
Automated Sequence Preprocessing
in a Large-Scale Sequencing Environment

Michael C. Wendl,1,3 Simon Dear,2 Dave Hodgson,2 and LaDeana Hillier1

1Genome Sequencing Center, Washington University, St. Louis, Missouri 63108 USA; 2The Sanger Centre,
Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK

A software system for transforming fragments from four-color fluorescence-based gel electrophoresis
experiments into assembled sequence is described. It has been developed for large-scale processing of all trace
data, including shotgun and finishing reads, regardless of clone origin. Design considerations are discussed in
detail, as are programming implementation and graphic tools. The importance of input validation, record
tracking, and use of base quality values is emphasized. Several quality analysis metrics are proposed and applied
to sample results from recently sequenced clones. Such quantities prove to be a valuable aid in evaluating
modifications of sequencing protocol. The system is in full production use at both the Genome Sequencing
Center and the Sanger Centre, for which combined weekly production is ∼100,000 sequencing reads per week.

Increased automation in the Human Genome
Project (Watson 1990) continues to be critical in
meeting projected goals and minimizing costs.
Whereas technology development and hardware
improvements are responsible for many gains, in-
formatics issues also remain critically important
(Marshall and Pennisi 1996). One area in which this
is especially true is processing shotgun data, that is,
converting raw fluorescent-gel images into as-
sembled sequence. Managing the voluminous
amount of data is difficult and requires appropriate
computer software to maintain the systematic flow,
organization, and quality-control necessary for suc-
cessful large-scale shotgun sequencing (Wilson et al.
1994; Mardis and Wilson 1997). Most proprietary
systems have proven to be less than adequate, how-
ever, a number of excellent Unix software tools
have been developed to aid in automating various
steps. For example, programs are now available that
perform lane retracking calculations on multilane
gel images with only a minimum of human inter-
vention (Cooper et al. 1996). Moreover, a number of
robust assembly algorithms and editors have been
implemented and presently are in widespread use,
for example, gap (Bonfield et al. 1995), phrap (P.
Green, pers. comm.), consed (Gordon et al. 1998),
and fakII (Larson et al. 1996; Myers 1996). The time,
effort, and cost saved by such software is significant.

Sequence preprocessing, also called preassem-
bly (Bonfield and Staden 1995), is the transforma-

tion of raw trace signals to assembly-ready sequence
and is flanked by lane retracking and assembly (Fig.
1). It includes tasks such as converting the raw trace
file from proprietary to standard form (Dear and
Staden 1992), deriving template information, base-
calling, vector screening, quality evaluation and
control, disk management, and associated tracking
and reporting operations (Fig. 2). Not only does it
represent a significant computational effort, but se-
quence preprocessing is also challenging in the
sense that it must handle many clones (also called
sequencing projects or simply projects) being se-
quenced simultaneously. The importance of ana-
lyzing preprocessing results and generating in-
formative reports also cannot be underestimated.
These reports are usually the only way to quanti-
tatively evaluate incremental modifications of se-
quencing protocols that are often required. For
high-throughput labs, an organized, automated
sequence preprocessing strategy is therefore a neces-
sity.

Because of its fundamental importance in large-
scale sequencing, the preprocessing problem has
given rise to a number of Unix-based software sys-
tems using a wide range of paradigms. For example,
pregap (Bonfield and Staden 1995) is a Bourne shell
wrapper script designed around the Staden Package
(Staden 1996) and the gap assembler (Bonfield et al.
1995). It is a component-based approach using the
experiment file format (Bonfield and Staden 1995)
for storing read-based information. The script al-
lows some customization on the part of the user,
but does not provide extensive capability for input

3Corresponding author.
E-MAIL mwendl@watson.wustl.edu; FAX (314) 286-1810.

GENOME METHODS

8:975–984 ©1998 by Cold Spring Harbor Laboratory Press ISSN 1054-9803/98 $5.00; www.genome.org GENOME RESEARCH 975

validation and graphic input and output analysis.
GRM (Lawrence et al. 1994) is an integrated graphic
system based upon the object-oriented methodol-
ogy. It is implemented in a number of languages
including ‘‘C’’, Smalltalk 80, and VisualWorks. The
system allows interaction only through interfaces
and supports various sequence assembly programs.
Another program, hopper (Smith et al. 1997), is a Perl
implementation designed around the University of
Washington genome tools (P. Green, pers. comm.).
Like pregap, it is component-based so individual
pieces can be replaced with new or different tools. It
also performs some input validation and automati-
cally generates reports.

The diversity of available preprocessing pro-
grams partially reflects the varying needs of indi-
vidual sequencing laboratories and centers. Prac-
tices, protocols, lab organization, and file structure
all have a bearing on designing a sequence prepro-
cessing strategy. At the Genome Sequencing Center
(GSC), we, along with collaborators from the Sanger
Centre, began developing our current strategy and
Unix-based Perl implementation 3 years ago. It has
since matured into a complete system called the Ge-
nome Automated Sequence Preprocessor (GASP).
Designed around our needs for large-scale through-
put, it manages the current production rate of
∼50,000 genomic reads per week at each laboratory.

RESULTS AND DISCUSSION

Development of the software has focused on pro-

viding our laboratory personnel with maximum
utility. For example, user interaction is managed
primarily with graphic interfaces (Fig. 3). A main
interface (top) serves as an integrated platform for
various components of the package to be discussed
below. Two of the principal components are also
shown in Figure 3: the processing interface for shot-
gun reads (middle), and the viewer for shotgun
quality statistics (bottom). Not only is the graphic
approach widely preferred by users as compared to
command line implementations, but it also reduces
the training time necessary for users to effectively
operate the software.

An important diagnostic feature of the package
is the ability to analyze processing results through
reports of various kinds. Compiling these reports
can be computationally intensive because a desired
piece of information usually must be derived from a
large number of DNA fragment reads. Because cer-
tain analyses may depend upon tens or even hun-
dreds of thousands of reads (especially for quantities
integrated as a function of time), it would be im-

Figure 1 Overview of large-scale data processing.
Data are gathered from ABI sequencing machines
(models 373 and 377) on a Macintosh and ported to
the Unix network. All subsequent operations occur
strictly in the Unix domain including lane retracking,
sequence preprocessing, and fragment assembly.

Figure 2 Overview of serial steps in sequence pre-
processing. Each step represents an independent com-
ponent module, some of which are simply wrappers for
system programs. Modules can be added, deleted, or
modified as needed. Template information refers to
auxiliary processing data associated with a DNA frag-
ment, including sequencing and cloning vector, or-
ganism and clone of origin, archive plate, and details
(especially dates) regarding DNA growth and purifica-
tion, and sequencing reactions.

WENDL ET AL.

976 GENOME RESEARCH

practical to compute and up-
date all reports every time a
set of reads is processed. Con-
sequently, tools are imple-
mented along a general meth-
odology that allows the user
to display individual precom-
puted analyses for a given set
of reads, compute desired
analyses in real time, or as-
semble and merge smaller
analyses into larger ones ac-
cording to user-specified con-
straints.

For example, consider the
conceptually simple task of
reporting sequencing success
for a set of read fragments,
that is, tallying number of
fragment samples processed,
number of passing and failing
samples, number of vector,
etc., and calculating their as-
sociated statistics. Group co-
ordinators are primarily inter-
ested in daily reports and
weekly summaries of these
quantities. Figure 4 shows a
typical daily report classified
by the names of the current
sequencing projects. (Similar
reports are generated for lab-
wide results.) Automatic Unix
cron scripts manage the com-
pilation of these reports by
deriving pointers to the ap-
propriate summary files from
a set of logs created by the
GASP preprocessor. Each
script uses summaries as its
input, parsing and merging
them into the desired report.
All references back to the raw
data are eliminated, resulting
in a process that is computa-
tionally very efficient. Further
dissection of sequencing re-
sults is also sometimes re-
quired. For example, success
as a function of templating or
sequencing personnel, or se-
quencing machine can be de-
rived from the summary files.
Other quantities include gross

Figure 3 Graphical user interfaces. Main interface (top) serves as an integrated
platform for all the preprocessing tools and is divided into three sections: pre-
processor versions for specific types of reads (e.g., shotgun reads), error correc-
tion tools, and tools for analysis. As a result, users do not have to memorize
numerous script names and command line options to use the toolkit effectively.
Another interface (middle) is used to communicate input parameters to the se-
quence processing engine. The modified Unix environment is inherited from the
main interface and two-way communication between the interface and the main
program is handled via Perl’s IPC::Open2 utility. A viewer for sequence quality
statistics (bottom) enables inspection of results from a base quality standpoint. It
has proven to be an effective means of monitoring the overall shotgun sequenc-
ing process and has come to play a role in evaluating changes in lab protocols.

LARGE-SCALE AUTOMATED SEQUENCE PREPROCESSING

GENOME RESEARCH 977

and net trace and base counts and statistics, results
classified by gel, project, or reaction type, tallies of
bad primer positions or partial sequencing vector
reads, and classification of failure types according to
cloning and sequencing vector, poor trace quality,
and abandoned samples. This flexibility offers a
powerful tool for troubleshooting and a substantial
savings in time and labor.

Base-quality values (Ewing and Green 1998) are
also considered to be an important metric for shot-
gun sequencing and a dedicated viewing tool man-
ages their analysis and display (Fig. 3, bottom). The
viewer is capable of integrating quality results for
arbitrary sets of reads according to predefined user
queries. For example, Figure 5 shows three project-
based analyses from a human PAC clone for selected
plates, gels, and reaction types. The abscissa gives
the number of high-quality bases per read, whereas
the ordinate gives the number of reads. In Figure 5a,
quality results for 4 of the 31 plates allocated for the
project are superimposed. An anomaly is visible im-
mediately for plate og26 in the form of a large
grouping near the origin. Almost 70% of the reads
have ø50 quality bases and the average read length
based upon quality is extremely short. In this case a
96-channel pipettor failed to dispense DNA prop-
erly, compromising most of the sequencing reac-
tions. Results for plate om79 are somewhat im-
proved, whereas those for plates og37 and og45 are
clearly the best. The latter two plates show average
read lengths >400 and very few reads with <50 good

bases. Figure 5b shows the
same data from representative
gels for these plates. Figure 5c
shows a comparison of frag-
ments sequenced with our
current dye-primer and dye-
terminator chemistries, desig-
nated by ‘‘s1’’ and ‘‘x1,’’ re-
spectively. The curves reflect a
trend realized lab-wide: Dye-
primer reactions continue to
outperform dye-terminators
by a significant margin. Spe-
cifically, the two functions are
approximately proportional
up to a read length of 225 af-
ter which dye-terminator re-
sponse decays. Dye-primer
reads, however, offer much
better results with a peak oc-
curring at a read length of
450 bases and a number of
samples reading past 600

good-quality bases. Though not shown, the viewer
is used routinely in several other roles too, for ex-
ample large-scale analyses as a function of time,
clone type, read type, or sequencing group.

Several of the support tools that enable users to
correct or amend preprocessing output are also
noteworthy. For example, one such tool is used to
remove the entire output of a preprocessing session
in the event of undetected problems, such as mis-
named plates. The application, launched from the
main interface in Figure 3, allows the user to browse
a sequencing project by date, gel name, or plate
name, then manages the deletion of all files in the
main project directory and all relevant subdirecto-
ries. A related tool can be used to perform a global
move from one sequencing project to another in the
event of a project misnaming. Additional programs
manage vector changes and creation of additional
summaries. This set of tools substantially reduces
the users’ dependence upon programming staff and
helps make GASP substantially more robust overall.

Another aspect of the system is the modularity
of the overall design and implementation. Modular-
ity allows rapid reconfiguration when necessary, for
example, the ability to change processing modules
as mentioned above. However, it also benefits both
the users and maintainers of the system in several
other tangible ways. For instance, many of the
graphic interface components have been imple-
mented as Tk metawidget objects. Because these
customized objects have essentially the same level

Figure 4 Typical daily sequencing report for a group. The report is indexed by
sequencing project in the first column: The first two projects are Caenorhabditis
briggsae fosmids, those prefixed by H are human clones, and the remaining
project is a C. elegans YAC. In order of appearance, the remaining columns show
number of reads processed, number that entered the database, number which
were vector sequence, name of the cloning vector, total number of reads cur-
rently in the database, total number of contigs currently in the database, basepair
length of the clone based on the current assembly, average number of bases per
read based on trace clipping, and the logging date. Below these are column
totals: number of reads processed, number that entered databases, and number
of vector reads. The last line gives overall percentages of reads that assembled
and reads that were vector sequence. Information is reclassified for other reports,
for example, weekly summaries are also indexed by the organism being se-
quenced. These reports assist group coordinators in tracking continuously the
success of their sequencing group and in troubleshooting problems as they arise.

WENDL ET AL.

978 GENOME RESEARCH

of reusability as the Tk base classes, they not only
save appreciable programming time, but also pro-
vide uniformity to the users, resulting in reduced
training time and decreased probability for mis-
takes. Moreover, the capacity for managing the sys-
tem is enhanced by the use of Perl modules. Many
of these modules are object-oriented classes and ap-
pear frequently throughout the code, some a dozen
times or more. Modularity will continue to play an
important role as the system evolves and expands.

Overall the GASP system has proven to be a rea-
sonable answer to our processing requirements.
User reaction has been favorable, particularly be-
cause of the decreased time that must be spent daily
on sequence preprocessing when compared to our

earlier software approaches. Prior to GASP, traces
had to be divided according to their sequencing
project, requiring significant manual effort on the
part of the user. This is now managed automatically
by the template lookup process, which derives the
project name from stored information. Graphics,
input validation, and repair tools were also mini-
mal, whereas in GASP they are basic features. The
end result is that users now spend relatively little
time on sequence preprocessing.

To date, our respective labs have produced a to-
tal of ∼180 Mb of finished sequence (of various or-
ganisms) and GASP has processed the majority of
contributing reads. We expect that development ef-
forts will pace future increases in sequencing rate

Figure 5 Typical classifications of base quality statistics for a sequencing project: (a) by plate name, (b) by gel
name, and (c) by reaction chemistry. Each frame is imported directly from the viewer shown in Fig. 3 and is
unretouched with the exception of adding a label to indicate the classification being displayed. (Such labels are not
used in the software because an arbitrary mixing of groups is permitted on a single display.) The first and second
columns in the legend show the symbol used to identify each function and the function name. In a function names
are plates; in b and c they are gel names and read types. (s1) Current dye-primer and (x1) dye-terminator read-type
chemistries. The next two columns show the number of DNA fragment reads in each function and the location on
the abscissa at which the function maxima occur. The columns give the percentage of reads in each function having
50 (%50) or fewer good bases and 400 (%400) or more good bases and the remaining column is the average read
length for each function.

LARGE-SCALE AUTOMATED SEQUENCE PREPROCESSING

GENOME RESEARCH 979

rate and that GASP will continue to be used as our
standard sequence preprocessing system.

METHODS
Design, development, and implementation of software tools
in a large-scale sequencing environment can be difficult from
a programming standpoint. Our laboratory operations are di-
vided among several quasi-independent groups, each of
which has full sequencing capability. Software must therefore
be modular and flexible enough to accommodate processing
differences among the groups, yet must be unified to a degree
that further development and maintenance remain manage-
able. It must also be able to process reads from several organ-
isms simultaneously and from each stage of sequencing: shot-
gun, automated finishing, and the final manual finishing
phase. An object-oriented approach lends itself well to these
requirements. The serial data flow (Fig. 2) also suggests a com-
ponent-based system similar to that used by hopper (Smith et
al. 1997) in which each step represents a link that can be
inserted or deleted. Perl proves to be an ideal development
language for these needs not only because it can interface
directly to the Unix system, but also because of its powerful
text-handling features, good execution speed, widespread us-
age and portability, and object-oriented capability (Wall et al.
1996). Moreover, its extension to the Tk graphics language
simplifies user-interface development (Srinivasan 1997). A de-
bugger and execution profiler provide additional diagnostic
tools. Overall, Perl has proven to be more than satisfactory
with respect to sound software-engineering requirements.

Whereas the main processor can be executed automati-
cally as a Unix cron job, graphic user interfaces introduced in
Figure 3 are utilized currently for all user interactions. The
interfaces read necessary information directly from configu-
ration files, for example pointers to external programs and
fixed file and directory names. This enables rapid and conve-
nient updating when certain parameters change. Other items,
e.g. the user’s sequencing group and the desired mode of pro-
cessing (shotgun, autofinishing, or manual finishing), are
specified via the interface.

Figure 6 shows a schematic of data organization. Raw
DNA fragment trace files are generated from the retracking
step and are placed in Unix directories (usually referred to as
gel folders, or simply folders, by laboratory personnel). Start-
ing GASP in shotgun or autofinishing mode spawns the pro-
cessor interface (Fig. 3, middle) with which the user chooses
the desired folders for processing and configures any other
run-time parameters. The finishing version interface (not
shown) has additional capability for manual template infor-
mation entry to solve the problem of vector lookup for special
inputs, such as PCR products.

When the user initiates processing, a series of tests is
spawned to evaluate the input. These tests include checking
for sufficient disk space in destination projects (Fig. 6) and
scanning the input list for corrupt or repeated read names.
Projects are queried to find any existing reads whose names
match those in the processing list, flagging any potential mi-
snamings. At the GSC, projects are also checked for on-line
status and a lock file is generated in each project directory,
preventing any disk-management utilities from moving the
directory while the processing is active. For shotgun mode,
project directories are also scanned for database lock files to
ensure that anyone editing currently is not interrupted. If

none are found, a new lock file is created to reserve the data-
base for incremental assembly after processing is complete. If
any problems are detected, an extensive report describing
them is dumped to the monitor, all lock files are removed,
and execution halts. Validation of the input in this fashion
makes GASP far more robust to unforseen problems. Once
validation is complete, the user can reasonably presume that
processing will continue successfully and can attend to other
tasks. Whereas some of these tests are performed by hopper,
the degree to which other systems treat this problem is un-
clear.

Serial processing of all DNA sequence trace files in the
selected folders is initiated upon completion of input valida-
tion. Traces are abstracted as objects via a special Perl class,
ExpTools.pm, in which information is represented in stan-
dard experiment file format (Bonfield and Staden 1995). Ex-
pTools.pm handles the complete format including base-
quality information (Ewing and Green 1998), which is now
advocated widely for increasing assembly performance, and
manages all interactions including object construction, input
and output (I/O), queries, and content modification. The
traces are then passed through the series of modules that were
introduced in Figure 2. In greater detail, the modules perform
the following operations.

Figure 6 Unix file system organization for the se-
quence preprocessor package. Raw DNA fragment
trace files, organized by gel (gel folders), are inputs for
the preprocessor. Processed reads suitable for assembly
are written to disk in the appropriate sequencing
project directories. Further structure is created auto-
matically within projects by the software as needed.
For example, reads that were successfully processed
but contain unusable data, e.g. vector sequences, are
placed in a Failures directory. Reads that could not be
processed, such as cases in which the trace file contains
no data, are put into an Abandoned directory. The
Logs directory holds all the indexed summaries and
text-based log files; the Qstats directory contains base
quality statistics files. This arrangement maintains a
convenient division for files of various types.

WENDL ET AL.

980 GENOME RESEARCH

Trace File Conversion

This module basically serves as a wrapper around the Phred
base-caller (Ewing et al. 1998) to convert trace files from Ap-
plied Biosystems Inc. (ABI) proprietary format to standard
(SCF) format (Dear and Staden 1992). It also creates a new
experiment file object with standard header information,
such as read name and date.

Template Information

Template information is used not only in preprocessing, but
also later in tracking (e.g. for sequencer and template prepa-
ration personnel statistics) and finishing. The so-called em-
bellishing module derives this information and adds it to the
read object. At the GSC, information is currently imported
directly from spreadsheets maintained by each group for shot-
gun and automated-finishing reads. In addition to its native
format, spreadsheet software is configured to write tab-
separated flat files for input to the processor. Because differ-
ences exist in the organization of each group’s spreadsheets,
the lookup process is built around an object class that is able
to search through arbitrarily ordered columns and rows to
locate the desired plate information. At the Sanger Centre,
Perl code interfacing to a laboratory tracking database built
onto ACEDB is used for this purpose. Both laboratories, how-
ever, are migrating toward relational laboratory tracking da-
tabases managed by the commercially available Oracle data-
base system. Access of template information will eventually
be managed by a database interface, which will likely take the
form of a Perl module using the standard Perl DBI and DB-
D::Oracle database access packages.

The lookup process can consume significant central pro-
cessing unit (CPU) time if executed for each read, therefore,
another object class maintains a lookup cache, so that lookup
occurs only once per plate. Based on the read’s clone and
organism ancestry, additional tables (Perl.pm modules) are
used to derive cloning vector information, vector sequence
file names, and cloning and primer site information. For
manual finishing reads, lookup is skipped and information is
distilled directly from the cache, which was created by the
interface at the start of execution. Finally, additional identi-
fiers are derived from the read name, including the direction
of the read, reaction chemistry, and strand.

Base-Calling

Like trace file conversion, the module for base calling is sim-
ply a wrapper around phred, which derives bases and quality
values from the four trace signals. Phred’s output is parsed,
reformatted, and added to the object. For shotgun and auto-
mated finishing reads, this step is completely automatic. For
finisher reads, however, a trace viewer (Gleeson and Hillier
1991) can be opened for each read so that the user may
modify clipping.

Local Trace Information

Additional information is extracted from each trace for track-
ing purposes, for example gel and machine ancestry, signal
strengths, primer type and position, and average spacing.

These fields are parsed directly from the header of the SCF
trace file using Perl’s regular expression capability.

Vector Screening

The last three steps in Figure 2 are managed by separate mod-
ules, each serving as an interface to the Staden Package vector
clipping program (Staden 1996). The first and second mod-
ules implement sequencing and cloning vector screens, re-
spectively. Some I/O overhead is incurred because the read
object must be written to disk as a temporary file for the
vector program to operate on. Results are then parsed and a
failure tag is added to the read object if vector was detected.
The third module functions as a quality-control filter for se-
quencing vector. Because the entire sequence is scanned, it
proves to be an effective trap for sequencing vector in cases in
which some of the vector has been deleted.

When the read emerges from these modules, it carries
either a passing or a nonpassing status. Whereas passing de-
notes successful processing, nonpassing implies that a sample
either failed one of the processing steps or was totally aban-
doned because of a fatal error. For example, a trace could fail
because of poor trace quality, cloning vector sequence, or no
insert being present. Abandoned traces occur much less fre-
quently and are usually the result of missing data in the trace
file. With its status determined, the read, which is actually
now a file pair (SCF and experiment file), enters a postpro-
cessing mode. Its project destination is derived quickly by
again referring to the template cache. Passing reads are sent to
the appropriate project directory on disk (Fig. 6). Failing and
abandoned reads are each sent to their respective subdirecto-
ries, ‘‘Failures’’ and ‘‘Abandoned,’’ and a log is kept in the
‘‘Logs’’ subdirectory with a one-line summary of the read’s
outcome. This information, derived from the return values of
the modules, is simply appended to the log as each read
emerges from the last module. Finally, the read name is ap-
pended to an appropriate file of filenames in the main project
directory, e.g. a file of passing reads, failing reads, or aban-
doned reads, for use by other software tools. The cycle is then
repeated for all remaining traces in the selected gel folders.
Upon conclusion of this serial mode of processing, cache files
are purged from the disk, database lock files are removed, and
the code enters a batch mode of processing. A second series of
modules is then initiated in each project directory for which
reads were processed.

Incremental Fragment Assembly

Whereas phrap (P. Green, pers. comm.) is our primary assem-
bly tool, a module interface to gap (Bonfield et al.1995) is used
to incrementally add the processed reads to an existing as-
sembly. If a gap database does not yet exist, one is created
before beginning assembly. This is a convenient way to moni-
tor progress of the sequencing project. The output is parsed
for total number of current reads and contigs, total and aver-
age contig length, and average coverage and these statistics
are written to an assembly log file.

Compiling Quality Statistics

Base-quality values greatly assist sequence assembly, but they
are also useful as a measure of overall sequence quality as

LARGE-SCALE AUTOMATED SEQUENCE PREPROCESSING

GENOME RESEARCH 981

discussed above. A separate module therefore compiles statis-
tics on phred quality (Ewing and Green 1998), q, which is
directly related to probability of base correctness, p, by the
following equation.

q = −10 log10 ~1 − p! (1)

Quality values are read from the experiment files and those of
q ù 20 are compiled as ‘‘good’’ quality bases. The analysis is
build around a dedicated object class that carries out the ac-
tual calculations. Data are grouped in individual bins of i good
bases, each with the following discretization.

xj = i ? j ⊇ $i ? ~j − 1!, i ? ~j − 1! + 1, . . . , i ? j − 1%

j = 1 → m (2)

Binning is necessary because the number of good bases in a
given read can vary over several orders of magnitude. Equa-
tion 2 represents standard sequential binning and reduces this
variability to a reasonable number of groups, m, for i = 25 at
current read-length capability (Peters and Van Voorhis 1940).
Results for a particular group of reads are represented simply
as a frequency distribution, fj, over all m bins, enabling data to
be displayed in standard frequency polygon form (Kreyszig
1988) as shown in Figure 5. Each gel is analyzed for quality in
this way as is the entire batch of reads from each project, both
as a single group and subclassified by read type. The quality
analysis of the entire project is also updated. All analyses
are written to files in the ‘‘Qstats’’ subdirectory of the project
(Fig. 6).

As mentioned above, the first two columns in the viewer
legend are simply the function name and its symbolic iden-
tifier. Remaining statistical quantities are computed directly
from fj. For example, the third column gives the total number
of reads in a function, Sfj. The fourth column gives the groups
at which function maxima occur, that is bin, xj, at which fj is
greatest. The next two columns show the percentages of reads
containing ø50 or fewer good bases and ù400 good bases,
respectively. They are computed simply by determining their
corresponding fractional areas under a given curve. These
quantities are taken as indicators of extremely poor reads,
which would add little value to an assembly, and high-quality
reads, which are optimal for assembly. An average read length
based upon quality, lavg, appears in the last column and is
computed using the following equation.

lavg =
(
j=3

m

~xj + xj−1! ? fj

2 ? (
j=3

m

fj

(3)

Equation 3 is essentially the ratio of the total number of good
bases (q ù 20) to number of reads for bin 75 and above.
Whereas reads of <75 good bases may still be used, they are
excluded from the standpoint of a failed reaction and are,
therefore, not included in the calculation. Because a certain
amount of information is lost in the discretization process in
Equation 2, a uniform distribution is assumed across each bin
and the mean is used to compute the total number of good
bases.

Indexed Summaries

Several other modules, all of which use a dedicated summary
object class, calculate indexed summaries of the current set of
reads. This process refers back to each read’s completed ex-
periment file for input. For shotgun reads, two summaries are
created, one indexed by gel name and one by plate name. For
automated and manual finishing reads, a single overall sum-
mary is made. Each of these compilations contains the statis-
tics for passing/failing reads, a classification of failure types,
and a summary of the base-quality statistics and can be parsed
to create status reports of the type discussed in Figure 4.

Record Information

Lastly, a module is run which creates a single header file con-
taining pointers to everything generated for the current set of
reads. These files serve as input for a graphic deletion tool,
which is accessible from the main interface.

Execution concludes when batch processing is finished
in the last project. Typically, users will start the preprocessor
in the late afternoon before leaving so that execution is fin-
ished by the next morning when summary files are parsed to
distill daily results. Execution speed must be sufficient to
manage the 2500–3000 reads processed typically in a single
session. Code development was therefore undertaken with
speed as a primary focus. Goto statements are avoided in com-
putationally intensive areas since Perl performs an outward
scan from the current location to find the indicated label.
Run-time-compiled regular expressions are also minimized
because of their inefficiency. Standard optimization proce-
dures are also employed, such as placing invariant code out-
side of loops and employing caches whenever possible. [In-
formation caching is used more widely in the code than what
is represented here. For example, the current version of the
base-caller is tracked by an experiment file tag. Because this
can be assumed to be constant during any single run, the
version is derived for the first read and cached or rapid lookup
on succeeding reads.] Perhaps the greatest speedup results
from piping the read object from one module to another,
enabling the complete set of modules for a read to be executed
under a single Perl system call. Perl’s open function provides
a convenient implementation of this approach:

open (PIPE, ‘ ‘first_module trace
| second_module trac e | . . .

| last_module trace |’ ’).

As shown, the first module operates on the DNA fragment
trace file, trace , and pipes the read object to the next mod-
ule. This process continues through all modules after which
the final Unix pipe returns the read object to the PIPE file
handle, from which a completed experiment file is created on
disk. This approach was found to be a factor of two to three
times faster than executing modules under individual system
calls, not only because of the high overhead of such calls, but
also because of the disk I/O that would be required to pass the
read object between each step. Unnecessary processing is also
avoided, for example if a trace fails early in the cycle, succeed-
ing modules are skipped.

As the rate of shotgun sequencing continues to increase,
further development will continue to focus on database in-
terfacing (as discussed above), increasing processing speed,

WENDL ET AL.

982 GENOME RESEARCH

and enhancing robustness. The feasibility of distributed (par-
allel) execution is being studied, as is the reimplementation of
certain computationally intensive components as C exten-
sions to the Perl source code. Effort will also target better
recovery from computer or network failure. Currently, simple
scripts are used to remove partial results and lock files so that
the user may restart processing. However, we are discussing
modifications that would allow the user to continue process-
ing starting from the point of failure.

AVAILABILITY

GASP software is available freely to academic re-
searchers for research purposes, and by agreement
to other users from the GASP web site. The address is
http://genome.wustl.edu/gsc/gasp/gasp.html. A
number of related GNU-licensed Perl classes are
available from this site as well, including the experi-
ment file class, ExpTools.pm. Because the package
continues to be developed, no automated installa-
tion scripts are included. However, extensive instal-
lation instructions are available in the form of a
PostScript document from the website. It covers
source code and structure, Perl issues, editing the
configuration files, and setting required environ-
ment variables. Essentially, a Unix platform run-
ning Perl version 5.002 or higher is required along
with Macintosh-to-Unix connectivity for moving
raw DNA trace files from the sequencing Macintosh
machines to the Unix domain. The Staden sequence
assembly package must also be installed (Roger
Staden, rs@mrc-lmb.cam.ac.uk), as well as the Phred
base-caller (Phil Green, phg@u.washington.edu)
and Ted trace viewer (LaDeana Hillier, lhillier@
watson.wustl.edu). Those interested in using alter-
nate assembly, base-calling, or trace viewing soft-
ware may do so by extending existing modules to
interface to the desired package. All source code is
liberally commented for this purpose.

ACKNOWLEDGMENTS
This work was supported by grants from the National Insti-
tutes of Health (HG01458 and HG00956) and the Wellcome
Trust. The help of Tin Le (Genome Sequencing Center) with
sequence data is greatly appreciated.

The publication costs of this article were defrayed in part
by payment of page charges. This article must therefore be
hereby marked ‘‘advertisement’’ in accordance with 18 USC
section 1734 solely to indicate this fact.

REFERENCES
Bonfield, J.K. and R. Staden. 1995. Experiment files and
their application during large-scale sequencing projects.
DNA Sequence 6: 109–117.

Bonfield, J.K., K.F. Smith, and R. Staden. 1995. A new DNA
sequence assembly program. Nucleic Acids Res.
23: 4992–4999.

Cooper, M.L., D.R. Maffitt, J.D. Parsons, L. Hillier, and D.J.
States. 1996. Lane tracking software for four-color
fluorescence-based electrophoretic gel images. Genome Res.
6: 1110–1117.

Dear, S. and R. Staden. 1992. A standard file format for data
from DNA sequencing instruments. DNA Sequence
3: 107–110.

Ewing, B.G. and P. Green. 1998. Basecalling of automated
sequencer traces using phred. II. Error probabilities. Genome
Res. 8: 186–194.

Ewing, B.G., L. Hillier, M.C. Wendl, and P. Green. 1998.
Basecalling of automated sequencer traces using phred. I.
Accuracy assessment. Genome Res. 8: 175–185.

Gleeson, T. and L. Hillier. 1991. A trace display and editing
program for data from fluorescence based sequencing
machines. Nucleic Acids Res. 19: 6481–6483.

Gordon, D., C. Abajian, and P. Green. 1998. Consed: A
graphical tool for sequence finishing. Genome Res.
8: 195–202.

Kreyszig, E. 1988. Advanced engineering mathematics. John
Wiley and Sons, New York, NY.

Larson, S., M. Jain, E. Anson, and E.W. Myers. 1996. An
interface for a fragment assembly kernel. Tech. Report
TR96-04, Department of Computer Science, University of
Arizona, Tucson, AZ.

Lawrence, C.B., S. Honda, N.W. Parrott, T.C. Flood, L. Gu,
L. Zang, M. Jain, S. Larson, and E.W. Myers. 1994. The
genome reconstruction manager: A software environment
for supporting high-throughput DNA sequencing. Genomics
23: 192–201.

Mardis, E. and R. Wilson. 1997. Shotgun sequencing. In
Genome analysis: A laboratory manual, Vol. 1, analyzing DNA
(ed. B. Birren, E.D. Green, S. Klapholz, R.M. Myers, and J.
Roskams), pp. 397–453. Cold Spring Harbor Laboratory
Press, Cold Spring Harbor, New York.

Marshall, E. and E. Pennisi. 1996. NIH launches the final
push to sequence the genome. Science 272: 188–189.

Myers, E.W. 1996. A suite of Unix filters for fragment
assembly. Tech. Report TR96-07, Department of Computer
Science, University of Arizona, Tucson, AZ.

Peters, C.C. and W.R. Van Voorhis. 1940. Statistical
procedures and their mathematical bases. McGraw-Hill, New
York, NY.

Smith, T.M., C. Abajian, and L. Hood. 1997. Hopper:
Software for automating data tracking and flow in DNA
sequencing. Comput. Appl. Biosci. 13: 175–182.

LARGE-SCALE AUTOMATED SEQUENCE PREPROCESSING

GENOME RESEARCH 983

Srinivasan, S. 1997. Advanced Perl programming. O’Reilly and
Associates, Sebastopol, CA.

Staden, R. 1996. The Staden sequence analysis package. Mol.
Biotech. 5: 233–241.

Wall, L., T. Christiansen, and R.L. Schwartz. 1996.
Programming Perl, 2nd ed. O’Reilly and Associates,
Sebastopol, CA.

Watson, J.D. 1990. The Human Genome Project: Past,
present, and future. Science 248: 44–49.

Wilson, R., et al. 1994. 2.2 Mb of contiguous nucleotide
sequence from chromosome III of C. Elegans. Nature
368: 32–38.

Received March 13, 1998; accepted in revised form July 29,
1998.

WENDL ET AL.

984 GENOME RESEARCH

