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Abstract
Objective—To determine whether n-3 fatty acids (n-3) influence arterial cholesterol delivery and
lipoprotein lipase (LpL) levels in insulin-resistant mice.

Methods and Results—Insulin resistance contributes to risk of cardiovascular disease. It was
previously reported that saturated fat (SAT) diets increased, but n-3 diets decreased, arterial low-
density lipoprotein (LDL) cholesterol deposition from LDL total and selective uptake; this was
associated with increased or decreased arterial LpL, respectively. Insulin receptor transgenic
knockout mice (L1) were fed a chow, SAT, or n-3 diet for 12 weeks. Double-fluorescent boron
dipyrromethene (BODIPY)–cholesteryl ester (CE) and Alexa dye-labeled human LDL were
injected to separately trace LDL-CE and LDL–apolipoprotein B whole particle uptake. In contrast
to SAT, n-3 diets markedly reduced all plasma lipids, ameliorating progression of insulin
resistance. As opposed to SAT, n-3 reduced arterial LDL uptake, CE deposition, and selective
uptake. Disparate patterns of CE deposition between diets were comparable with arterial LpL
distribution; SAT induced high LpL levels throughout aortic media; LpL was limited only to
intima in n-3–fed mice.

Conclusion—n-3 diets diminish arterial LDL-cholesterol deposition in mice with insulin
resistance, and this is associated with changes in arterial LpL levels and distribution.
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Cardiovascular disease (CVD) remains the leading overall cause of death in the United
States. Type 2 diabetes mellitus, one of the most common noncommunicable diseases, has
emerged as a major CVD risk factor; patients with type 2 diabetes have a 2- to 4-fold greater
risk than nondiabetic individuals of developing atherosclerosis that increases the prevalence
of CVD morbidity and mortality.1 Insulin resistance is an important pathophysiological
defect underlying the current epidemic of CVD and type 2 diabetes. Insulin resistance
usually starts with impaired insulin action or sensitivity in the regulation of blood glucose
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and commonly leads to hyperinsulinemia, elevated plasma free fatty acid (FFA) levels, and,
later, to type 2 diabetes.2

Lipoprotein lipase (LpL) has been postulated to be another important contributor to
atherosclerosis promotion in diabetic subjects. Although low circulating LpL activity is
observed in insulin resistance and type 2 diabetes and is linked to premature
atherosclerosis,3 macrophage-derived LpL levels and activity are increased in animals and
humans with insulin resistance and diabetes.4 Thus, it is likely that these differential effects
on LpL levels in specific tissues and cells might lead to many proatherogenic events by
promoting focal lipid deposition5 (eg, in the arterial wall) while reducing lipoprotein
clearance in the circulation.

Dietary fatty acids have direct regulatory effects on LpL expression and activity. Recent
studies showed that an n-3 fatty acid–enriched (n-3) diet markedly reduced arterial low-
density lipoprotein (LDL) whole particle uptake and LDL–cholesteryl ester (CE) selective
uptake (SU) relative to a saturated fat–enriched (SAT) diet in mice, independent of plasma
cholesterol levels.5,6 Researchers have previously demonstrated that LDL core lipids,
particularly CE, can be delivered to cells without concomitant cellular uptake and
internalization of whole LDL particles.7,8 Unlike high-density lipoprotein SU, LDL SU was
not mediated by class B scavenger receptor but can be markedly increased by LpL.9
Moreover, feeding with high SAT diets markedly increased the contribution of SU to total
arterial LDL-CE deposition5; in apolipoprotein (apo) E–knockout mice, as much as 50% or
more of total LDL-CE uptake was accounted for by SU. Thus, we suggest that this
mechanism contributes to an additional pathway for CE delivery in LpL-expressing cells
(eg, macrophages) and may contribute to pathological accumulation of CE. At the level of
the arterial wall, we postulate that increased LpL levels by a SAT diet increase LpL
“bridging” activity that associates with trapping more LDL and selective LDL-CE uptake.5,6

In contrast, n-3 decrease arterial LpL and arterial CE deposition with markedly reduced
whole LDL particle uptake and essentially no arterial SU from LDL.

We questioned how n-3 influence arterial LDL-cholesterol delivery and LpL levels in an
insulin-resistant model (ie, mice that lack insulin receptors in every tissue, except liver,
pancreatic β cells, and some parts of the brain).10 Thus, these mice (referred to as L110) are a
model of insulin resistance in all cell types of the arterial wall. The L1 mouse model was
chosen because its phenotype is typical of insulin resistance and likely would respond with
changes similar to other animal models and perhaps humans, to different dietary fatty acids.
Also, the L1 mouse model overcomes issues that are usually associated with other models of
insulin resistance (eg, issues of obesity-related leptin signaling defect or abnormalities in
lipid metabolism induced by hepatic insulin resistance), allowing us to directly analyze the
effects of impaired insulin signaling in vascular tissues. We selected this model to
demonstrate the effects of dietary fatty acids, SAT versus n-3, on lipid uptake in the arterial
wall. Our results show that L1 mice were prone to the accumulation of arterial LDL-CE via
SU, and this was linked to the elevated arterial LpL levels. SAT diets induced more severe
insulin resistance and markedly increased LDL whole particle uptake and SU, with
increased arterial LpL levels in L1 mice. In contrast, n-3 ameliorated abnormal plasma lipid
profiles in L1 mice and reduced arterial LpL levels and total LDL and selective CE uptake
levels.

Methods
Materials and Animals

BODIPY-C12 and dyes (Alexa Fluor 488, 546, 568, and 647) were purchased from
Molecular Probes (Invitrogen Corp, Carlsbad, Calif). Rat anti–CD31 antibody was
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purchased from BD Pharmingen, San Jose, Calif. Polyclonal rabbit anti–CD68 antibody was
purchased from Santa Cruz Biotechnology, Inc, Santa Cruz, Calif. LpL antibodies were
provided by Ira Goldberg, MD (Columbia University, New York, NY), or Gunilla
Olivecrona, PhD (Umea University, Umea, Sweden), or purchased from Santa Cruz
Biotechnology, Inc. L1 mice were described in a previous publication.10 These mice were
generated by intercrossing mice bearing a transthyretin-driven human insulin receptor gene
(INSR) cDNA with Insr heterozygous knockout mice; they lack endogenous Insr and
express the human transgene in hepatocytes, pancreatic β cells, and selective brain cells. The
genetic makeup of these mice contains chromosomes derived from 129SV, C57BL/6, and
FVB genomes; and animals were maintained on a mixed background. All animals were kept
in house at the Columbia University Medical Center Animal Facility. All experimental
procedures were performed in accordance with Columbia University’s institutional
guidelines for use of laboratory animals and were approved by Columbia University’s
Institutional Animal Care and Use Committee.

Feeding Protocols
Four-week-old male L1 mice, weighing 15 to 18 g, were given a normal chow diet (45 g
total fat/kg, Purina LabDiet-5053) or a high-fat diet enriched in either n-3 or SAT for 12
weeks (n>10 for each group).5 The high-fat diets were purchased from 2 different
companies and contained 210 g of total fat/kg of diet or 184.5 g of total fat/kg of diet for n-3
or SAT diets, respectively. The fat content of the SAT diet consisted of 71% SAT from
coconut oil, 19% monounsaturated fat from olive oil, and 9% polyunsaturated fats from
safflower and corn oil (TD 97108, Teklad). In the n-3 diet, half of the total fat was from
menhaden oil enriched in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)
(960165, MP Biomedicals) with SAT, monounsaturated fat, and polyunsaturated fat (8%,
8%, and 6%, respectively, wt/wt) to prevent essential fatty acid deficiency. Both the n-3 and
SAT diets contained 2 g of cholesterol, whereas the chow diet contained 0.2 g of cholesterol
per kilogram of diet. The fatty acid composition of each diet was detailed previously.6
During the feeding period, blood was collected weekly and assayed for FFAs (NEFA C kit),
triglycerides (TGs), and total cholesterol (T-Chol), according to the manufacturer’s
procedures, as previously detailed.9 Blood glucose and insulin levels were determined after
mice were euthanized at the end of a feeding period, with 2-hour fasting as previously
described.10

Lipoprotein Profiles
At the end of the feeding period, plasma from each mouse was pooled and analyzed for
changes in lipoprotein profiles among different diet groups using fast-performance liquid
chromatography.11 Pooled plasma injected was 500 μL for each run.

LDL Preparation and Labeling
LDL (d=1.025 to 1.055 g/mL) was isolated from normolipidemic humans by sequential
ultracentrifugation.5 We separated LDL at the narrower density gradient range to minimize
the confounding effects of LDL of different size and heterogeneity. This fraction contains no
or minimal apoE, which can be present in lighter LDL fractions (d=1.019 to 1.025 g/mL).
Also, use of a “constant” human LDL source limits variability in mouse LDL associated
with diet feeding to the host animals.

Isolated LDL was labeled with fluorescent BODIPY-C12 and dye (Alexa 568) to
independently trace LDL-CE and whole LDL particle uptake, respectively. Detailed
procedures for labeling and characterization of fluorescent LDL were previously
described.5,6 Previous studies showed that data obtained by assaying total and selective
arterial LDL uptake via either radiolabeled or fluorescent-labeled LDL were comparable and
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similar.5 Our labeling procedures also did not modify LDL physical properties or induce
LDL oxidation.5–8

LDL Uptake in the Aorta
At the end of the feeding period previously described, L1 mice were injected with 200 μg of
double-fluorescent–labeled LDL (BODIPY-CE and dye [Alexa]–apoB). Eight hours after
injection, mice were euthanized and extensively perfusion fixed with a 4%
paraformaldehyde solution. Isolated aortas were sectioned (12 μm) with a cryomicrotome
after being embedded in optimal cutting temperature (Tissue-Tek). BODIPY-C12 and dye
(Alexa 568) fluorescence were recorded with a laser scanning confocal microscope (Zeiss
LSM-510) equipped with an image-capture device at ×20 and ×40 magnification. The
microscope settings were 488 and 543 nm (excitation wavelength) and 475 to 575 and 560
nm (emission wavelength) for BODIPY-C12 and dye (Alexa), respectively. All images were
captured with the same laser intensity, gain, and exposure times. To determine BODIPY-
C12/dye (Alexa) ratios, we measured fluorescence intensity in the intima-medial layers of
the aortic arch using computer software (ImageJ version 1.31; National Institutes of Health;
available online at: http://rsb.info.nih.gov/ij/). These quantification analyses were performed
on at least 5 different sections of proximal aortas in each mouse (n=5 for each mouse group),
and the mean of ratios normalized for unit area of artery sections was determined for each
group. The patterns of dye (Alexa)/BODIPY dual-channel colocalization were analyzed
using computer software (ImageJ 1.41) with the colocalization plug-ins.12 Consistent with
previous studies, we found no contribution of autofluorescence at the same wavelengths
used for analyses of either BODIPY or dye (Alexa).

Arterial LpL and Cell Localization and Quantification
Arterial LpL content was assayed using immunohistochemical or immunofluorescent
staining. For all procedures, sections were washed and treated with 4% normal goat serum to
block nonspecific background staining before antibody application.

Sectioned aortas from L1 and wild-type mice were analyzed for arterial LpL by
immunohistochemistry. This was performed by using a rabbit polyclonal anti–human LpL
antibody (1:20) with a biotinylated anti–rabbit secondary antibody, followed by alkaline
phosphatase in situ for measuring substrate products (Sigma Rabbit ExtrAvidin Alkaline
Phosphatase kit), as described previously.13 The microscope settings for LpL were the same
as previously described.5 Captured images were measured for LpL staining intensity in the
arterial wall using computer software (ImageJ), similarly as previously described for
fluorescence intensity quantification. Results from at least 10 different sections of the same
proximal aorta per mouse were averaged in each group (n=4).

In separate analyses, arterial LpL content was assayed by immunofluorescent staining.
Before antibody application, aorta sections were processed as previously described. Sections
were incubated with a primary anti–LpL antibody (raised in rabbit) for 24 hours at 4°C or
for 2 hours if incubated at room temperature. Sections were then rinsed and incubated for 1
hour in goat anti–rabbit IgG conjugated with dye (Alexa Fluor 647), followed by incubation
with a cell nucleus marker (SYTOX Green) for 30 minutes. After several washes in PBS,
stained sections were mounted and cover slipped. Fluorescence in the arterial wall was
analyzed using a laser scanning confocal microscope (LSM-510 META) equipped with an
image-captured device at ×10 and ×40 magnifications, as previously described. Labeled
nuclei and LpL were visualized by excitation at a wavelength of 488 nm (with a 505- to 550-
nm bandpass emission filter) and by excitation at a wavelength of 633 nm (with a 638-nm
low-pass emission filter), respectively.
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To measure arterial immunostained LpL in each optical section, regions of interest were
defined based primarily on the location of cell nucleus staining (SYTOX Green), which
highlights arterial structure. All LpL markers within each region of interest were
semiautomatically counted using computer software (ImageJ).14 Each optical section was
adjusted for proper threshold and background subtractions for separating the correct signal
from background. Particle sizes within 90 to 255 Gy were counted using a function (Analyze
Particles) of the computer software (ImageJ). Each group consisted of 3 to 4 mice. For each
artery sample, 10 to 20 sections were prepared and analyzed. Possible clusters of LpL
signals are also determined by the same function (Analyze Particles) because it provides
options for segmentation when studying the circularity and size of particles.

The colocalization of arterial LpL with aortic cells was examined by immunofluorescence
similar to the process previously described. Artery sections were coincubated with primary
chicken anti-LpL, rat anti–endothelial cell (EC), and rabbit anti–macrophage antibodies for
24 hours at 4°C, followed by the 1-hour incubation of the mixture of corresponding
secondary antibodies of dye (Alexa 647) anti–chicken IgG, dye (Alexa 488) anti–rat IgG,
and dye (Alexa 546) anti–rabbit IgG. Fluorescence in the arterial wall was analyzed using a
laser scanning confocal microscope (LSM-510 META). An argon laser (488 nm) and 2
helium-neon lasers (543 and 633 nm) were used for the excitation of dyes (Alexa 488, 546,
and 647), respectively. The patterns of dye (Alexa 488, 546, and 647) 3-channel
colocalization were analyzed by a threshold-based overlap analysis (ie, a binary test of
whether the 3 signals occur in the same or in different regions using computer software
[ImageJ 1.41] with colocalization).12 The percentage colocalization of aortic macrophages
or ECs with LpL was measured as the percentage of macrophages or ECs containing pixels
that also contained LpL signals using computer software (ImageJ).

Arteries from the aortic root to the tracheal artery from L1 mice and wild-type littermates
were pooled and homogenized for Western blot analyses for LpL. Protein, 30 μg, from
mouse artery homogenates (n=3 to 5) was separated with 8% nongradient SDS-PAGE and
transferred to membranes (Duralon) for immunoblot analyses for LpL (1:500). After
antibody applications, horseradish peroxidase–conjugated anti–rabbit IgG was detected
using an enhanced chemilumescent substrate (SuperSignal) and exposed to X-ray films
according to the manufacturer’s instructions. Three separate Western blots were performed
from different animals. Bands corresponding to each protein were measured by densitometry
and normalized for β-actin levels for each sample. Results were expressed as relative density
units compared with the wild-type littermates.11

Statistical Analyses
Student t tests of group means were used for comparing end points, and ANOVA was used
to evaluate potential interactions between diets. Statistical significance was determined at
P<0.05.

Results
Diet Effects on Body Weight and Plasma Lipid Profiles

L1 mice were fed either a high-fat diet enriched in SAT or n-3 or a standard rodent chow
diet as a control over a 12-week period. Mice fed the SAT or n-3 diet showed similar weight
gain during the study, and both were greater than that of the chow-fed mice (P<0.01, Figure
1).

Despite the similar weight gain seen in SAT- and n-3–fed mice, the effects of diet on
modulating plasma lipids were markedly different (Figure 2). After the 12-week feeding
period, L1 mice receiving the chow diet were hyperlipidemic; plasma FFA and TG levels

Chang et al. Page 5

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2011 June 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



were significantly higher than those previously reported for a nondiabetic mouse model (ie,
C57BL/6)6 (supplemental Table; available online at http://atvb.ahajournals.org). As shown
in Figure 2, SAT diets further increased these already abnormal plasma lipid parameters in
L1 mice; plasma FFA and TG levels were 3- and 6-fold elevated, respectively, when
compared with the chow diet. On the other hand, n-3–fed L1 mice had no increase or much
less of an increase in plasma FFA and TG levels compared with other groups throughout the
study (Figure 2A and 2B) (P<0.05).

SAT diet feeding led to a >2-fold increase in plasma T-Chol levels than did the chow diet
(P<0.05), whereas cholesterol levels of n-3–fed mice remained constant toward the end of
the feeding period and were similar to those of chow diet–fed mice (Figure 2C). These
findings were of interest because changes in plasma T-Chol levels were similar between
mice fed the n-3 diet containing high amounts of cholesterol (0.2%, wt/wt) and mice fed the
chow diet containing much less cholesterol (0.02%, wt/wt). L1 mice receiving all diets had
higher levels of all lipids compared with values previously reported in C57BL/6 mice6

(supplemental Table).

A high-fat diet can induce insulin resistance in mice.15 To distinguish between the effects of
specific dietary fatty acids on the markers of insulin resistance, the SAT and n-3 diets used
in our studies were isocaloric but had a higher fat content (42% of total calories) than
normal rodent chow (21% of total calories). SAT-fed L1 mice had marked hyperglycemia
and hyperinsulinemia (609±98 mg/dL and 10.4±3.1 ng/dL for glucose and insulin levels,
respectively), whereas n-3–fed L1 mice had glucose and insulin levels of 419±37 mg/dL and
20.4±2.7 ng/dL, respectively. In keeping with insulin resistance and similar to what was
previously reported,10 L1 chow-fed mice had plasma glucose and insulin levels of 351±114
mg/dL and 20.0±2.5 ng/dL, respectively. These findings suggest that qualitative, rather than
measurement, differences in dietary fatty acids are more important in influencing blood
glucose levels, in addition to plasma lipid levels.

To further characterize plasma lipoprotein profiles in these L1 mice after feedings with the
different diets, changes in plasma lipoprotein distributions were analyzed using fast-
performance liquid chromatography (Figure 3). In accordance with the increase in plasma
TG levels, very low-density lipoprotein (VLDL) fractions were increased substantially in
SAT-fed mice, 4-fold greater than the chow-fed group (Figure 3A). In contrast, n-3–fed
mice had lower VLDL fractions. SAT diets also significantly increased L1 mouse plasma
LDL fractions when compared with the chow or n-3 diet (Figure 3B).

Diet Effects on Arterial LDL Uptake
We examined the effects of these dietary fatty acids on arterial LDL uptake and SU in the
L1 model. We used fluorescent-labeled LDL to directly examine LDL uptake and LDL-CE
deposition in the arterial wall. At baseline, before introduction of any experimental diets, L1
mice exhibited higher levels of LDL-CE uptake than their wild-type littermates (Figure 4A).
A higher SU was indicated by the accumulation of LDL-CE tracer (ie, green fluorescent
BODIPY in the arterial wall) and by more green fluorescence in the overlay when compared
with wild-type littermates (P<0.05, Figure 4B).

Figure 5 shows the effects of different dietary fatty acids on LDL uptake and deposition in
L1 mouse aortas. Compared with chow-fed L1 mice, the overlay image of SAT-fed mice
showed disproportionably higher LDL-CE delivery relative to apoB, indicating SU. In
contrast, with the reduced uptakes of LDL-apoB and LDL-CE, a similar amount of apoB
and LDL-CE localized in the luminal side in n-3–fed mice. Moreover, there was a reduced
infiltration of LDL in n-3–fed mice compared with chow- or SAT-fed mice (Figure 5A).
These findings are consistent with previous reports on C57BL/6 mice6; SAT diets increased
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LDL uptake and SU (P<0.05), whereas n-3 diets consistently abolished arterial LDL SU,
and the effects were pronounced in L1 mice (P<0.05, Figure 5B).

Dietary Fat Changes Arterial LpL Levels and Distribution
Researchers have demonstrated that LpL associates the binding of lipoproteins to cell
surface proteoglycans, especially heparan sulfate proteoglycans; this accelerates cellular
uptake of LDL and other lipoproteins.7,16,17 Previous studies showed that increased LpL in
the arterial wall was linked to increased arterial LDL uptake and SU in C57BL/6 and apoE-
knockout mice.5

Therefore, we examined arterial LpL expression levels by immunohistochemistry and
immunofluorescence in our insulin-resistant L1 mouse model. There was a marked increase
in arterial LpL levels, as indicated by more reddish brown staining (Figure 6A) in L1 mice
when compared with wild-type littermates. Similar findings of increased LpL were observed
by Western blot analysis of pooled artery homogenates (Figure 6B), in which densitometric
analyses of arterial LpL normalized for β-actin showed an approximate 20% increase in L1
compared with wild-type mice when both mouse groups were fed the chow diets (L1 versus
wild type, 1.28±0.03 versus 1.07±0.03 arbitraty units; n=3 to 5; P<0.05).

The effects of diet on arterial LpL levels in L1 mice were also examined (Figure 6C).
Immunofluorescent staining of arterial LpL was markedly increased in SAT-fed mice when
compared with chow-fed mice (SAT/chow ratio, 1.39±0.06; n=3; P<0.05). In contrast, n-3–
fed mice showed low levels of arterial LpL (Figure 6C), paralleling the decrease of LDL-
cholesterol deposition in the arterial wall.

Colocalization of LpL and Aortic Macrophages
Previous studies have shown that dietary saturated fatty acids increase macrophage-derived
LpL mass, activity, and mRNA levels.18,19 Preliminary data (not shown) on C57BL/6 mice
show that SAT, but not n-3, diets increased the number of arterial macrophages and that this
could contribute to increased LpL levels. Thus, correlations of arterial LpL levels and
macrophages were investigated in the L1 mouse model by immunofluorescence (Figure 7A).
Counterstaining of LpL, ECs, and macrophages showed that the presence of LpL was linked
to arterial medial macrophages (Figure 7B). More than 60% of LpL and macrophages
colocalized in SAT-fed L1 mice (Figure 7C). In n-3–fed mice, there was almost no staining
for LpL or macrophages in the arterial media; LpL was mostly at the intima, with some in
the adventitial regions (Figure 7C). Thus, increases in arterial LpL link to increases of
medial macrophages in the arterial wall.

Discussion
Atherosclerosis, a major contributor to CVD, can be modulated by dietary fat intake
patterns, insulin resistance, and type 2 diabetes.20 Dietary SATs and insulin resistance both
promote CVD; dietary n-3 prevent atherosclerosis and lower CVD morbidity and
mortality.21–24 In the studies described herein, we examined the effects of dietary SAT or
n-3 on plasma lipid, glucose, and insulin levels and on LDL cholesterol deposition in the
arterial wall in L1 mice (an insulin-resistant mouse model). Although hepatic insulin
signaling has not been disrupted in these L1 mice, compared with earlier studies in C57BL/6
mice,6 L1 mice exhibited abnormal plasma lipid profiles, including elevated plasma FFA
and TG levels and different patterns of plasma lipoprotein distribution. These differences
were further exacerbated by SAT feedings. On the other hand, the n-3 diets reduced all
plasma lipids, including cholesterol, in L1 mice. Several findings from L1 mice in the
current studies are different from the previous reports on nondiabetic C57BL/6 mice.6 Our
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diet studies on C57BL/6 mice showed similar increases of plasma T-Chol levels in both the
SAT- and n-3–fed groups, presumably because of the high cholesterol content in both diets
(0.2%, wt/wt, compared with 0.02%, wt/wt, in the chow diet).6 In L1 mice fed similar diets,
plasma T-Chol levels were only significantly increased in SAT-fed, but not in n-3–fed, L1
mice. These results suggest that the n-3 diet is more effective in reducing plasma T-Chol
levels in mice that have abnormal lipid profiles, such as L1 mice. Compared with previous
studies using C57BL/6 mice, in which there was no VLDL fraction in chow-fed mice, L1
mice fed with the same chow diets had significant VLDL fractions. However, the VLDL
fraction essentially disappeared in L1 mice that were fed the n-3 diet. Thus, reduced TG
levels in n-3–fed L1 mice could result from the reduced plasma TG-rich VLDL pools and/or
from inhibiting TG synthesis.25 Moreover, the results on weight change of L1 mice are
different from the similar diet studies on C57BL/6 mice.6 SAT- and n-3–fed L1 mice had
similar weight gain; however, substantially less weight gain was seen in C57BL/6 mice fed
the n-3 diet compared with mice fed the SAT diet. Regardless of the fat content in each diet,
our data indicate that L1 mice were more prone to diet-induced obesity.

Both the SAT- and n-3–fed groups had elevated plasma insulin levels, but the n-3–fed group
had blood glucose levels similar to the chow-fed mice. We have not examined β-cell
functions in the current studies; however, as characterized in previous studies,10 L1 mice
have islets of normal size with normal architecture and a moderate reduction in β-cell mass.
After 12 weeks of feeding, n-3–fed L1 mice displayed hyperinsulinemia, with relatively
normal glucose levels. In contrast, SAT-fed mice had substantially higher glucose levels but
lower insulin levels, suggesting the progressive deterioration of compensatory insulin
secretion by pancreatic β cells. Thus, it is possible that the SAT-fed mice with persistent
severe hyperinsulinemia and hyperglycemia have proceeded to β-cell failure. In contrast, n-3
may inhibit processes that are important to atherosclerosis progression even with ongoing
hyperinsulinemia.

L1 mice do not develop accelerated atherosclerosis spontaneously, possibly consistent with
the hypothesis that excessive, rather than reduced, insulin signaling is atherogenic.26,27 The
alternative, but not mutually exclusive, explanation is that distinct signaling pathways
mediate the effects of insulin on glucose versus lipid metabolism.28,29 More studies are
needed to elucidate the underlying mechanisms.

Recent studies from Han et al27 reported that when L1 mice were backcrossed with LDL
receptor–knockout mice on a uniform C57BL/6 genetic background, they were protected
from atherosclerosis and showed reduced VLDL/LDL levels and hepatic VLDL secretion.
Still, these mice were hyperinsulinemic. Furthermore, the reduced levels of hepatic insulin
receptors found in these double-knockout mice led to the reduced insulin signaling via
insulin receptor substrate 1/phosphatidylinositol 3-kinase and reduced levels of Akt
phosphorylation and its downstream targets, including reduced expression of lipogenic
genes and decreased VLDL secretion. This is of interest because our L1 mice have human
insulin receptor transgene expressed in liver, similar to that found by Han et al. The
distinguishing features between L1 mice used by Han et al and those in the present study are
our findings of hyperglycemia and dyslipidemia, with significantly higher levels of VLDL
and LDL. Our L1 mice were maintained on a mixed genetic background that might explain
some of the differences in the predisposition to diet-induced hyperglycemia; their genetic
makeup contains chromosomes derived from 129SV, C57BL/6, and FVB genomes. We have
not characterized hepatic insulin signaling pathways in these L1 mice; however, we have
found increased liver TGs in these L1 mice. When these mice were fed the SAT diets, the
number and size of liver lipid droplets were further increased when compared with chow-fed
L1 mice, but the n-3 diet markedly reduced hepatic lipid accumulation (data not shown).
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The macrophage has emerged as an important player in the pathogenesis of both
atherosclerosis and insulin resistance.18,19 Recent studies have suggested that saturated fatty
acids induce macrophage inflammation through the activation of toll-like receptor/nuclear
factor-κB–mediated signaling, whereas n-3 block these cascades.30–34 In addition, toll-like
receptor 4–dependent activation of NADPH oxidase causes both inflammation and oxidative
stress that contribute to arterial cell injury.35 Our preliminary data on C57BL/6 mice show
that the SAT, but not the n-3, diets increased number of arterial macrophages (C.L.C., T.S.,
and R.J.D., unpublished data 2009–2010). The accumulation of macrophages in the arterial
wall, triggered by SAT diets, can contribute to atherogenesis by secreting proinflammatory
mediators. Furthermore, our in vitro studies show that a saturated fatty acid, palmitic acid,
promoted inflammation in cultured murine macrophages by increasing mRNA gene
expression levels of proinflammatory cytokines, such as interleukin 6, but that n-3 EPA
decreased these levels (C.L.C., R.J.D., and U. J. Jung, unpublished data,). Furthermore, in
our in vitro studies, LpL mRNA expression and protein levels were increased by saturated
palmitic acid but attenuated by EPA.

In the current studies, the results of colocalization studies of LpL and macrophages in L1
mice with different diets suggest that increased LpL levels in SAT-fed mice were associated
with increased aortic medial macrophages. Notably, LpL itself can augment vascular
dysfunction in the setting of inflammation. LpL directly induces tumor necrosis factor α
gene expression and acts synergistically with interferon γ in the stimulation of macrophage
NO synthase expression and endothelial NADPH oxidase.36,37 LpL-induced tumor necrosis
factor α expression can further increase intercellular adhesion molecule/vascular cell
adhesion molecule, E-selectin, and expressions of other proinflammatory genes in vascular
cells.38 In addition, LpL has been proposed to function as a monocyte adhesion protein on
ECs and in subendothelial matrix.39,40 Taken together, we hypothesize that, although
saturated fatty acids stimulate inflammation in vascular cells, n-3 suppress inflammatory
pathways by inhibiting the accumulation of arterial macrophages and LpL and
proinflammatory cytokine production in atherosclerosis-susceptible sites. Hyperglycemia, as
documented in these L1 mice, was exacerbated by SAT, but not n-3, diets; this might lead to
advanced glycation end products, which could stimulate macrophage LpL gene expression
and secretion,41 another potential pathway that would contribute to the increased aortic LpL
levels.

In the current studies, similar to others, we suggest that LDL-cholesterol accumulation is a
key pathogenic event and requirement for lesion development in early atherosclerosis
progression; however, there are other factors that can affect binding uptake and the flux of
the lipoproteins to the artery. For example, the changes in lipid levels and lipoprotein
profiles associated with the SAT diet could affect arterial LDL uptake and deposition (ie, it
is possible that the increases of both VLDL and FFA accelerate LDL accumulation in the
arterial wall). Another possibility that might influence LDL accumulation in the arterial wall
is the change in vascular permeability.42

Feeding mice with high SAT diets may parallel conditions that increase arterial LDL
delivery and CE deposition in humans. However, because SAT diets also enhance diabetes
in mice, this could confound interpretation of some of our findings; the potential relative
contributions of insulin resistance–induced hyperglycemia and dyslipidemia are not fully
separated or defined from our studies. In mouse models (eg, LDL receptor–deficient mice),
hyperlipidemia can be exacerbated by high SAT feedings with the onset of hyperglycemia
and accelerated atherogenesis. Hyperglycemia may have an independent role in
atherogenesis.43 Gerrity et al44 showed that fat-fed diabetic pigs had more atherosclerosis
than similarly dyslipidemic fat-fed animals without diabetes. Consumption of a cholesterol-
free diet by LDL receptor–knockout mice with diabetes induced by β-cell–directed viral
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antigen resulted in hyperglycemia without changes in plasma lipids and lipoproteins, but
with more rapid atherosclerosis.43 Still, progression of atherosclerosis is mainly initiated by
a high-fat diet with the addition of dietary cholesterol independent of hyperglycemia.15,45

In summary, total LDL uptake and SU can be important contributors to accelerated arterial
LDL-CE uptake in insulin-resistant L1 mice. Moreover, in L1 mice, similar to other mouse
models, cholesterol delivery to the arterial wall is modified by the type of dietary fat, in part,
through changes in arterial LpL levels. Although SAT diet increased total LDL-CE uptake
and SU, an n-3 diet inhibited these pathways important to atherosclerosis progression in L1
mice. We hypothesize that the effects of n-3 on decreasing arterial wall cholesterol delivery
in insulin-resistant mice will be an important mechanism by which these bioactive n-3 could
decrease risk of CVD in metabolic syndrome and type 2 diabetes.
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Figure 1.
Effects of diet on mouse body weight in L1 mice fed a chow (■), SAT (▲), or n-3 (●) diet
for 12 weeks. Each point represents the mean±SD of 10 mice. * and # denote significant
differences between chow and SAT and between chow and n-3, respectively. P<0.001.
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Figure 2.
Plasma lipid profiles of L1 mice fed a chow (■), SAT (▲), or n-3 (●) diet. A through C,
Blood samples were determined weekly for FFA (A), TG (B), and T-Chol (C) levels, as
described in the Methods section. The results are expressed as the mean±SD (n>8). *P<0.05,
chow vs SAT or n-3; #P<0.05, n-3 vs SAT.
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Figure 3.
Plasma lipoprotein profiles in L1 mice fed a chow, SAT, or n-3 diet. A and B, TG (A) and
Chol (B) levels were determined for each fraction after separating by fast-performance
liquid chromatography. Elution fractions 2 to 10, 12 to 22, and 25 to 35 represent elution
zones for very LDL, LDL, and high-density lipoprotein, respectively.
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Figure 4.
A, Comparison of arterial LDL-CE (BODIPY) and LDL-apoB (Alexa) uptakes in L1 mice
and wild-type (WT) littermates. Merged 2-channel images (right) were used to assess
colocalization of dye (Alexa) and BODIPY, with yellow fluorescence indicating
colocalization (magnification ×20). B, Ratios of arterial uptake of total LDL-CE to whole
LDL particle uptake determined for L1 mice and WT littermates, as described in the
Methods section. Data are given as the mean±SE. *P<0.05.
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Figure 5.
A, Effects of diet on fluorescent LDL-CE (BODIPY) and apoB (Alexa) uptakes in aortas. B,
Ratios of arterial uptake of total LDL-CE to whole LDL particle uptake determined for each
diet group. Data are given as the mean±SE. Ratios were normalized to the same unit area for
each diet. A ratio >1 indicates SU (dotted line). *P<0.05, chow vs SAT or n-3; #P<0.05,
SAT vs n-3.
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Figure 6.
Effects of insulin resistance and diet on arterial LpL levels. A, Immunohistochemical
staining of arterial LpL. Reddish brown staining shows the presence of LpL. B,
Representative images of a Western blot for LpL from pooled mouse artery homogenates
(n=3). C, Immunofluorescence of arterial LpL from mice fed a chow, SAT, or n-3 diet.
Magnifications are ×20 (A) and ×40 (C). WT indicates wild type.
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Figure 7.
Arterial macrophages and LpL in the aorta. A, Representative images of chow-, SAT-, or
n-3–fed L1 mouse aortas stained for ECs (blue), LpL (green), and macrophages (red)
(magnification ×40). B, Immunofluorescence of macrophages measured for each group
(n>3). C, Percentage of macrophages colocalizing with LpL determined for each group
(n>3), as described in the Methods section. *P<0.05, SAT vs chow; #P<0.05, SAT vs n-3.
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