interaction model

We embed the behavioural dynamics in a diploid

population genetic model that operates over micro-evol-

utionary time scale. In the electronic supplementary

material, we provide the full recursion equations for the

population genetic model, which are equivalent to
Proc. R. Soc. B (2011)
the ‘pairwise interaction model’ (PIM) of frequency-

dependent selection [e.g. 16,17], with the interaction

coefficients aij between genotypes i and j defined as

aij ¼ ðrijVij;1 þ ð1� rijÞV ji;2Þ: ð2:3Þ

These interaction coefficients aij represent the

expected payoff of genotype i from a pairing with geno-

type j, weighted by the probabilities of assuming either

role. The recursion equations become:

�wq0 ¼ fA½ fAaAA þ fHaAH þ fBaAB� þ 1=2fH½ fAaHA

þ fHaHH þ fBaHB�; ð2:4Þ

where �w is the mean fitness, q0 the allele frequency in the

next generation and fi the Hardy–Weinberg frequency of

genotype i when allele A is at frequency q (i.e. fA ¼ q2,

fH ¼ 2q(1 2 q), fB ¼ (1 2 q)2). The PIM always converges

to an equilibrium and does not exhibit cyclic or chaotic

dynamics when the interaction coefficients aij are non-

negative [17], which is a reasonable assumption in our

framework.

This full recursion equation simplifies under special

circumstances, when q � 0 and q � 1, which give us the

invasion and fixation conditions, respectively. Allele A

can invade a population of BB homozygotes when

aHB . aBB. Conversely, allele A can go to fixation when

aAA . aHA. If no allele A satisfies the invasion condition,

then allele B can be said to be evolutionarily stable

(external stability sensu [18]).

Note that phenotypic ESS models are equivalent to a

haploid, one-locus genetic model, which would have

only two genotypes (A and B alleles). One can reduce

our diploid model to a haploid one by adopting the con-

vention of denoting one homozygote and the heterozygote

genotypes by the alleles A and B, and considering the 2 �
2 evolutionary game matrix consisting of the interaction

coefficients that correspond to these genotypes. Note

that this modification of our model makes no difference

for the invasion conditions, which can be interpreted in

the context of standard evolutionary stability analysis.
3. STABILITY OF THE PRISONER’S DILEMMA
(a) The symmetric case

In this section, we apply our framework to a generic pris-

oner’s dilemma game, generalizing the example given

in §1. We assume that the role distribution is symmetric

(i.e. rij ¼ 0.5 for all genotypes i and j). In addition, we

assume the initially resident game is symmetric.

The game matrix between two homozygotes of the

resident allele B, GBB, is given by

GBB :

role 2

C D

C r; r s; t
role 1

D t; s p; p;

ð3:1Þ

where the actions C and D stand for ‘cooperate’ and

‘defect,’ and the following inequalities hold: t . r . p . s.

The outcome of the game with individual play is

VBB ¼ (p,p). Now, suppose a mutant allele A arises,

which invests into changing the payoffs from the game.

Specifically, assume that the mutant provides a ‘side-pay-

ment’ s . 0 to its partner that it can only receive when it
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plays C when the mutant is playing D, and pays a cost

x(s) . 0 for this side-payment. We assume that the

cost reflects a decrease in a component of the mutant’s

fitness that is unrelated to the social interaction in

question. For example, if the mutant allele reduces

testosterone levels in the blood during territorial contests

between two males, that might have a negative effect on

the success of the mutant male in attracting a mate. By

this assumption, the mutant pays the cost regardless of

the eventual outcome of the interaction. Hence, mutant

heterozygotes play the following games GHB and GBH
with the resident homozygotes:

GBH : C D

C r; r � xðsÞ sþ s; t � xðsÞ
D t; s� xðsÞ p; p� xðsÞ

GHB : C D

C r � xðsÞ; r s� xðsÞ; t
D t � xðsÞ; sþ s p� xðsÞ; p:

ð3:2Þ
(b) Invasion conditions

There are two possible cases: either s . p 2 s or s , p 2 s.

In the latter case, the NE is unchanged, and therefore such

a mutant can never invade, since it is paying a cost and

receiving no benefits. When s . p 2 s, however,

the outcomes of these two games are shifted relative to

GBB, and become VBH ¼ (s þ s, t 2 x (s)) and VHB ¼

(t 2 x(s), s þ s). Thus, aHB¼ t 2 x(s), and the invasion

condition aHB . aBB becomes

t � p . xðsÞ: ð3:3Þ

In other words, for the invasion of a mutant making a

side-payment, the side-payment has to be large enough

to shift the NE, and the cost of this side-payment should

be less than the benefit to be gained. With these criteria,

the stability of a game depends critically on the relationship

between the cost x(s) that the mutant pays to make a side-

payment of s. In the special case where the side-payment is

zero-sum in nature (i.e. when x(s) ¼ s), the invasion con-

ditions are reduced to t þ s . 2p. This means that

whenever the total payoff from the new NE induced by

the mutant allele is greater than the total payoff from the

NE of the resident game, the resident game can be invaded

by a mutant. On the other hand, if there is some ‘ineffi-

ciency’ in making side-payments (i.e. x(s) . s), invasion

becomes more difficult, all else being equal. This situation

can occur when the side-payment consists of a resource

that increases one’s payoff in an accelerating manner: if

the individual with the greater resource makes the side-

payment, its loss will be greater than the recipients’ gain.

On the other hand, gains can also occur, with s . x(s),

if the benefit from the resource exhibits diminishing

returns to scale. This situation would facilitate the invasion

of the resident game by the mutant A allele.

If a mutant can invade the game, what then is the con-

sequence of an invasion (i.e. what does the game between

mutant individuals look like)? The game between

heterozygotes, GHH is given below:

GHH : C D

C r � xðsÞ; r � xðsÞ sþ s� xðsÞ; t � xðsÞ
D t � xðsÞ; sþ s� xðsÞ p� xðsÞ; p� xðsÞ:
Proc. R. Soc. B (2011)
This payoff matrix looks very different from the prisoner’s

dilemma: both off-diagonal cells are now NE, but each

player prefers a different one. This game is similar to

the hawk–dove game [19]. Besides the presence of two

alternative NE, the game GHH also features reduced con-

flict of interest between the players, as shown in figure 1,

which depicts the payoff polygons of the games GBB given

in equation (1.1) and GHH with s ¼ x(s) ¼ 1.5. The

payoff polygon is a plot of the different outcomes in the

game in the payoff-space and the convex set resulting

from linear combinations of these outcomes. The edges

of the polygon running from the upper left to lower

right-hand side denote the Pareto boundary: the set of

outcomes upon which it is not possible to improve both

players’ payoffs simultaneously, also called efficient out-

comes in economics. The length of this boundary can

be taken as a measure of the potential conflict of interest:

the longer the Pareto boundary, the greater the difference

between the preferred outcomes of the two players. The

invasion of the A allele shortens this boundary by

moving the outcomes (C,D) and (D,C) closer together.2

Furthermore, with the invasion of the mutant, the prefer-

ences of both individuals among the pairs (C,D) and

(D,D), and (D,C) and (D,D) become concordant in

game GHH. This is another sense in which the allele A

corresponds to reduced conflict between the players; see

§4 for more on this issue.

Incidentally, a coordination game such as GHH pre-

sents an additional question: which of the two NE will

the behavioural dynamics result in? This question is

beyond the scope of this paper and needs more detailed

modelling of the behavioural interactions, including

what initial actions individuals play. For the sake of sim-

plicity, we assume that each NE is equally likely to

be the outcome of behavioural dynamics. Thus, we

take the expected outcome of the game to be the average

of the two NE3, which is depicted by the larger circle on

the Pareto boundary in figure 1b.

(c) Stable polymorphism

We now ask whether the mutant allele can also sweep to

fixation. For simplicity, we assume that the effect of the

mutant allele on the game is linear in the number of

copies an individual carries (i.e. the mutant homozygote

makes a side-payment of 2s and incurs a cost of x(2s)).

(Our results are unchanged provided that the effect of

the allele is monotonic in its copy number.) To calculate

the interaction coefficient aHA, we need the games

between the heterozygote and mutant homozygote, GHA
and GAH, which become

GHA : C D

C r�xðsÞ; r�xð2sÞ s�xðsÞþ2s; t�xð2sÞ
D t�xðsÞ; sþs�xð2sÞ p�xðsÞ;p�xð2sÞ

GAH : C D

C r�xð2sÞ; r�xðsÞ sþxð2sÞ; t�xðsÞ
D t�xð2sÞ; sþs�xð2sÞ p�xð2sÞ;p�xðsÞ:

ð3:4Þ

As in the game GHH, both off-diagonal cells are NE

in these games, such that the outcomes become

VHA ¼ 1=2ðsþ t þ 2s� 2xðsÞ; sþ t þ s� 2xð2sÞÞ and

VAH ¼ 1=2ðsþ t þ s� 2xð2sÞ; sþ t þ 2s� 2xðsÞÞ. The
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Figure 1. The payoff polygons for (a) the game GBB (the resident prisoner’s dilemma behavioural game) and (b) the game GHH
(the game between the heterozygotes). Each corner of the polygons corresponds to a different cell in the payoff matrix, identified
by the combination of actions. The points in grey are non-equilibrium outcomes, they are not played as the result of individual play
dynamics. The outcomes in black are the result of individual play for each game. In (a), only the (D,D) outcome is the NE,

whereas in (b), both (D,C) and (C,D) are possible outcomes. The large black circle in each panel denotes the expected payoff
from the game to each role. In (b), this is the average of the two NE. In (a), the Pareto boundary is made up of the two line seg-
ments (D,C)–(C,C) and (C,C)–(C,D); in (b), the Pareto boundary is the line segment between the two NE. Thus, the expected
payoff from the game GHH lies on the Pareto boundary.
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Figure 2. The effect of genetic polymorphism in the payoff
matrices for the behavioural game. In this example, the resi-

dent behavioural game GBB is given by the payoff matrix
(1.1). Allele A is characterized by s ¼ x¼ 1.5; that is, it
transfers a total of 1.5 payoff units (per copy of A) from
the carrier of the allele to its social partner, when the
former plays D and the latter C. At the polymorphic equili-

brium of the population genetic model, there are three
genotypes and hence nine different games being played in
the population, which are represented by nine payoff poly-
gons in this figure. The NE for each polygon is marked
again with a large black circle. In total, there are 13 unique

NE payoff pairs because the games between genotypes with
at least one A allele have two NE (compare figures 1 and
3). The frequency of A alleles at the stable polymorphic
equilibrium is q � 0.39.
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interaction coefficient is thus aHA ¼ 1=2ðsþ tþ
2s� 2xðsÞÞ. On the other hand, the game GAA is

GAA : C D

C r� xð2sÞ; r� xð2sÞ s� xð2sÞþ 2s; t� xð2sÞ
D t� xð2sÞ; sþ 2s� xð2sÞ p� xð2sÞ;p� xð2sÞ;

ð3:5Þ

which yields an interaction coefficient aAA ¼ 1=2ðsþ tþ
2s� 2xð2sÞÞ. One can see that aHA .aAA whenever

x(2s) . x (s) (i.e. when the cost is an increasing function

of the side-payment). Hence, mutants that can invade the

symmetric prisoner’s dilemma cannot also sweep to

fixation.

The intuition behind this result is the following: since

the homozygote games (GBB and GAA) are symmetric,

and the effect of the mutant is role independent, a

mutant that can shift the NE when in one role can auto-

matically shift it in the other role as well. Thus, a

heterozygote individual already is receiving all the benefits

from making a side-payment, in return for a cost of x(s)

only. The additional side-payment the homozygote makes

does not further alter the NE and only results in the indi-

vidual paying a higher, two-fold cost. Thus, heterozygotes

enjoy an advantage against both homozygotes, resulting

in a stable polymorphism.

What would such a polymorphic population look like?

Figure 2 illustrates the stable polymorphism for a numeri-

cal case, where the payoff matrix GBB is given by equation

(1.1), the mutant A allele is characterized by s ¼ x(s) ¼

1.5 and the polymorphic equilibrium is at q � 0.39. In

this population, we would see all nine possible pairings

of genotypes, corresponding to nine different games,

and three different types of behavioural outcomes that

lead to 13 unique NE payoff pairs overall. Because the

genetic polymorphism is stable, the marginal fitnesses of

the A and B alleles must be equal to each other. However,

the same would not hold for the average fitness of individ-

uals playing D and C at the behavioural equilibrium (who

can be of various genotypes). For instance, in the example

depicted in figure 2, the average fitness of individuals that

play C at the behavioural equilibrium is approximately
Proc. R. Soc. B (2011)
1.01, whereas D-players’ average fitness is 2.62. Despite

this marked difference between the average fitness of the

two behaviours, both behaviours will persist in the

stable polymorphism, since they are not determined by

a simple genetic mechanism. However, a detailed genetic

study on this population would nonetheless find a genetic

component to which behaviour an individual converges

towards, along with indirect genetic effects [20].

This population would therefore constitute a

case where the alternative behavioural outcomes are



C,C C,D

D,C D,D

C,C C,D

D,C D,D

(a) (b)

Figure 3. The movement diagram of the two games GBB and

GHH. The arrows between each outcome (labelled by the
players’ actions) denotes whether each player prefers the out-
come to another or not (solid arrows, role 1 player; dashed
arrows, role 2 player). The NE for each game are marked
by a grey rectangle. In GBB (a), the leading and coming out

of the NE are in opposite directions for the two players, sig-
nifying that they are in local conflict at this equilibrium. In
GHH, on the other hand, the arrows leading from (D,D) out-
come to the two NE are in the same direction. For these
movements, the players’ interests are aligned. Note that

the players are still in conflict about the movement between
the NE and the (C,C) outcome.
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determined by both phenotypic plasticity and genetic

polymorphism [21].

How robust is this polymorphism result to the assump-

tion that the payoff matrix is determined by a single locus?

To answer this question, we conducted simulations with

multiple loci and recombination between those (see the

electronic supplementary material). Our results indicate

that with multiple loci polymorphisms are no longer

inevitable, but substantial potential for polymorphic equi-

libria exist, provided the number of loci is not too great.

Furthermore, the consequences for behavioural variation

in the population hold true whenever the genetic poly-

morphism is maintained, regardless of the number of

loci (see §4).

In the electronic supplementary material, we also dis-

cuss the cases of negative incentives and asymmetric

games. For negative incentives, we can derive results

that mirror the positive incentive case above. For asym-

metric games, we find that there is a range of mutants

that can both invade the population and proceed to fix-

ation, in contrast to the symmetric case above (see the

electronic supplementary material).
4. DISCUSSION
(a) Alignment of interests

We have presented a framework to model the evolution of

the payoff matrix in the behavioural game, and applied

this framework to study the evolution of payoff matrices

starting from a prisoner’s dilemma. Our first result

shows that the prisoner’s dilemma game can be invaded

by mutants that provide incentives for cooperation. The

evolutionary stability of a prisoners’-dilemma-type behav-

ioural game depends on the nature of these incentives

(e.g. how high a cost a mutant pays for a given change

in payoffs). When individuals in one role are able to pro-

vide an incentive at a relatively low cost to themselves, it

becomes easier for such mutants to invade, and for selec-

tion to align the interests of the two players. This result

raises the question of whether prisoner’s dilemma situ-

ations should be as ubiquitous as behavioural games in

nature as they are in the theoretical literature. In particu-

lar, the prisoner’s dilemma paradigm has attracted

criticism for ignoring the social context of interactions

[22], communicative mechanisms [23,24] and the pos-

sibility of direct benefits [25]. In one sense, our results

are concordant with these objections, as we show that

when animals are able to recognize their payoffs and

have the potential to react to incentives, natural selection

might lead away from the prisoner’s dilemma and sustain

a higher aggregate payoff through such incentives. On the

other hand, we also show that this is not necessarily the

case in all instances, and even when the population

evolves away from the prisoner’s dilemma by aligning

the interests of the players, this alignment is not complete

(see below).

The alignment of interests in our model occurs in two

different senses. One is a ‘local alignment’: in the NE of

the prisoner’s dilemma behavioural game, both players

play D, but each prefers the other to play C, while it

keeps playing D itself. The invasion of the mutant allele

shifts the NE (in game GHH) by reversing the preference

relations: at the new NE, one player plays D, the other C;

the two players now concur in preferring that the second
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player plays C instead of D. Thus, we can say that the

interests of the players with regard to this move are

aligned (figure 3). The second sense in which the interests

are aligned can be seen in figure 1, where the difference

between the best outcomes from each player’s point of

view is reduced by the invasion of the mutant allele. We

call this ‘global alignment’, because it compares outcomes

where both players have to engage in different actions.

However, this alignment only occurs with positive incen-

tives, and not with negative ones. The local alignment of

interests is relevant for individual play (since coordinated

change in actions is not possible under these dynamics),

whereas global alignment is likely to be more relevant

for when individuals can negotiate the outcome [6].

Closely related to our first result is the model by

Worden & Levin [11], who also show that the population

will evolve away from a prisoner’s dilemma under such a

scenario, which concurs with our findings. One important

difference between the two models is that Worden and

Levin assume that changing the payoff matrix is costless,

which eventually leads to complete alignment of interests

between the players, whereas interests are only partially

aligned in our model.

The persistence of some payoff conflict between

players suggests that behavioural mechanisms might

evolve to resolve the remaining conflict, such as team-

play [6], other-regarding motivations [10,26] or positive

response rules [3,4,7,27]. Conversely, the evolution of

such a behavioural mechanism might mask the underlying

payoff conflict, and hence might contribute to the evol-

utionary maintenance of it. Other types of behavioural

decision rules, such as those aiming to maximize relative

(instead of absolute) payoff, might also hinder the

resolution of conflict at the payoff level.

Our model also relates to the theory of mechanism

design (e.g. [28,29]), which deals with incentive schemes

that induce self-regarding agents to reach desired out-

comes, such as maximizing their employer’s profits, or

revealing truthful information in a bargaining situation.

The local alignment of interests can be viewed as provid-

ing such an incentive scheme, especially since the average

outcome of the mutant game is efficient (i.e. lies on the

Pareto boundary; figure 1). The obvious difference
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between our model and the mechanism design literature

is that we do not assume a designer that has the power

to change the game to produce results that fit its objec-

tives. Instead, evolution acts as a ‘blind mechanism

designer’, and the game emerges from the joint influences

of the two individuals’ genotypes.

A second difference is that mechanism design literature

primarily deals with a problem that we did not include in

our model, namely that individuals possess private infor-

mation, and might have incentives to misrepresent it.

The behavioural dynamics in our model rely on the indi-

viduals being able to observe and discern their actual

payoffs, which include any side-payments that their part-

ner’s genotype induces (see below). This ability allows

individuals to react optimally to new payoff structures

brought on by mutant alleles. Without such behavioural

plasticity, mutants that change the optimal course of

action for their partners would have no hope of succeed-

ing, since the only benefit such mutants enjoy results in

changes in partner behaviour that they induce.
(b) Polymorphism in games

Our second result is that in symmetric interactions, a

large class of alleles that affect the behavioural game will

result in a protected polymorphism. Alleles in this class

have monotonic effects on the phenotype (i.e. the behav-

ioural game’s payoff matrix) as a result of their copy

number (e.g. homozygote mutants making twice the

incentive payment and incurring twice the cost). If such

a mutant can invade a symmetric interaction, heterozy-

gote individuals will fare better against both homozygote

genotypes, and hence a polymorphism will result.

Taking the example given in the introduction of the

paper, such a situation would manifest itself as a genetic

polymorphism in genes regulating testosterone levels (or

their receptors) in territorial males, but males of all

types can be seen playing different actions, depending

on the pairing of partners.

This finding suggests that diversity in behavioural

games could be more common in nature then previously

recognized, and might account for much of the diversity

in behaviour that is observed. One potential example is

the curious breeding system of the penduline tits (Remiz

pendulinus) [30]. In this species, males build (with some

help by the female) an elaborate nest, and either the

male or the female, but not both, cares for the brood

while the other deserts. However, about 30 to 40 per

cent of all nests are deserted by both parents after the

eggs are laid, with the consequence of the investment in

nest-building and egg production being wasted. Since

biparental care is missing, this pattern of uniparental

care and mutual desertion cannot be explained by a

simple genetic polymorphism in the caring tendencies.

It can, however, be explained by a polymorphism in

payoff matrices similar to the one arising in our model

of the prisoner’s dilemma game. The ancestral game of

this clade is most probably more similar to the prisoner’s

dilemma, but with a negotiated behavioural outcome that

results in biparental care. If for some reason the popu-

lation evolves towards individual play, this would result

in deserting being the behavioural outcome. From this

point, a mutant such as that described in the symmetric

prisoner’s dilemma section can invade the population.
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For the male’s side, for example, the side-payments

might be the effort spent by the male in producing a

larger nest, which has indeed been found to increase the

probability that the female cares for the brood, along

with the brood size [31]. For the female, the mechanism

of a possible side-payment might consist of laying larger

eggs that grow faster and require less care. Hence, our

model predicts that genetic polymorphisms for traits in

each sex that affect costs and benefits from caring for

the other sex will be present in the population and these

polymorphisms will explain the behaviour of the two

parents.

When the payoff matrix is determined with multiple

loci, polymorphisms are not inevitable, since with mul-

tiple loci it becomes more probable that the minimum

side-payment necessary to shift an NE will be a homo-

zygote genotype (see the electronic supplementary

material). Nonetheless, when the minimum side-payment

requires a different number of A alleles on the two

chromosomes, polymorphisms can be maintained with a

small number of loci, and all the behavioural conse-

quences of the genetic polymorphism continue to hold

true in such cases. Thus, the question of how common

polymorphisms in payoff structures are expected to be

depends in part on how many loci are involved. For quan-

titative traits such as antler size, this number is likely to be

high, so there is less potential for behavioural polymorph-

isms. On the other hand, regulatory genes that affect, for

example, the expression levels of hormone or neurotrans-

mitter receptors (e.g. [32]) or developmental pathways for

morphology (e.g. [33]) can have a large effect on the phe-

notype. In those cases, polymorphic equilibria are more

likely to be observed. Polymorphisms in the payoff

matrix can also be maintained by other mechanisms,

such as selection in heterogeneous environments (e.g.

one that results in different GBB matrices) coupled by

gene flow. Regardless of the evolutionary mechanism of

the maintenance of polymorphism, their effects on the

behavioural diversity in the population will be the same.
(c) Commitment and information

Finally, our model raises questions about how individuals

can commit to making side-payments that alter the be-

havioural game. In game theory, commitment problems

arise when one party has more strategic flexibility than

the other at some point in the interaction, and can use

this flexibility to take advantage of the less flexible party.

For instance, in the territorial interaction, a male might

‘promise’ a side-payment, but later withdraw this side-

payment during game play. While such cases are in

general possible (see below), there are two reasons why

they do not happen in the current model setup. First,

we assume the ‘side-payment’ to be a genetically deter-

mined trait, meaning that an individual cannot change

its side-payment during the time scale of the social inter-

action. The side-payments can only change over

evolutionary time through mutations and natural selec-

tion. This is a plausible assumption if the side-payment

is a consequence of a phenotype such as the sequence

of testosterone receptor gene; Obviously, the sequence

of DNA is fixed during the time scale of a behavioural

interaction, and hence the side-payment cannot be

withdrawn.
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On the other hand, even if the side-payments could be

withdrawn, it would not pay for individuals to do that in

our model. This is because we assumed that individuals

are able to discern their actual payoffs and react quickly

by adjusting their actions. Hence, even if a male with-

draws the side-payment, its opponent would recognize

this, and revert quickly to defection. Therefore, a side-

payer that does not honour its promise would not receive

the benefit of cooperation from its partner and would be

at a disadvantage. In other words, side-payments in our

model behave like simple contracts that are enforced

through credible threats of retaliation.

The assumption that individuals can always react to

each other and come quickly to an equilibrium is shared

with previous models of two-tiered dynamics (e.g.

[4,7,10]). This assumption simplifies the analysis greatly

and allows clean, analytical results. Nonetheless, it is

interesting to note what happens when equilibrium is

not assumed. Doebeli & Knowlton [3] numerically

evaluate the payoff to interacting partners during the tran-

sitory phase over a fixed number of rounds. Without any

spatial structure, they find that the response rules even-

tually evolve to providing no benefits to the partner.

Although Doebeli & Knowlton [3] do not address this

issue directly, this reflects the inability of individuals to

completely react to decreases in each other’s investments

due to the finite number of interaction rounds; hence

mutants that take advantage of the cooperative types

can invade. In the absence of effective retaliation, coop-

erative investments would unravel, similar to the way

defection can be shown to be the only subgame perfect

Nash equilibrium in a finitely repeated prisoner’s

dilemma [34]. Consistent with this conjecture, Doebeli

& Knowlton [3] find that increasing the number of

rounds increases the tendency for cooperative associations

to spread in a spatially explicit model.

The assumptions of accurate information about pay-

offs and very quick reactions are likely to be not

satisfied universally, but under some circumstances they

will be reasonable approximations. For example, a male

defending its territory is likely to be aware of how much

territory it holds, and also have an estimate about what

the expected breeding value of that territory is (our argu-

ment holds even if this estimate is imperfect). Then, we

only require that the same male will also be aware of

how much territory it loses during a territorial dispute

while fighting versus not, and adjust the time spent on

each action in order to maximize its expected payoffs.

In general, our model is applicable to situations where

individuals interact continuously in close proximity to

each other.

On the other hand, commitment problems will

become important when individuals have to make

spatially or temporally separated decisions. Güth &

Kliemt [35] investigated how internal mechanisms for

commitment can evolve in a model of the ‘trust game’

where partners make sequential decisions. They show

that if enough information is available about who is trust-

worthy and who is not, cooperative commitments can

evolve because they provide incentives for their partners

to cooperate, similar to the outcome in our model. Both

types of mechanism are likely to play important and

complementary roles in social evolution. The interplay

between evolutionary dynamics of payoff structures and
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behavioural mechanisms promises to be a fruitful

avenue to understand the diversity of social interactions

in nature.
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ENDNOTES
1An alternative specification would first specify the roles for the gen-

otypes and then match individuals of different roles to play the game.

That would lead to some changes in the equations, but the general

methodology would be similar.
2The difference between the best and worst efficient outcomes for

either player is t 2 x(s) 2 (s þ s2 x(s)) ¼ t 2 s 2 s, whereas in

the original game GBB it was t 2 s.
3A mixed-strategy NE also exists, but it is unstable under individual

play dynamics; therefore it will not be the outcome of the behavioural

dynamics.
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