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Abstract
Mass spectrometry-based proteomics is a maturing discipline of biologic research that is
experiencing substantial growth. Instrumentation has steadily improved over time with the advent
of faster and more sensitive instruments collecting ever larger data files. Consequently, the
computational process of matching a peptide fragmentation pattern to its sequence, traditionally
accomplished by sequence database searching and more recently also by spectral library
searching, has become a bottleneck in many mass spectrometry experiments. In both of these
methods, the main rate limiting step is the comparison of an acquired spectrum with all potential
matches from a spectral library or sequence database. This is a highly parallelizable process
because the core computational element can be represented as a simple but arithmetically intense
multiplication of two vectors. In this paper we present a proof of concept project taking advantage
of the massively parallel computing available on graphics processing units (GPUs) to distribute
and accelerate the process of spectral assignment using spectral library searching. This program,
which we have named FastPaSS (for Fast Parallelized Spectral Searching) is implemented in
CUDA (Compute Unified Device Architecture) from NVIDIA which allows direct access to the
processors in an NVIDIA GPU. Our efforts demonstrate the feasibility of GPU computing for
spectral assignment, through implementation of the validated spectral searching algorithm
SpectraST in the CUDA environment.
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INTRODUCTION
Mass spectrometry (MS) based proteomics is a maturing discipline with increasing
utilization in many fields of biology1, 2. Modern mass spectrometers have benefited
tremendously in the last decade from improvements in design as well as faster electronics
and can now acquire multiple tens of thousands of spectra in a single LC-MS/MS run3. To
analyze the tremendous amount of data currently being acquired on a routine basis, sequence
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database searching has become the preferred method for peptide and protein identification
(reviewed in 4–6). The most commonly used database search algorithms quantify the
similarity between the query spectrum and each potential match from the database to
identify the “best fit”. For example, the database search tool SEQUEST7 uses a cross-
correlation score while X!Tandem8 calculates a hyper score which is a dot product
multiplied by correction factors. The MASCOT9 algorithm performs a statistical evaluation
of matches between observed and theoretical peptide fragments. OMSSA10 scores provide
matches by assigning a probability score to each potential fragment ion using a Poisson
model for matching experimental spectra to sequences. The common theme shared by all
these tools is the requirement that a similarity score is calculated for all possible theoretical
spectra in the database for each acquired experimental spectra. While the throughput of
sequence database search tools has improved significantly from the early generations of
search software, sequence database searching is computationally expensive and frequently
becomes a bottleneck in proteomics research, particularly when the search criteria are more
demanding, such as with semi- or enzyme unconstrained searches and/or when considering
multiple variable modifications. In addition the consolidation of acquired data in central
repositories such as PeptideAtlas11 typically requires re-searching of large amounts of data
files when deposited and when databases are updated.

A recent addition to tandem mass spectral analysis is spectral library search12–16. Spectral
library searching utilizes a large-scale collection of high-confidence MS/MS spectra to
perform searching. In this method, query spectra are compared only to reference spectra
present in a given library of previously recorded MS/MS data. While it is clear that an
undiscovered peptide cannot be identified, it is well known that most identifications in a
typical experiment re-discover the same peptides that were identified previously because
they are the most abundant and within the dynamic range of the instrument. Additionally,
because the spectral library uses a representation of the actual MS/MS spectra rather than
theoretical spectra, dot product-based scoring can better estimate similarity between query
and library spectra. This allows more sensitive identifications of peptides that might be
missed by database searching. Spectral library searching is typically ten or more fold faster
than database searching because the spectral libraries are smaller than sequence databases
and because the library search tools are not required to parse sequences in a database,
calculate peptide masses from linear sequences, or generate theoretical peptide fragments.
Spectral library searching typically requires only limited query file pre-processing and
filtering, after which the code can execute a dot product calculation. Thus spectral library
searching can significantly increase the throughput of proteomics data analysis and function
as a complement to existing database search pipelines.

Both sequence database search and spectral library search tools are normally run on central
processing units (CPUs). The scale of such operations can range from single computers to
large clusters of hundreds of CPUs, the latter of which can cost hundreds of thousands of
dollars to build and maintain. Because of the coarse grained nature of this problem, both
search methodologies can take advantage of the inherent parallelism in MS/MS searching
and run in a distributed fashion using multiple threads on a multi-core CPU or run across a
computer cluster environment. As noted above, the comparisons used by various algorithms
to assign a sequence to query spectra can be represented as a comparison of two vectors.
This is a highly parallelizable computational process because the core computational
element, when implemented as a dot product, is a simple but arithmetically intense
multiplication of a vector (the query spectrum) against a matrix of vectors (the potential
candidate spectra from the database or library). In many ways this task is much better suited
for the massively parallel computing available on graphics processing units (GPUs)
compared with modern CPUs.
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Graphics processing units GPUs were developed in the 1980’s in response to a rapid
increase in the computational complexity associated with the rendering of computer
graphics. CPU cores are designed to execute a single thread of sequential, complex
instructions while GPUs are designed for the simultaneous execution of many parallel
instruction threads. GPUs are designed specifically to perform floating-point calculations to
offload graphical rendering tasks from the more general-purpose CPU. Modern personal
computers contain GPUs for 3D graphics acceleration, either integrated on the system
motherboard sharing system random access memory (RAM) or as more sophisticated add-in
graphics cards with dedicated RAM. In the last decade, consumer demand for more realistic
and complex graphics, largely driven by computer gaming, has led to the evolution of highly
parallel, multi-core GPUs with net computational power many times that of modern CPUs.

NVIDIA's Compute Unified Device Architecture (CUDA) is currently the most mature and
feature-rich interface for developing high-performance computing applications on the GPU.
CUDA is a framework that allows developers to write programs that execute on GPUs using
extensions to the C programming language. OpenCL is a related, relatively new framework
for writing programs that run across a heterogeneous collection of GPUs, CPUs and other
processors and is a viable alternative to CUDA. General purpose computation on GPUs
(GPGPU) was originally attempted using existing graphics libraries such as OpenGL, not to
be confused with OpenCL. However, these libraries require that all operations be cast in
terms of geometric or graphics primitives. Support for GPGPU using a widely adopted
general purpose language such as C has helped bring GPU computing to a larger
development community.

CUDA compatible hardware includes Nvidia GeForce 8, 9, 100, 200, and 400-series GPUs
as well as dedicated Tesla GPGPUs. The NVIDIA GPU architecture consists of an array of
multiprocessors each of which contains eight scalar processors. The multiprocessor executes
threads in groups of 32 using a new architecture created by NVIDIA called SIMT, short for
single-instruction multiple threads. Within this architecture, optimal performance is
achieved when the multiprocessor SIMT unit creates, manages, schedules, and executes
threads in groups of 32. The most fundamental element of a CUDA program is the kernel
which defines the operations to be performed by a single thread and is invoked as a set of
concurrently executing threads. When called, a kernel is executed by N different CUDA
threads in parallel. For our application, the primary development considerations involved
creating an optimized kernel for rapid spectral computations while at the same time
optimizing data transfers to and from the GPU to keep the whole process running efficiently.

While GPUs have been used for high-performance computing in physics, chemistry,
mathematics, and geology for quite a while, their use is only just gaining traction in the
biosciences. A number of groups have demonstrated performance enhancements for DNA
sequence alignment17, 18. Others have used the GPU for modeling anisotropic viscoelasticity
of soft tissues19, and a proteomics group has used the GPU to implement a feature finding
algorithm based on an adaptive wavelet transform20. There have been no reports of using the
GPU for mass spectrometry spectral searching. In this paper we describe a proof of concept
study in which we have successfully implemented tandem mass spectrometry spectral
library searching on the GPU. Using the NVIDA CUDA architecture, we have emulated the
spectral library software SpectraST in a code base we have named FastPaSS that
demonstrates 8 to 26 fold speed improvement over CPU based search strategies.

METHODS
FastPaSS was written in the C for CUDA version 2.3 programming language and has been
compiled on both Linux and Mac OS X platforms. It currently supports only the search
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mode capabilities of SpectraST13, 21. The SpectraST search algorithm involves three
preliminary scoring metrics that all contribute to a final linear discriminant score termed the
F-value shown in equation 1. The F-value is used to determine the best library match for a
query. The three preliminary metrics that are components of the F-value score implemented
by SpectraST are the dot product (D), dot bias (DB), and delta dot (ΔD) as denoted by
equations 2–4.

(1)

(2)

(3)

(4)

In equation 1, the F-value is calculated as a linear combination of the dot product, delta dot,
and a constant b where the constant ranges from 0 to 0.24 as a function of dot bias. The
calculation of the dot product is shown in equation 2. The dot product, also referred to a
scalar product, is the sum of the products between the library spectrum (Ilibrary) and query
spectrum (Iquery) where the intensity value in each m/z bin in the library spectrum is
multiplied by the corresponding intensity value in the query spectrum. Each of the products
across the entire m/z range, from m/z 1 to the maximum mass, are summed to give the dot
product score. The dot bias is a related calculation where the square of the intensities are
multiplied between the library and query spectra. These products are calculated across the
entire m/z range and summed. The square root of this sum, divided by the dot product score
from equation 2, is the dot bias. The delta dot calculation in equation 4 is the difference
between the highest and second highest dot products for a search.

The dot product measures spectral similarity, while the dot bias measures how much of the
spectrum is dominated by a few peaks. The dot bias attains a value of 1.0 when all of the
signal is from a single peak and approaches 0.0 when the signal is evenly distributed across
the spectrum. In FastPaSS, the dot bias and dot product calculations are executed on the
GPU using a custom kernel we developed; the delta dot and the F-value are calculated on
the CPU after results are returned.

FastPaSS library binary format
The creation of a FastPaSS library file is accomplished using a program named sptxt2fpbin.
This program reads in a spectral library in a SpectraST text format and creates an
appropriately formatted binary library file for FastPaSS. The specific details of the library
binary format are discussed in Supplemental C. It should be noted that the library binary
format is optimized for performance. This entails not only performing all possible spectral
processing steps prior to storing spectra in the library but also formatting the binary file for
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optimized reading. Ancillary information, such as comments associated with spectra which
are present in the SpectraST library format, are not stored in the FastPaSS binary library.

Preparation of the test dataset
Publicly available mzXML files from the Human Plasma Proteome Project22 were
downloaded from the Tranche distributed file share network23. The Tranche key for this
dataset (PPP lab 22) is available in Supplemental D. Because SpectraST includes filters for
excluding low quality spectra, all tandem mass spectra were first searched by SpectraST
against the NIST human spectral library24. Datasets of various sizes (10,000, 20,000,
30,000, 40,000, and 50,000 tandem mass spectra) were generated for analysis from a pool of
those spectra that passed SpectraST’s spectral filters. This was done to ensure that all query
spectra in each dataset were searched rather than being discarded due to low quality. The
data were converted to the Mascot generic format (MGF) for use with FastPaSS. Because
SpectraST searches are most efficiently performed using mzXML files, the datasets were
also converted to this format for the SpectraST searches.

FastPaSS workflow
In brief, the FastPaSS workflow includes the processing of the query file where the range of
the query spectra’s precursor mass-to-charge (m/z) values are parsed and sorted in ascending
order for sequential access. Optimal sets or batches of query spectra are selected, processed
and represented as a matrix that is transferred from main memory to GPU memory. The
query matrix is represented internally as a two dimensional array of floating point numbers.
Each row of the matrix is a query spectrum, each column index represents an m/z value
(where masses are rounded to nearest 1 m/z unit), and each matrix cell value is the intensity
of the respective query spectrum (row) peak at the m/z location (column). A corresponding
batch of library spectra, spanning the same mass range as the set of query spectra in the
batch, are read and also transferred to GPU memory. To account for the user specified
precursor mass tolerance, the set of library spectra loaded in the library matrix spans +/− the
mass tolerance of the given query matrix mass range. A custom kernel then performs both
the dot product and dot bias calculations on the GPU (see Supplemental B and E). The
kernel was developed to perform both sets of calculations on the data in the GPU in one
function call. By performing both calculations in the same kernel, performance is optimized
by minimizing the number of data transfers between host and GPU memory that would
otherwise be needed if the calculations were done independent of each other. Results are
returned from GPU to the CPU where F-values scores are calculated and reported. This
process is repeated until all query spectra have been analyzed. The workflow is shown in
Figure 1. Specific details of the actual implementation are described more thoroughly in the
Supplemental Materials.

RESULTS
The collection of input query spectra was searched against a NIST human spectral library
containing 261,778 entries. FastPaSS, SpectraST, X!Tandem, and X!P325 searches were
performed using the same search parameters on a Fedora 9 linux workstation with the
Nvidia CUDA 2.3 SDK installed. The relevant hardware in the workstation were an AMD
Phenom II X4 940 3.0 GHz CPU and an Nvidia Tesla C1060 GPU containing 240 streaming
processor cores. Because we noticed significant performance differences due to the
operating system caching recently accessed spectral library files, the searches were
performed both with and without clearing the system cache between runs. Run times of
sequential library searches against the same spectral library would reflect the cached run
times reported. The cleared cache run times reflect the expected performance of an initial
search, when a spectral library has not been recently accessed and thus not cached, or a
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query on a heavily used system where other memory access would cause the spectral library
to no longer be cached by the operating system. Searches were repeated in triplicate and
reported run times are the average of 3 consecutive runs.

FastPaSS was also run on a system containing an AMD Athlon 64 X2 6000+ 3.0GHz CPU
and an Nvidia 8600GTS GPU. The 8600GTS GPU contains 32 streaming processor cores
compared to the 240 on the Tesla C1060. The performance of FastPaSS on this system gives
an indication of expected FastPaSS throughput on an extremely modest and arguably
outdated GPU.

The X!Tandem sequence database searches were performed on the same set of query spectra
for comparison. The spectra were searched against version 3.62 of the human International
Protein Index26 database containing 83,947 sequence entries. Search parameters include
tryptic and semi-tryptic cleavage (no refinement mode) allowing 2 missed cleavages, a −2.0
to +4.0 peptide mass tolerance, static modification for carbamidomethyl cysteine and a
variable modification for oxidized methionine.

X!P3 or Proteotypic Peptide Profiler is a variant of the X!Tandem program that searches a
sequence database composed of proteotypic peptides. To benchmark this tool, a P3 peptide
sequence database was generated by extracting 160,075 unique peptides, without
modifications, from the NIST human spectral library database. P3 searches were performed
on the same set of query spectra using the same X!Tandem search parameters with the
exception of enzymatic cleavage which has no relevance to the P3 searches.

Sensitivity and error analysis
In order to validate that the custom FastPaSS kernel faithfully reproduces the dot product
and dot bias calculations of FastPaSS, a correlation was calculated between the dot product
and dot bias values for FastPaSS and SpectraST. Scatter plots, which are available in
Supplemental A, show a 45 degree line both with an R2 correlation value of 1.0. This
indicates that the GPU based calculations performed by FastPaSS faithfully replicate the
respective calculations performed by SpectraST on the CPU.

In evaluating peptide identification performance, we found over 99.99% concordance
between FastPaSS and SpectraST top ranked identifications for the largest dataset (50,000
queries). The SpectraST algorithm includes a variety of filtering, spectral processing, and
post dot-product analysis to arrive at a top scoring identification. The two mismatches in the
50,000 dataset, low scoring with the top scoring peptide in SpectraST is in the second
position in FastPaSS, suggests that the FastPaSS implementation still contains a minor
spectral processing discrepancy. The other 49,998 spectra returned the same top hit matches
between FastPaSS and SpectraST with no divergence in dot product, dot bias, delta dot and
F-value greater than 0.05.

Speed
The average run times for FastPaSS, SpectraST (version 4.3.1), X!Tandem (version
2007.07.01.3), and X!P3 (version 2010.10.10.4) on a set of query files of various sizes is
shown in Table 1. On the AMD Tesla system, FastPaSS was 22 to 26 fold faster than
SpectraST without caching, and 8 to 9 fold faster when allowing operating system caching
of previously accessed files. Although not directly comparable analysis, FastPaSS was also
significantly faster than the corresponding Tandem sequence database search using 4
concurrent threads. Compared to the P3 searches, FastPaSS was faster by a more modest 2
to 4 fold.
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FastPaSS was also benchmarked on a personal computer containing an AMD 3.0 GHz CPU
paired with an 8600GTS graphics card. On this extremely modest consumer system, where
the graphics card with 32 stream processors might be considered obsolete, the FastPaSS run
times were still 3 times faster than the corresponding SpectraST times. This particular
example demonstrates the clear potential of parallel GPU based computing given the
promising performance of such modest graphics hardware.

DISCUSSION
We have successfully implemented the first GPU-based tandem mass spectrometry search
algorithm which we have named FastPaSS for Fast Parallel Spectral Searching. This
software successfully implements spectral library searching by reproducing the
computational analysis performed by SpectraST. The choice to use SpectraST as a model
was guided by a number of considerations including the desire to work with a familiar code
base, the GPU compatibility of scoring spectral similarity using a dot product, the existence
of an infrastructure to create library spectra from MS/MS datasets, the ability to quickly
validate the quality of the results through direct comparison of output with SpectraST search
results, and most importantly, the ability to focus implementing a parallel GPU algorithm
without having to develop and optimize the tools for generating spectra from sequence
databases.

FastPaSS operates quite differently than other search engines. In FastPaSS the calculation of
dot products is achieved simultaneously for multiple query spectra against all possible
library entries through the process of matrix multiplication on the GPU. In short, a matrix of
query spectra and a corresponding matrix of candidate library spectra are transferred to the
GPU and a modified matrix multiplication algorithm (kernel) is called using the NVIDIA
CUDA architecture that calculates a dot product and dot bias score (equations 2 and 3) for
all query spectra against all library spectra. The results for all dot products are returned to
the CPU for the final calculation of an F-value composite score.

With the current matrix multiply kernel, the size of batches of spectra transferred to the GPU
are limited primarily by the program's search parameters (comparison tolerance) and not by
the available memory on the GPU. The average sizes of batches transferred during a typical
search are much smaller than the total available memory on the Tesla C1060 GPU. This is
because as the number of query files in a batch increases, the library batch size increases as
well resulting in the calculation of unnecessary dot products for query-library pairs that are
outside the precursor m/z tolerance. This effect of batch size versus unnecessary calculations
is demonstrated in Figure 2. As the batch size grows to accommodate additional query
entries, the set of corresponding library entries also grows. This results in unnecessary dot
product calculations which occurs when the precursor m/z value of the library entry is
outside the specified m/z tolerance range. Thus, there is a tradeoff between smaller batch
sizes, which requiresmore CPU to GPU memory transfer events with more efficient matrix
multiplication versus larger batch sizes resulting in more unnecessary calculations but fewer
data transfer events

It is also worth noting that run times faster than those seen on the Tesla card could be
achieved using a more modestly priced NVIDIA GTX 460 GPU, which is a consumer level
graphics card now priced less than $200. This card has more processing cores (336 vs. 240)
but smaller memory than the Tesla (~1 GB versus 4 GB). Since our current implementation
of FastPaSS does require the additional memory available in the Tesla card, the smaller
memory would not be detrimental to the demonstrated performance.
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A closer evaluation of the results indicates that FastPaSS performance certainly benefits
from GPU parallel computing but the results also show that other optimizations made in
FastPaSS also have a significant impact on performance. Analysis of the run times,
highlighted in Figure 3, indicates that FastPaSS using the Tesla GPU takes roughly 3
seconds to process 10,000 spectra whereas SpectraST takes about 26 seconds to process
10,000 spectra, giving the 8 to 9 fold speed increase attributable just to the GPU versus CPU
implementation differences of the core scoring routines. This 8–9 fold improvement is
consistent for both cached and un-cached run times. However, there are many other
computational steps involved in the entire library search workflow that have been optimized
in FastPaSS which contributes to its overall performance gains.

The primary ‘overhead’ costs contributing to run times are file I/O and spectral processing
of each library entry prior to dot product analysis. For the cached searches, FastPaSS
overhead is estimated to be about 6 seconds whereas SpectraST overhead is 41 seconds. For
the un-cached searches, FastPaSS and SpectraST overhead are 40 seconds and 1070
seconds, respectively. FastPaSS benefits from incorporating the spectral processing in its
library building stage, thereby removing that requirement during search. Its simpler,
structured binary format also allows for optimized file parsing and is able to reduce the non-
computational overhead tremendously as demonstrated in the un-cached search times. We
acknowledge these advantages and the fact that they are optimizations that SpectraST could
benefit from as well.

With FastPaSS, we have achieved a substantial speed increase and developed a foundation
on which we will base further work to perform sequence database searching using GPU
computing. We remain cognizant of the fact that spectral library searching is currently quite
fast and could benefit from optimization and multi-threading. We also are aware that the
incremental improvement in speed achieved by FastPaSS is not likely to result in a dramatic
change in practices for much of the proteomics community. However, the success of this
pilot work, along with the speed increase, clearly demonstrates the promise of this method
for future applications. As noted above, our primary goal was to focus immediately on the
GPU related aspects this projects while avoiding the complexities of generating theoretical
spectra. Spectral library searching with its existing library format presented precisely such
an opportunity.

We would like to stress that any comparisons of runtimes between GPU and CPU
applications is fraught with difficulty because the comparison requires using not only
completely different computing hardware architectures but also completely different
software implementations of the underlying search tools. There is a continuum of hardware
in both the GPU and CPU space that can easily change the relative performance of the tools
described here. We compare FastPaSS, SpecraST, and Tandem performance on a reasonable
set of hardware but acknowledge that these are just sparse data points in the potential
comparison space given the extensive range of faster and slower hardware for both GPU and
CPU.

Future development will have to address the critical questions that arise with sequence
database searching: the exponential growth in theoretical database size associated with post
translational modifications and relaxed enzyme constraints. Solutions will require clever
ideas that allow the development of library spectra either in real time or prior to analysis that
facilitate matrix multiplication on the GPU. These solutions must address the challenges and
limitations of data storage and transfer from the hard drive or the time constraints of real
time library spectra generation. We are currently developing solutions to these problems.
We are optimistic that they are surmountable by us or other members of the proteomics
community and can be implemented using the work described herein as a foundation. The
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FastPaSS project is hosted on SourceForge at http://sourceforge.net/projects/fastpass. Source
code, distributed under the Apache 2.0 license, can be downloaded from this site.

CONCLUSIONS
We have implemented a tandem mass spectral library search algorithm which runs on GPU
processors. We demonstrate 8 to 26 fold speed improvement over the reference SpectraST
algorithm running on a single CPU. The results presented here show that GPU processing
can be a viable alternative to existing CPU based tools for high throughput proteomics data
analysis. Peptide identifications can be available in a matter of seconds for large queries
against the largest currently available spectral libraries. FastPaSS is freely available, open
source, and its current version is immediately useful for library searching. More importantly,
the code base serves as an excellent starting point for future computational research towards
GPU based sequence database searching.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Simplified FastPaSS workflow. Elements processed on the CPU are colored blue while
elements processed on the GPU are colored red.
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Figure 2.
Effects of matrix multiplication batch size on performance.
This matrix is an example of the dot product results matrix where the blue tiles correspond
to relevant necessary calculations (where query mass and library mass match within the
search tolerance) and the yellow tiles correspond to unnecessary calculations (where the
query mass and library mass differ greater than the search tolerance). The two inset boxes A
and B correspond to two different batch sizes, both of which are much smaller than the GPU
memory. The fraction of unnecessary calculations is much smaller for the smaller batch size
A.
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Figure 3.
Plot of FastPaSS (Tesla GPU) and SpectraST cached and un-cached run times. In the
equations representing the regression lines, “n” is the number of queries and “t” is the
runtime in seconds.

Baumgardner et al. Page 13

J Proteome Res. Author manuscript; available in PMC 2012 June 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Baumgardner et al. Page 14

Ta
bl

e 
1

R
un

 ti
m

es
 fo

r F
as

tP
aS

S,
 S

pe
ct

ra
ST

, P
3,

 a
nd

 T
an

de
m

. R
ep

or
te

d 
tim

es
, i

n 
se

co
nd

s, 
ar

e 
th

e 
av

er
ag

e 
of

 tr
ip

lic
at

e 
ru

ns
. T

he
 in

di
vi

du
al

 ru
n 

tim
es

 a
re

pr
es

en
te

d 
in

 S
up

pl
em

en
ta

l M
at

er
ia

ls
.

#
sp

ec
tr

a
FP

FP
*

ST
FP

1
ST

1
P3

T
an

de
m

tr
yp

tic
T

an
de

m
se

m
i

10
K

8.
3

18
.0

68
.3

42
.0

10
96

.7
16

.0
74

.0
12

14
.3

20
K

11
.0

28
.0

93
.3

46
.3

11
21

.7
32

.7
15

6.
7

25
82

.7

30
K

13
.7

39
.0

12
1.

0
49

.0
11

49
.3

52
.3

27
2.

0
44

94
.3

40
K

16
.7

49
.0

14
5.

7
52

.3
11

73
.3

72
.0

40
4.

0
65

52
.7

50
K

19
.0

59
.0

17
3.

3
54

.3
12

00
.7

92
.0

51
8.

3
85

07
.3

FP
=F

as
tP

aS
S,

 S
T=

Sp
ec

tra
ST

, F
P1

=F
as

tP
aS

S 
un

ca
ch

ed
, S

T1
=S

pe
ct

ra
ST

 u
nc

ac
he

d.
 A

ll 
an

al
ys

is
 w

er
e 

ru
n 

on
 a

n 
A

M
D

/T
es

la
 w

or
ks

ta
tio

n 
w

ith
 th

e 
ex

ce
pt

io
n 

of
 th

e 
co

lu
m

n 
la

be
le

d 
“F

P*
” 

w
hi

ch
 w

er
e 

ru
n 

on
an

 A
M

D
/8

60
0G

TS
 p

er
so

na
l c

om
pu

te
r.

J Proteome Res. Author manuscript; available in PMC 2012 June 3.


