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Abstract
Lung dysfunction is an important part of the pathology of the neurodegenerative disorder,
Niemann-Pick C1 (NPC1). We have studied the pulmonary disease in the Npc1NIH/NIH mouse
model. On histology, we find large numbers of alveolar foamy macrophages but no alveolar
proteinosis. Lung weight as percent of body weight was markedly increased; using the flexiVent
small animal ventilator (SCIREQ, Inc.), we find inspiratory capacity, elastance and hysterisivity to
be increased while resistance was not changed. Cholesterol measurements show a doubling of lung
cholesterol levels. Collagen is also increased. Treatment of Npc1−/− mice with hydroxypropyl-β-
cyclodextrin (HPBCD), despite efficacious effects in brain and liver, results in little difference
from age-matched controls (using a CNS-expressed transgene to extend the life expectancy of the
Npc1−/− mice) for these variables.
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Introduction
It has long been known that pulmonary disease, along with liver and spleen storage, are
important aspects of NPC. In the period before Niemann-Pick A and B were distinguished
from NPC, a variety of pulmonic x-ray descriptions were provided including
micronodularity and diffuse changes similar to those seen in tuberculosis [1]. Even when the
3 types were distinguished, similarities of lung disease among NPCA, B, and C, with finding
of interstitial lung pathology and foamy cells obtained by bronchoalveolar lavage, were
confirmed [2]. Pulmonary disease in a case of the longer surviving NPCD (a milder mutant
of NPC1) was well described and included decreased diffusion capacity for CO [3]. As
NPC1 and NPC2 were distinguished, it became apparent that NPC2 has much earlier onset
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and showed more severe lung disease [4–5] which included pulmonary alveolar proteinosis
[6]. The lung disease has been studied in the Npc1NIH/NIH mouse model by electron
microscopy [7]. Lung endothelial cells and type I pneumocytes were heavily laden with
stored material. Foamy macrophages were abundant in the alveolar spaces [7].

Nearly a decade ago, an efficacious effect of hydroxypropyl-beta-cyclodextrins (HPBCD)
on slowing the neurodegeneration in the mouse model of Niemann-Pick C1 was shown [8].
HPBCDs are substituted rings of 7 glucoses and this same publication showed they do not
cross the blood brain barrier (BBB). Perhaps because it seems counter-intuitive to treat a
CNS disorder with a drug that does not cross the BBB, and perhaps because the effects are
rather small when the drug is only started at the time of weaning, the treatment was not
pursued. Interest was re-ignited when HPBCDs were used as a carrier for neurosteroids and
injections were started at 7 days, when the BBB is still open in mice [9]. It was soon found
that HPBCD alone was equally efficacious as HPBCD with the neurosteroid [10].

We have studied the pulmonary disease in the Npc1NIH/NIH model by histology, pulmonary
function tests, and biochemical assays. We have also studied the effects of HPBCD therapy
and find that it does not ameliorate the lung disease.

Materials and Methods
Mice

The Npc1NIH/NIH (Npc1−/−) mutant is essentially a “natural” knockout: an active mouse
retroposon inserted 1,100 bp and deleted 800 bp of the Npc1 gene [11]. This also created a
frameshift. Thus, only a small amount of the apparently truncated Npc1 mRNA [12] and no
protein is detectable in homozygous recessive mice. These mice are maintained on the
BALB/cJ background and derived from heterozygous matings. Tail tips were routinely
obtained at 14 days and DNA was typed by PCR according to Loftus, et al [11]. Only 17%,
instead of the expected 25% Npc1 −/− are weaned and untreated mice survive (16) 73 +/− 2
days.

We also used these mice carrying the glial fibrillary acidic protein promoter-promoted Npc1
cDNA. These mice express Npc1 only in fibrillary astrocytes and have significantly
prolonged survivals [13]. The transgene is not expected to have any significant influence on
lung function, although it does influence the intestine because of the presence of glia in
enteric ganglia [14]. Since there was likely to be progression of lung disease with age, we
used these mice to provide age-matched controls for the cyclodextrin-treated mice. These
are also on the BALB/cJ genetic background (N6 or greater).

We initially used 3 Npc1+/+ or Npc1+/− as wild-type, age-matched controls, ages 44 to 47
days, for the untreated Npc1−/− mice, and 5, ages 94 to 112 days, as age-matched controls
initially intended for treated mice. There were no statistical differences in any of the two
wild-type age group measurements so they were combined as one group. We studied 8
untreated Npc1−/− mice (ages 72 to78 days) which were compared to the above controls.
Five treated (ages 133 to 154 days) Npc1−/− mice were studied. As mentioned above, to
provide age-matched Npc1−/− controls for the treated Npc1−/− mice, we studied 7 Npc1−/−

GFAP tg mice (ages 106 to 116 days). Since not every study was successful on every mouse
(e.g. some died on the flexiVent), actual numbers for each determination are provided in the
figures of results. Treated mice that were not sacrificed for studies live to 150+ days.

Hydroxypropyl-beta-cyclodextrin treatment
(2-hydroxypropyl)-beta-cyclodextrin from Sigma, batch 094K1435, degree of substitution
not provided, was dissolved in normal saline at 200 mg/ml. 0.02 c.c./g were injected
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subcutaneously, to achieve a dose of 4g/kg. This was injected weekly starting at 7 days post-
natal. All pups of a litter were injected at days 7 and 14, genotyping was performed as
described above, and injections were continued on the Npc1−/− mice. Control mice for
pulmonary studies were not injected. Some Npc1+/+ received weekly injections of HPBCD
for lung cholesterol and collagen determinations.

Pulmonary Function Tests
Mice were anaesthetized with 0.017–0.020 ml of 2.5% Avertin per g body weight and the
trachea was dissected free and cannulated with a 20 or 21 gauge cannula (depending on the
size of the trachea) which was kept in place with a single tie suture. The animals were then
connected to a small animal ventilator (flexiVent, SCIREQ, Inc., Montreal, Quebec,
Canada) and ventilated with a tidal volume of 10ml/kg, inspiratory/expiratory ratio of
66.67%, respiratory rate of 150/min and maximum pressure of 30 cm H20. Positive end-
expiratory pressures (PEEP) were maintained by submerging the expiratory limb from the
ventilator into a water trap (3 cm H20 pressure).

The flexiVent apparatus ventilates the mouse and then generates pressure-volume curves
over an 8 sec. interval before continuing the respirations. The machine is calibrated for gas
compressibility and resistive and accelerative losses in all the connections and calculates
inspiratory capacity, elastance, hysterisivity, and resistance on the basis of the entered
mouse weight.

Cholesterol determinations
Cholesterol was determined with the InfinityTM reagent (ThermoFisherScientific, Inc.,
Middletown, VA) which measures total cholesterol. Briefly, tissue was homogenized in
20mmol. Tris, 2 mmol EDTA, 150 mmol NaCl with 1% Triton X-100, pH 8.0. An aliquot
was taken for protein determination by the bicinchoninic acid technique (BCA Protein
Assay, Pierce, Rockford, IL). Standards were dissolved in the same buffer. The homogenate
was stirred for 5 min at RT, centrifuged at 18,000g for 5 min., up to 10 ul of supernatant
incubated at 37 C for 5–10 min. with 0.3 ml.s of InfinityTM reagent, and absorbance read at
500 nm.

Collagen determinations
Hydroxyproline was determined in lung samples after collagenase digestion of the sample.
Briefly, tissue was homogenized in a citrate:acetate buffer (26 mmol citrate, 166 mmol
acetate, pH 5.8) and an aliquot taken for protein determination by the bicinchonic acid
technique. Collagenase (Clostridiopeptidase A, EC 3.4.24.3, Sigma) was added to 0.1% and
the samples were incubated at 37 C with agitation for 16 hours. After digestion, the samples
were centrifuged at 18,000g for 3 min. Hydroxyproline standards were diluted in the same
homogenization buffer. Supernatants were incubated with one-half vol. of resolving buffer
(freshly prepared 62mmol Chloramine T in 26% propanol and half-strength homogenization
buffer) for 20 min at RT and then with another one-half vol. of colorimetric reagent (freshly
prepared 116 mmol p-aminobenzaldehyde in 70% propanol and 18% percholoric acid) for 5
min. at 60 C. Absorption was measured at 562 nm.

Statistics
Paired t-tests were performed between Npc1−/− and controls and between GFAP tg Npc1−/−

and HPBCD-treated Npc1−/− mice. Testing was done for differences between group
variances and, if they differed, the t-test that did not assume equal variances was used.
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Results
Npc1NIH/NIH compared to wild-type sibs

Histological staining of age-matched wild-type sibling mice shows normal pulmonary tissue
(Fig 1A and E) while the affected mice show foamy macrophages but no alveolar
proteinosis (Fig 1B and F). Lung weight as percent of body weight was increased (Fig 3A).
When studied on the small animal ventilator, differences in pressure-volume loops are
apparent (representative loops in Fig 2A).The calculations of the pulmonary function output
from these loops showed increases in inspiratory capacity, elastance and hysterisivity (Fig 3)
but no changes in resistance (not shown). Cholesterol and collagen were also increased (Fig
4).

HPBCD- treated Npc1NIH/NIH compared to Npc1NIH/NIH, GFAP Npc1 (Npc1−/−, GFAP
transgenic) age-matched transgenics

Histological studies of HPBCD-treated Npc1−/− and similar-aged Npc1−/−, GFAP transgenic
controls showed marked increases in the number of alveolar foamy macrophages in both
groups (Fig 1C, D, G and H). There was not much difference in the pressure volume loops
(Fig 2B) or the values for lung weight as percent of body weight and elastance but
hysterisivity was normal in the Npc1−/− GFAP transgenic (Fig 3) while the treated, age-
matched controls had a small increase in inspiratory capacity. Npc1+/+ mice treated with
cyclodextrin showed lowered cholesterol ([3] 29.8±2.6, p≤0.0005) while collagen was not
different ([3] 2.21±0.55, p=0.159). Cholesterol levels were not corrected in Npc1−/− mice,
while there was a statistically insignificant trend for collagen to be decreased in them (Fig
4).

Discussion
Niemann-Pick disease type C (NPC) is an autosomal recessive, neurodegenerative disorder
that usually presents in the first decade of life [15]. The classic presentation of NPC is a
child of either sex developing coordination problems, dysarthria, and hepatosplenomegaly
during early school-age years. The neurological progression of the disorder is relentless and
is characterized by increasing severity of ataxia, developmental dystonia, and dementia,
until death supervenes, usually during the second decade of life. Identification of the major
gene responsible for the disorder, NPC1/Npc1, revealed one coding for a multipass
transmembrane protein containing a sterol-sensing domain that shows homology to the
genes for Patched, HMG CoA reductase, and SCAP (SREBP cleavage activating protein)
[11,16] Analysis of NPC1 protein function suggest that it is involved in late endosomal lipid
sorting/vesicular trafficking [17–19]. The fundamental role of NPC1 in intracellular lipid
transport, and the severe visceral disease which sometimes causes death before the onset of
neurodegeneration, established the idea that lipid accumulation is the primary defect in NPC
and leads to secondary neurological impairment. Thus, the use of drugs to try and decrease
cholesterol storage was an early goal for treatment of NPC1. However, classic cholesterol-
lowering drugs did not have an effect on the neurodegeneration [20].

Beta-cyclodextrins have long been known to create inclusion complexes with cholesterol
[21] and have been used to study cholesterol, and other steroid, metabolism in vitro [22–25]
and in vivo [26–29], even in humans [30]. They appear to be non-toxic: even massive orally
administered doses to pregnant rabbits resulted in no teratogenic or embryotoxic effects
[31]. Much of the early literature is reviewed by Thompson [32] (337 references) and a
critical discussion of beta-cyclodextrin modifications is provided by Blanchard and Proniuck
[33].
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HPBCDs are rapidly cleared by the kidney (90% in 4 hours); if pre-loaded with steroid, the
steroid component is no longer present but has been transferred to serum proteins [34].
Uncomplexed HPBCD injected intracerebrally was rapidly cleared, cholesterol in such
complexes was retained for at least 3 days. Uncomplexed HPBCDs given parentally to
Npc1−/− mice result in significant clearance of cholesterol from liver [8, 10] but not from
lung [10]. The sequestered cholesterol is secreted as bile acid [35]. The mechanism of
cholesterol release from NPC1 cells involves endocytosis of the HPBCD [36] and corrects
deficient transport of cholesterol from lysosomes to the endoplasmic reticulum [37]. Of
interest, methyl-beta-cyclodextrin, which can lower brain cholesterol [38] and therefore,
may be able to cross the BBB, was more effective in depleting cholesterol from NPC1 cells
[36].

While Camargo, et al [8] found a modest effect with HPBCD injections at doses of 500mg/
kg given 3 times a week starting at 28 days, Davidson, et al [39] found a doubling of life
expectancy with every other day injections of 4,000mg/kg starting at 21 days. With this
treatment, the authors found “a seemingly greater number of cholesterol positive cells
present in the CD-treated lungs” , compared to age-matched untreated Npc1−/− mice. Using
a similar treatment scheme, Ramirez, et al. [40] found a slight decrease in lung cholesterol
levels but no decrease in CD68, CD11c, TNFα mRNA levels. Our histological results
parallel those of Davidson, et al. [39] and Ramirez, et al. [40]: large numbers of foamy
macrophages in the alveolar lining and alveolar spaces were found but no alveolar
proteinosis was apparent. Trichrome staining suggested increased collagen which was
confirmed by hydroxyproline assays.

We supplemented our histological results using quantitative measures of parameters of
pulmonary function, cholesterol and collagen. Lung weight, inspiratory capacity, elastance
and hysterisivity were increased in Npc1−/− as compared to Npc1+/+ mice. Cholesterol and
collagen were also increased. Thus, this mouse model mostly replicates the pulmonary
disease seen in Niemann-Pick C patients although the alveolar proteinosis seen in NPC2 [6]
was not seen. We also monitored the effects of HPBCD treatment on the pulmonary disease.
We used Npc1−/−, GFAP transgenics as age-matched controls. This GFAP-promoted Npc1
transgene expresses Npc1 in fibrilary astrocytes and would only affect lung neuronal activity
by correcting astrocytes in their ganglia [41–42]. Interestingly, hysteresis (which may be
influenced by muscle tone) was returned to normal in these mice but all other parameters
were comparable to Npc1−/− mice at a younger age. HPBCD treatment did not alter these
parameters although there was a trend towards decreased lung collagen.

While HPBCD’s decrease cholesterol in many tissues, including normal lung, they do not
have this effect in diseased lung. Perhaps the large capillary bed of the lung results in
transfer of cholesterol loaded into HPBCD from other organs to the capillary epithelia, and
thus to the lung parenchyma. Possibly inhaled cyclodextrins would decrease the
accumulation of cholesterol in the lung.
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Figure 1.
Histological examination of lungs from control (16 weeks), Npc1−/− (11 weeks), GFAP
transgenic (16 weeks), and HPBCD-treated Npc1−/− (18 weeks) mice. A. Hematoxylin and
eosin (H&E) stained control lung. B. H&E stained Npc1−/− lung. C. H&E stained Npc1−/−,
GFAP tg lung. D. H&E stained HPBCD-treated Npc1−/− lung. E. Trichrome stained control
lung. F. Trichrome stained Npc1−/− lung. G. Trichrome stained Npc1−/− GFAP tg lung. H.
Trichrome stained HPBCD-treated Npc1−/− lung. Foamy macrophages indicated by arrows.
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Figure 2.
Representative pressure-volume loops from the flexiVent small animal ventilator (statistical
analyses of the values derived from multiple loops are provided in Fig 3). A. One Npc1−/−

(dotted) compared to a wild-type Npc1+/+ mouse (solid). B. Npc1−/− treated with HPBCDs
(dotted) compared to age-matched Npc1−/−, GFAP transgenic mouse (solid).
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Figure 3.
Pulmonary function values for control mice (white), Npc1−/− (black), age-matched Npc1−/−,
GFAP transgenic mice (dotted white), and Npc1−/− treated with HPBCDs (dotted black). A.
Lung weight as percent of body weight. B. Inspiratory capacity over body weight. C.
Elastance. D. Hysterisivity. *p≤0.05; **p≤0.01; ***p≤0.005; ****p≤0.0005. group
variances differed so the t-test that did not assume equal variances was used.
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Figure 4.
Biochemical determinations in lungs for control mice (white), Npc1−/− (black), age-matched
Npc1−/−, GFAP transgenic mice (dotted white) and Npc1−/− treated with HPBCDs (dotted
black). A. μg Cholesterol / mg protein. B. Collagen, determined as μg hydroxyproline / mg
protein. *p≤0.05; ****p≤0.0005. group variances differed so the t-test that did not assume
equal variances was used.
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