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Spatial structure in a host population results in heterogeneity in transmission dynamics. We used a Baye-

sian framework to evaluate competing metapopulation models of rabies transmission among domestic

dog populations in villages in Tanzania. A proximate indicator of disease, medical records of animal-

bite injuries, is used to infer the occurrence (presence/absence) of suspected rabid dog cases in one

month intervals. State-space models were used to explore the implications of different levels of reporting

probability on model parameter estimates. We find evidence for a relatively high rate of infection of these

populations from neighbouring districts or from other species distributed throughout the study area,

rather than from adjacent wildlife protected areas, suggesting wildlife is unlikely to be implicated in

the long-term persistence of rabies. Stochastic simulation of our highest ranked models in vaccinated

and hypothetical unvaccinated populations indicated that pulsed vaccination campaigns occurring from

2002 to 2007 reduced rabies occurrence by 57.3 per cent in vaccinated villages in the 1 year following

each pulse, and that a similar regional campaign would deliver an 80.9 per cent reduction in occurrence.

This work demonstrates how a relatively coarse, proximate sentinel of rabies infection is useful for making

inferences about spatial disease dynamics and the efficacy of control measures.

Keywords: rabies; vaccination efficacy; patch occupancy; state-space model; spatial transmission
1. INTRODUCTION
Rabies exerts a major public health and economic

burden: it is responsible for 55 000 deaths worldwide

(predominantly in Africa and Asia), and expenditure on

treatment and control exceeds US$500 million per

annum [1,2]. Although effective post-exposure prophy-

laxis exists, it is expensive, often scarce, and must be

administered shortly after exposure to be effective, and

therefore such treatment is problematic in developing

countries. Yet, rabies is a pathogen that can be effectively

controlled or eliminated by vaccinating hosts [3]. Rabies

virus is a multi-host pathogen that infects a wide range

of mammals [4] and is therefore also an important

threat to animal populations of conservation concern

[5–7]. A single rabies epidemic can eliminate a large pro-

portion of a population [8,9]. Our interest in rabies

control is, therefore, motivated by both human health

and conservation concerns.

Epidemiological models are frequently used to esti-

mate basic parameters [10], evaluate alternative control

strategies [11–14] and set levels for control measures

such as vaccination [3,9,15], culling [16] or quarantine/

isolation [17]. However, many applications of epidemio-

logical models to disease control apply to human or

agricultural systems where detailed information about

movement, transmission, and host populations is
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available (e.g. [16,18–20]). This quantity and quality of

epidemiological data are usually unavailable for diseases

in developing regions where formal monitoring, reporting

and diagnosis can be ineffectual or absent [2].

Limited availability of epidemiological data can be

addressed in two ways. First, theoretical or general

models can be used to explore the relative efficacy of

different control strategies, and to devise approximate

rules for setting control targets (e.g. [3,14,21,22]). For

instance, one frequently used approximation of the pro-

portion of a population that must be vaccinated to

reduce the basic reproductive number, R0, below 1 is

1 2 1/R0 [10]. The second approach is to collect epide-

miological data, which is often difficult and costly. This

approach is typically applied to the development of non-

spatial models (e.g. [15,23,24]) because spatial models

require the estimation of more parameters and, therefore,

require more extensive data collection. Also, although

valuable, detailed individual-level epidemiological data

(e.g. diagnostic tissue testing, sequence data and case his-

tories) often cannot be collected retrospectively or over

large areas.

Disease dynamics and the efficacy of control measures

are, however, influenced by the spatial distribution of the

host populations and interventions. Spatial structuring of

the host population resulting from social organization or a

patchy physical environment violates the assumption of

many simple models that the population is well mixed.

Metapopulation models explicitly model this spatial

structure as a system of loosely coupled discrete popu-

lations or patches with different rates for within- and

between-patch transmission [25–28]. Disease persistence
This journal is q 2010 The Royal Society
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Figure 1. The total number of occurrences of rabies observed

(2002–2007) among the 75 villages in Serengeti District,
Tanzania, whereby an occurrence is defined as the presence
of at least one suspected rabid dog in a village in a one
month period. The district is bordered by wildlife protected
areas (grey) to the south and east, and other inhabited dis-

tricts (white) to the north and west. Black lines depict
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in the metapopulation is profoundly influenced by these

spatial dynamics [29,30]. Thus, the promise of spatially

explicit epidemiological models is that, because they are

locale-specific and capture some of the spatial dynamics

of transmission, they allow us to maximize the efficacy

of control designs and, therefore, the deployment of

limited control resources.

Our focus is the control of rabies in a multi-host

African ecosystem (Serengeti District (SD), Tanzania)

in which domestic dogs are thought to be the disease

reservoir [31] and are, therefore, the target of control

measures (vaccination). This study presents methods for

using an existing, indirect measure of disease occurrence

(medical records of animal-bite injuries) to parametrize

and evaluate competing spatially explicit models of

disease occurrence and transmission among dogs at a

regional scale, and to quantify the efficacy of a control

programme. Although insights into the transmission

dynamics of rabies in domestic dogs have been presented

previously [23,32], the spatial dynamics at a more

regional scale are still poorly understood, yet important

because control measures are often targeted at these

larger scales. We also evaluate evidence for three hypoth-

esized sources of infection of the domestic dog population

because of their importance to maintaining a disease-free

state: infected domestic dogs from neighbouring (unmo-

delled) districts, interactions with wildlife originating

from neighbouring wildlife protected areas and inter-

species transmission with other hosts (domesticated and

wild) occurring throughout the district.
district boundaries. Village names (indexed by the village
ID numbers shown) are included in the electronic sup-
plementary material, table A.1.
2. METHODS

(a) Assessing the occurrence of rabies

This study took place in SD, northern Tanzania, which

borders wildlife protected areas to the south and east

(Serengeti National Park and the Ikorongo and Grumeti

Game Reserves), and other inhabited districts to the north

and west (Bunda, Musoma and Tarime Districts). SD con-

sists of 75 villages (figure 1 and electronic supplementary

material, table A.1) and is inhabited by approximately

174 400 people (Population and Housing Census of Tanza-

nia 2002) in primarily agro-pastoralist communities that

use domestic dogs for guarding households and livestock.

Medical records of patients reporting with animal-bite

injuries were collected from local hospitals and medical dis-

pensaries and were used to identify bites from suspected

rabid dogs [32–35]. Most records indicate the bite date,

biting animal and village from which a patient reported.

There are also several other ways in which medical records

may misrepresent actual cases of rabies in domestic dogs:

not all rabid dogs bite humans, bite victims do not always

report to hospital and possible misidentification of whether

an animal was rabid, and records generally do not indicate

whether patients were reporting because of bites by the

same dog, if this is known. We interpreted bite records con-

servatively, therefore, and explicitly modelled the effects of

uncertainty in detection using a state-space modelling

framework.

We summarized the occurrence (presence or absence) of

exposures by suspected rabid dogs in one month intervals

in each village over a 6 year period (2002–2007). A one

month interval was used because some medical records can

only be dated to the month in which they occur and, given
Proc. R. Soc. B (2011)
the incubation period averages 22.3 days [32], a transmission

event in one month is likely to result in an infectious case the

following month. The justification for a presence–absence

representation is that most of the time (89%) an occurrence

reflects just one or two bite records in that month. Further-

more, as a single infectious dog can bite several people

(30% of rabid dogs that bite people bite at least two people

and 3% bite five or more), multiple bite records may often

only correspond to a single infectious dog. Although an

occurrence may sometimes correspond to the presence of

more than one infectious dog in that month, the number of

infectious dogs in any one month period is likely to be low.

We identified 243 monthly occurrences of rabies among all

75 villages and across all 72 months (figure 2).

(b) Dog demography and vaccination history

The initial number of susceptible dogs in each village in

January 2002 was estimated based on the human population

size and the average number of dogs per household in this

region [31,36], and the numbers of dogs vaccinated. The

number of susceptible dogs in subsequent months

(figure 3) was modelled as a function of the birth and

death rate, the number of dogs vaccinated during vaccination

campaigns and the rate at which vaccination coverage wanes

(see [32] for details).

Following an initial vaccination campaign in 2000 that

resulted in low (35–40%) and patchy coverage, subseq-

uent campaigns targeted villages within 10 km of the

wildlife protected areas (figure 1) and increased coverage
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Figure 2. Graphical depiction of rabies occurrence (black
squares) among the 75 villages in Serengeti District,
Tanzania, over a 6 year period (2002–2007). Villages are
ordered alphabetically (y-axis), and occurrence is quantified

in one month intervals (x-axis). The histograms (top and
right subplots) summarize the pattern of occurrence among
villages and time periods, respectively.
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Figure 3. The estimated population size of susceptible dogs
(solid lines) in four representative villages from 2002 to
2007. Declines in population numbers result from vacci-

nation of dogs, and increases result from both population
growth and the waning of vaccination. Included are villages
with the smallest, largest and two intermediate dog popu-
lations. The dashed line represents the estimated population
of susceptible dogs in the absence of vaccination.
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levels to between 40 and 80 per cent [32]. Specifically, there

were four vaccination campaigns: August 2003 (4179 dogs,

33 villages), June/July 2004 (12 975 dogs, 67 villages),

August/September 2005 (7998 dogs, 39 villages) and

August/September 2006 (8030 dogs, 36 villages).

(c) Modelling disease dynamics

Rabies infections are characterized by an incubation period

when the animal is infected but not infectious and exhibits

no clinical signs, and an invariably fatal infectious period

where the animal displays the clinical signs of rabies and

can transmit the virus in its saliva to uninfected animals. In

domestic dogs in this region, the mean duration of the incu-

bation and infectious periods are 22.3 (95% CI: 20.0–25.0

days) and 3.1 days (95% CI: 2.9–3.4 days), respectively

[32]. We assume, therefore, that transmission from a village

with infectious animals results in incubating animals in the

same one month time step (t), which become infectious

animals in the next time step (t þ 1).

We define H as the matrix of observed occupancy in each

village and time step, which is a function of the unobserved,

true occupancy matrix, I, and the probability of detection of

an occurrence (r):

Hi;t � Bern½rIi;t�: ð2:1Þ

If disease was present, it was observed with probability r, but if

disease was absent, it could not have been observed. If report-

ing is perfect (r ¼ 1), then H ¼ I. The probability of detecting

infectious dogs based on medical records is influenced by a

complex interaction among human social and educational

factors, dog behaviour and record quality. Our detection

parameter, r, encapsulates all of this uncertainty in the sim-

plest possible (one parameter) data model as we have no

quantitative basis for developing a more complex model.

The probability of transmission of infection depends on

the number of contacts between infectious and susceptible
Proc. R. Soc. B (2011)
individuals. We hypothesize that contact rates among dogs

scale with the dog population size (S) of each village,

which we approximate using the susceptible dog population

estimate described above, and the distance (d) between vil-

lages. Larger populations of dogs may be more likely to

receive infection because they represent larger infection tar-

gets: there is a greater probability that an infectious dog

will encounter a susceptible dog. Larger villages may also

be more likely to both receive and transmit infection as

they are local centres of human activity (e.g. markets) that

could increase contact rates among dogs from different vil-

lages. Although an occurrence usually corresponds to a

single infectious dog, it is plausible that occurrences in

larger dog populations are sometimes characterized by

more than one case simply because larger populations are

associated with larger outbreaks. More infectious cases

would result in increased risk of transmission. We test the

hypotheses, therefore, that transmission is negatively associ-

ated with distance between villages, that larger populations

of dogs are more likely to encounter infectious animals and

acquire infection and that larger populations of dogs are

more likely to transmit infection.

The infectious state, I, of the ith village at time t is

modelled using an exponential distribution:

Ii;t � Bern½1� e�ci;t �; ð2:2Þ

where c is the hazard rate. The full transmission model is

ci;t ¼ bð1� e�dSi;t�1Þ
XV

j

½I j;t�1e�kdi;j ð1� e�cSj;t�1Þ� þ t e�mgi ;

ð2:3Þ

where V is the total number of villages, di,j is the Euclidean

distance between the centres of ith and jth villages (km)

and S is the number of dogs in the village receiving (Si,t)
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or transmitting (Sj,t) infection. Transmission is conditional

on the village transmitting infection having infectious dogs

(Ij,t2 1 ¼ 1). The parameters k, d and c determine the relative

contribution of the distance between villages and the size of

the receiving and transmitting village to the probability of

acquiring infection. Infections from outside the system are

modelled using te2mgi, where t is proportional to the rate

of infection, and m scales t as a function of distance to the

source of infection (g). Thus, for each village, there is a

fixed risk of infection from external sources and, when

there is infection present within the system, an additional

risk of acquiring infection that depends upon the distances

to the villages with infectious dogs, and the dog population

sizes of villages transmitting and receiving infection.

We identify three competing models. Model 1 includes

only the distance component:

ci;t ¼ b
XV

j

½I j;t�1e�kdi;j � þ t e�mgi : ð2:4Þ

Model 2 includes the distance and size of the receiving village

components:

ci;t ¼ bð1� e�dSi;t�1Þ
XV

j

½I j;t�1e�kdi;j � þ t e�mgi : ð2:5Þ

Model 3 is the full model (equation (2.3)). We also fit a refer-

ence model (model 0) where b is the only parameter (ci,t ¼ b)

to gauge the performance of the three competing models.

The implication of the reference model is that all infection

arises randomly, with no inter-village transmission and no

population size effects.

There are three hypothesized sources of external infec-

tions: spill-over infections from species that occur

throughout SD indicated by randomly distributed infections

(‘R’), wildlife protected areas (‘P’) to the east and south, or

the inhabited adjacent districts (‘D’) to the north and west

(figure 1). For source R, m ¼ 0, and t represents the rate at

which a village acquires infection from an external source

per time step. For sources P and D, gi represents the distance

to the protected area boundary or nearest adjacent district

boundary, respectively (km). In these models, m was allowed

to vary as a free parameter, and t was calculated determinis-

tically so that the overall rate of external infection among all

villages remained constant. For all sources, we evaluated

rates of external infections of two, six and 10 infections per

year, which we consider to span the range of low to high esti-

mates of the true rate of external infection. This rate is

difficult to estimate empirically; therefore, we selected three

rates that allow us to make a qualitative assessment of the

impact of different rates of external infection on model

dynamics.

Models were fit using WINBUGS [37] using uninforma-

tive prior distributions (b � U(24, 0), k � U(0, 0.5), m �
U(0, 0.7), d � U(28, 2 2), c � U(28, 2 2)). For b, d and

c , the prior distributions were log-transformed so that the

posterior distribution was approximately normally distribu-

ted, which facilitates the estimation of the effective number

of parameters (pD) for model comparison. We generated

37 500 samples from the posterior distributions of all par-

ameters using three chains, a burn-in period of 200

samples and a conservative thinning rate of 1 : 50 to ensure

the resulting 750 samples were not autocorrelated. Chain

convergence was quantified using the R̂ statistic (values
Proc. R. Soc. B (2011)
close to 1.0 indicate convergence). Models were ranked

using deviance information criteria (DIC) [38]. Model vali-

dation was based on 1000 stochastic simulations of the

highest ranked models using the mean estimated parameter

values for each model. For each simulation, the frequencies

of occurrences of rabies in each village over the 6 year

period were ranked in ascending order, and these ranked dis-

tributions were used to quantify the expected mean and 95%

CI, which was compared with the observed data. We use

state-space models to evaluate how reporting error influences

parameter estimation in the highest ranked models (proces-

sing time constraints prevented us from running all models

as state-space models). The transmission component of the

models remained the same, but we evaluate reporting prob-

abilities of r ¼ 0.6 and r ¼ 0.8.

We use 1000 stochastic simulations of each of the four

highest ranked models to quantify the efficacy of pulsed SD

vaccination campaigns that occurred from 2002 to 2007

[32]. Using the mean parameter values for each model,

occurrence of rabies was quantified in three scenarios: un-

vaccinated populations, vaccinated populations with a

continuing external infection source and vaccinated popu-

lations with an external infection source that ends six

months after the first set of vaccinations. The last scenario

corresponds to hypothesized vaccination at a regional scale

that eliminates cross-district transmission, or that reduces

the incidence of rabies in other species that could then

infect dogs. For the unvaccinated population scenario, the

number of susceptible dogs was estimated based on the vac-

cination history and demographic parameters (figure 3). The

difference in overall disease occurrence (the total number of

months in which disease is observed) between the vaccinated

and unvaccinated population simulations is a measure of the

expected efficacy of vaccination. We measured efficacy

among the villages targeted for vaccination in the 12 month

period following a vaccination campaign, and over the

entire district from the first month in which vaccination

occurred until the end of the study period. Simulations

were initialized by randomly assigning infections to three

villages in the first time step, then running the simulation

over a 72 month burn-in period with constant population

sizes (these data were discarded) before recording simulated

occurrence over the following 72 month period in which

population sizes varied as described above. These simulations

were performed in R [39].
3. RESULTS
We obtained good chain convergence for all models

(R̂ , 1.1 for all variables in all models). Sampling the

prior distributions for b, d and c on a log-transformed

scale was essential for obtaining reasonable estimates of

the effective number of parameters (pD).

Of the 28 models tested (table 1), the highest ranked

model included a probability of transmission that was a

function of both inter-village distance and the number

of dogs in the village receiving infection, and where the

probability of acquiring an external infection declined as

a function of distance to neighbouring districts. However,

three other models performed similarly well (DDIC , 2

relative to the top model) and therefore also warrant con-

sideration. We infer from these four models that there is

strong support for the role of village distances and

the size of the village receiving infection in driving



Table 1. Summary of competing patch-occupancy models,

the number of parameters in the model, the effective
number of parameters (pD) and the difference in the
deviance information criteria value (DDIC) relative to the
highest ranked model (DIC ¼ 1839).

model source rate
parameters
(free/fixed) pD DDIC

2 D 10 5 (3, 2) 3.32 0
3 D 10 6 (4, 2) 3.67 0.69

2 R 10 4 (3, 1) 2.44 0.71
3 R 10 5 (4, 1) 2.67 1.22
2 P 10 5 (3, 2) 3.08 3.95
3 P 10 6 (4, 2) 3.33 4.50

2 D 6 5 (3, 2) 3.29 11.4
3 D 6 6 (4, 2) 3.53 11.9
2 R 6 4 (3, 1) 2.44 13.5
3 R 6 5 (4, 1) 2.66 14.0
2 P 6 5 (3, 2) 3.23 16.4

3 P 6 6 (4, 2) 3.56 17.1
2 D 2 5 (3, 2) 3.32 45.1
3 D 2 6 (4, 2) 3.58 45.6
2 R 2 4 (3, 1) 2.31 48.2
3 R 2 5 (4, 1) 2.65 48.9

2 P 2 5 (3, 2) 3.16 50.1
3 P 2 6 (4, 2) 3.60 51.1
1 R 10 3 (2, 1) 1.88 61.8
1 D 10 4 (2, 2) 2.96 62.9
1 P 10 4 (2, 2) 2.84 66.9

1 D 6 4 (2, 2) 2.90 78.2
1 R 6 3 (2, 1) 1.91 78.4
1 P 6 4 (2, 2) 2.71 81.8
1 D 2 4 (2, 2) 2.86 114.0
1 R 2 3 (2, 1) 1.95 116.0

1 P 2 4 (2, 2) 2.81 118.2
0 R 0 1 (1, 0) 0.97 123.2
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transmission dynamics (components of all four top-

ranked models), but weaker support for the role of the

size of the village transmitting infection (a component

only of the models ranked third and fourth).

Overall, there was most support for the district source

of external infection (table 1), especially at the lowest rate

of infection (2 per year). At the higher rates of infection,

the district and random-source models of external infec-

tion performed similarly: although the district model

had a lower DIC value in five out of six comparisons

(models 1–3, for rates 6 and 10 per year), the difference

was generally less than 2. We found only weak support for

the wildlife protected area source models, which consist-

ently ranked lower than the other source models for

each model and rate combination.

There was also strongest support for the highest rate of

external infection (table 1). On average, 10 external infec-

tions per year would account for 24.7 per cent (60 of 243

over the 6 year study period) of all observed occurrences

(we reiterate that occurrence is not a direct measure of

incidence). However, the inferences regarding the

source of external infection and the important com-

ponents of transmission dynamics were consistent

among the three external infection rates (table 1).

Although the highest ranked models have different

structures and, therefore, do not all share the same set

of parameters, there was high consistency in parameter

values among these models (table 2 and the electronic
Proc. R. Soc. B (2011)
supplementary material, table A.2). The implications of

the parameter values on the probability of transmission

are shown in figure 4. Although this figure is based on

the parameter values of the most complex model, which

ranked second, it is representative for all four top-

ranked models. For all models, the probability of

transmission is negatively associated with the distance

between villages and positively associated with the popu-

lation size of dogs in the village receiving transmission.

The probability of acquiring external infection declines

with distance from the district boundary in the district-

source models. Finally, the population size of dogs in

the village transmitting infection is important only for

small populations, whereby very small populations (less

than 150 dogs) have a lower probability of transmission.

Validation based on stochastic simulations indicate that,

of the 75 villages, all but 3, 3, 1 and 2 villages in the

four highest ranked models, respectively, fell within the

95% CI of the expected values (electronic supplementary

material, figure A.1). These exceptions exceeded the

upper 95% CI by a count of one occupancy in all cases.

Within the set of villages that were targeted for vacci-

nation (all but five of the 75 villages in SD) and in the

12 month period following a vaccination campaign, vacci-

nation reduced the occurrence of rabies by 57.3 per cent

(59.0, 51.9, 60.0 and 58.1% for the four highest ranked

models, respectively) relative to the occurrence predicted

if no vaccination had occurred (figure 5). Under the

alternative assumption that regional-scale vaccination

occurred (thereby eliminating the external infection

source after six months), vaccination reduced the occur-

rence of rabies by 80.9 per cent (81.7, 83.9, 79.0 and

78.9%, respectively) relative to the unvaccinated popu-

lation. Vaccination also reduced the variance in the size

of outbreaks (for instance, the standard deviation in the

count of occurrences was reduced from 51.4, 38.6, 54.8

and 51.7 to 17.4, 16.0, 19.1 and 19.4, respectively, for

each of the four highest ranked models). Over the entire

district, and including all months following the first vacci-

nation campaign, vaccination reduced the occurrence of

rabies by 50.0 per cent (51.0, 44.9, 52.6 and 51.5%,

respectively), and assuming regional-scale vaccination,

the occurrence of rabies was reduced by 81.7 per cent

(82.2, 84.1, 80.3 and 80.3%, respectively).

Explicitly assuming that the reporting probability is only

60 or 80 per cent relative to perfect reporting (100%)

resulted in a marginal increase in the estimates of all par-

ameters (electronic supplementary material, figure A.2

and table A.3). This corresponds to a reduction in the spatial

transmission kernel (a reduced probability of transmission

over longer inter-village distances), and an increase in the

probability of a village receiving infection as population

size increases, for all four top-ranked models. For the

models with the neighbouring district source of infection,

there was a decrease in the spatial transmission kernel

from that source. Finally, there was also a reduced effect of

population size on the probability of transmission from a

source village in model 3 (the full model).
4. DISCUSSION
This work demonstrates that a relatively coarse, proxi-

mate sentinel (i.e. medical records of animal-bite

injuries) of rabies infection can be used to make



Table 2. Estimated mean parameter values and 95% CI for the four highest ranked rabies disease transmission models.

(A dash represents a model in which that parameter was omitted. The full table is provided in the electronic supplementary
material, table A.2.)

model
infection
source

b � 1021

(95% CI)
k � 1022

(95% CI)
d � 1023

(95% CI)
c � 1021

(95% CI)
m�1021

(95% CI)

2 R 2.11 (0.923, 4.31) 5.28 (2.89, 7.75) 0.608 — —
2 D 2.14 (0.936, 4.46) 5.23 (3.06, 7.76) 0.603 (0.344, 1.47) — 0.365 (0.0858, 0.734)
3 R 2.15 (0.889, 4.55) 5.25 (2.90, 7.72) 0.607 (0.343, 1.63) 0.319 (0.0604, 1.21) —

3 D 2.19 (0.884, 4.31) 5.16 (2.88, 7.55) 0.591 (0.346, 1.50) 0.334 (0.0607, 1.28) 0.369 (0.0826, 0.743)
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Figure 4. The relative probability of transmission between villages is negatively associated with (a) distance between villages and
(b) distance to neighbouring districts, and positively associated with the population size of dogs in the village (c) receiving and
(d) transmitting infection (table 2). The mean (solid lines) and 95% CI (dashed lines) are based on parameter estimates for k,
m, d and c (table 2) for the most complex model (ranked second), but are representative of all the models because of the con-
sistency in parameter estimates among models.
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inferences about spatial transmission dynamics of rabies

and the efficacy of control measures. This has important

practical implications for identifying drivers of disease

transmission, and the design and assessment of control

protocols when only limited, indirect epidemiological

and demographic data are available. Medical bite records

are widely available in Tanzania (and many other

countries), and therefore, if they are sufficient to make

useful epidemiological inferences, then much progress

could be made using information that is already available

without necessarily prioritizing further investment in the

acquisition of expensive surveillance data.

Although there are several examples of the application

of epidemiological models to rabies control problems in

Africa (e.g. [15,23,24]), none of them are spatially
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explicit. While non-spatial models provide approximate

rules for control measure targets (e.g. the proportion of

a population that must be vaccinated to reduce R0

below 1 is 1 2 1/R0), the efficacy of controls in a specific

context (such as SD) is influenced by the spatial distri-

bution of the host population, of other host populations

and of control measures. The promise of spatially explicit

models is the potential to maximize the efficacy of con-

trols in a specific circumstance, thereby optimizing the

deployment of limited intervention resources. Moreover,

these models provide novel insights into the importance

of local population size and coupling, and proximity to

wildlife host species on disease dynamics. Developing a

detailed, more mechanistic understanding of disease

dynamics also provides new opportunities for
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understanding how disease dynamics in different regional

contexts may differ.

Spatially explicit models can also provide insight into

drivers of regional-scale transmission dynamics. A subjec-

tive interpretation of the spatial distribution of rabies

occurrences (figure 1), which is highest near the wildlife

protected areas, might conclude that infection of the

domestic dog reservoir from wildlife in these protected

areas was implicated in long-term disease persistence.

However, our models demonstrate that, once inter-village

transmission dynamics are accounted for, there is only

weak evidence of a link between the protected areas and

infection of dogs. There is stronger evidence that the

source of infection is the inhabited neighbouring districts,

or that a source of infection is distributed randomly

throughout the district. Both of these hypotheses are

plausible and consistent with previous studies in this

region that indicate domestic dogs are the reservoir for

rabies [23,31]. Inter-district infection could result from

movement of infected domestic dogs, either on foot

or in vehicles. Randomly distributed within-district

infection could result from inter-specific transmission

between several species, e.g. Lembo et al. [31] report

rabies in domestic cats and eight wild carnivore species

in that region.

However, it is not clear to what extent other wild and

domestic species contribute to disease persistence. Our

models indicate that the rate of external infection in the

SD dog population may be quite high, although this

rate includes transmission from domestic dogs in adjacent

districts and is therefore not specific to wildlife. An
Proc. R. Soc. B (2011)
external infection rate of 10 occupancies per year

would, on average, account for 60 of the 243 occupancies

observed (24.7%), implying that inter-village transmissions

are only four times more common than transmissions

from external sources. Lembo et al. [31] estimate

that dog to dog transmissions are approximately eight

times as common as transmissions between dogs and

other carnivores; therefore, occasional infection of

the dog population from wildlife is plausible. If vacci-

nation reduces the reservoir dog population below the

critical threshold required for endemic rabies to

persist, then this should also eliminate rabies outbreaks

in other species and remove one source of infection of

the dog population. Improving our understanding

of inter-species transmission rates is a priority for

future work.

Some infection events could result from rare, long

incubation periods in some cases of rabies. While the

mean incubation period is typically 22.3 days (95% CI:

20–25 days) [32], incubation periods of months or

years are possible, although rare, in mammalian hosts

[4]. Our model does not allow for a low frequency of

long incubation periods, and this could account for

some of the observed occupancies (figure 2), implying

the frequency of transmission events between villages

or from the external source may be overestimated in

our models.

Assessing the efficacy of vaccination is not straight-

forward because disease transmission is a stochastic

process that can result in highly variable spatial and

temporal patterns of occurrence. Field observations of

occurrence before and after vaccination provides an

important measure of the realized efficacy, but this

measure is based on only a single realization of a

stochastic process and therefore may not be a good

representation of the efficacy that would be expected in

general. Our approach, using stochastic simulations of

the vaccinated population and a hypothetical, unvacci-

nated population, provides an estimate of the expected

efficacy resulting from the pulsed vaccination campaigns

that took place between 2002–2007. This measure of

expected efficacy may be more relevant when planning

future interventions as it describes the expected mean

reduction in occurrence resulting from the vaccination

campaigns.

Although we found that the four vaccination cam-

paigns between 2002 and 2007 resulted in a 57.3 per

cent (or 80.9% assuming a regional-scale vaccination pro-

gramme) decrease in our measure of occurrence, it is

important to recognize that the reduction in incidence

will be greater than this. Mean outbreak size is positively

associated with the number of susceptible dogs [32];

therefore, occurrence in the unvaccinated populations is

likely to correspond to a larger number of infectious

dogs than occurrence in the vaccinated populations.

This nonlinear relationship between our measure of

occurrence and outbreak size implies that the estimate

of the efficacy of the vaccination campaigns would be

higher if we were able to monitor incidence at the individ-

ual animal level. For instance, Cleaveland et al. [34]

estimate that vaccination campaigns in SD in the

decade prior to this study reduced the incidence of

rabies by approximately 90 per cent based on the

incidence of bites of humans by suspected rabid dogs.
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These models suggest a potentially complex relation-

ship between vaccination coverage levels and the

reduction in disease occurrence. As expected, we found

strong evidence that the population size of dogs was an

important predictor of the probability of transmission:

smaller populations were less likely to acquire infection,

and this effect was approximately linear. However, we

also found support for a strong reduction in the prob-

ability of transmission in small populations (fewer than

150 dogs), indicating a possible threshold beyond which

vaccination may have increasing benefits. A possible

explanation of this effect is that the density of susceptible

dogs may become so low in these highly vaccinated popu-

lations that fade-out of the disease becomes increasingly

likely. Alternatively, this effect could result from human

social factors that might vary as a function of population

size. Understanding this effect warrants further investi-

gation as it has the potential to be exploited to improve

disease management.

The most ambitious zoonotic disease control pro-

grammes aim to achieve disease eradication at regional

scales. Although we have used our four highest ranked

models to quantify the efficacy of the pulsed vaccination

campaigns (2002–2007), there is clearly scope to apply

them to optimize the design of vaccination programmes

in metapopulations [40], to design responses to sub-

sequent disease outbreaks in disease-free populations,

and to predict what the large-scale implications of

intervention actions might be. The application of meta-

population models to inform management decisions

has the potential to increase both the efficacy and cost-

effectiveness of control and eradication programmes.

State-space models provided a rigorous method for

quantifying the effect of measurement error on parameter

estimates and model inferences. Because processing times

were considerable, we evaluated the influence of measure-

ment error only on the highest ranked models and suggest

this approach provided a reasonable trade-off between

expediency and confidence in inferences. Metapopulation

models provide a powerful framework for investigating

disease dynamics in spatially structured populations,

and for evaluating the efficacy of control strategies. This

work demonstrates that these powerful models can be

developed based on proximate measures of disease occur-

rence when more specific and detailed epidemiological

data are unavailable.
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