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Sequential methods for random-effects
meta-analysis
Julian P. T. Higgins,a∗† Anne Whiteheadb and Mark Simmondsc

Although meta-analyses are typically viewed as retrospective activities, they are increasingly being applied
prospectively to provide up-to-date evidence on specific research questions. When meta-analyses are updated
account should be taken of the possibility of false-positive findings due to repeated significance tests. We discuss
the use of sequential methods for meta-analyses that incorporate random effects to allow for heterogeneity
across studies. We propose a method that uses an approximate semi-Bayes procedure to update evidence on
the among-study variance, starting with an informative prior distribution that might be based on findings from
previous meta-analyses. We compare our methods with other approaches, including the traditional method of
cumulative meta-analysis, in a simulation study and observe that it has Type I and Type II error rates close
to the nominal level. We illustrate the method using an example in the treatment of bleeding peptic ulcers.
Copyright © 2010 John Wiley & Sons, Ltd.

Keywords: meta-analysis; sequential methods; cumulative meta-analysis; prospective meta-analysis; prior
distributions

1. Introduction

The meta-analysis of results from multiple, similar studies is traditionally considered a retrospective
activity. However, many meta-analyses are updated over time as new studies are undertaken or are
identified from the previously hidden literature. In particular, systematic reviews in the Cochrane
Database of Systematic Reviews [1] are expected to be updated approximately every two years [2].
Furthermore, genuinely prospective meta-analyses are increasingly being performed. For example,
meta-analyses have been planned to combine evidence from existing, ongoing clinical trials [3, 4], and
clinical trials have been designed with the aim of meta-analysing their results [5]. In the field of genetic
epidemiology, potentially important genetic variants are examined prospectively in multiple existing
collections of DNA samples until sufficient evidence of their role has been determined [6, 7].

If a meta-analysis is conducted repeatedly on the addition of new studies, without any allowance
for multiple testing, the overall risk of a false-positive finding will increase with the number of meta-
analyses performed. Indeed, Berkey et al. note that when there is no underlying effect the process of
continually updating a meta-analysis using standard significance tests will lead eventually to a false-
positive result [8]. One way to address this problem is to exploit formal sequential methods. Although
sequential methods are well established in the analysis of individual randomized trials, they have
received much less attention in the meta-analysis context. This is an area where opinions differ. Some
argue that, because meta-analysts do not (typically) have control over the generation of new evidence,
they are not in a position to act on stopping rules and so sequential methods should not be applied.
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In contrast, our view is that since meta-analysts frequently make decisions on whether to recommend
further research or whether to recommend that there is convincing evidence for the presence or absence
of an effect, sequential methods can be similarly important to meta-analyses as to individual primary
studies. The intention is to facilitate a justifiable recommendation rather than to control future research
directly.

Whitehead [9] describes the use of a stopping boundaries approach for fixed and random-effects
meta-analyses based on the sequential trial methodology of Whitehead [10]. Pogue and Yusuf suggest
the use of monitoring boundaries based on alpha-spending functions and stochastic curtailment, with
application to fixed-effect meta-analysis [11], and these have been implemented in practice [12]. These
methods are based on desirable sample sizes in terms of numbers of participants across all studies.
Lan et al. apply the law of the iterated logarithm that ‘penalizes’ the usual test statistic to account for
multiple tests, equivalent to using a particular open ended boundary in the framework of Whitehead,
although the approach does not control Type II error [13, 14].

Heterogeneity of effects is a key characteristic of many meta-analyses, and estimation of the among-
study variance may create problems in the early stages of a sequential meta-analysis. The methods of
Pogue have been adapted to account for heterogeneity in a (retrospective) cumulative meta-analysis
scenario, by adjusting the desired sample size based on a function of I 2, a measure of inconsistency
across the observed studies’ findings [15, 16]. The adjustment is derived essentially from a compar-
ison of the (assumed known) variances of fixed-effect and random-effects meta-analysis estimates. In
prospective meta-analyses these will not be known, although anticipated values of I 2 might be used.
Much of the present paper is devoted to the problem of accounting prospectively for heterogeneity, as
it is the principal obstacle to the simple application of sequential trial methodology.

In this paper we consider the use of frequentist sequential approaches to meta-analysis with the aim of
controlling the risk of drawing incorrect conclusions. We take an approach based on ‘group-sequential’
trial methodology, with a stopping rule. A previously proposed method is reviewed and extended to
better incorporate random effects. We compare six methods (including a sequential fixed-effect method)
through a simulation study and compare them in an example in the treatment of bleeding peptic ulcers.
Our emphasis is on the determination of a straightforward approach that has good empirical properties,
recognizing that even more formal methods are available through the use of dedicated software such
as PEST [17].

2. A sequential approach to meta-analysis

2.1. Random-effects meta-analysis

Before introducing the sequential methods we review a general parametric approach to meta-analysis
on which the sequential methods are based [18]. Suppose we have an estimate, yi , of a true effect �i
with estimated variance vi , from study i , i =1, . . .,k. The effect might be measured as a log odds ratio
or a difference in means for a comparative study, or a simple mean or logit proportion for a single
group study; numerous other options are possible. We make the usual assumption that the estimates and
variances are uncorrelated, although this will not always be the case (for example, if larger studies tend
to be done in populations in which a treatment is less effective). Alternative approaches are available
that do not rely on this assumption. For example, the raw data from the studies could be modelled,
which may require individual participant data. Alternatively, all studies could be given equal weight
[19], although recent proposals to adopt this practice have not been enthusiastically received [20--22].

A random-effects analysis involves inference on the distribution of the �i across studies. A standard
assumption is that this distribution is normal with mean � and variance �2. The variance describes the
extent of heterogeneity. A simple estimate of � is given by the weighted average

�̂=
∑k

i=1 w∗
i yi∑k

i=1 w∗
i

,

where w∗
i = (vi + �̂2)−1 represents the weight attributed to study i . An approximate variance of this

estimate is given by

var(�̂)= 1∑k
i=1 w∗

i

.
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The heterogeneity variance �2 may be estimated simply by �̂2
DL, a method of moments estimator

described by DerSimonian and Laird [23], where

�̂2
DL =max

⎛
⎝0,

Q−(k−1)∑k
i=1 wi −

(∑k
i=1 w2

i /
∑k

i=1 wi

)
⎞
⎠ ,

wi =1/vi and

Q =
k∑

i=1
wi

(
yi −

(
k∑

i=1
wi yi

/
k∑

i=1
wi

))2

is the standard statistic used to test for heterogeneity across studies. In many circumstances, inferences
from a random-effects meta-analysis should be based on the full distribution of the �i across studies
rather than on � alone. This can be achieved using a predictive interval for the effect in a new
study, which takes into account both the mean � and variance �2 of effects [24]. In the methods we
describe below, we assume that primary inference is to be made on the mean effect across studies,
i.e. on �.

If �̂2
DL is equal to zero, then w∗

i is equal to wi and the resulting calculations lead to a fixed-effect
meta-analysis.

The estimates yi and vi are typically calculated from either Wald statistics or score statistics. For the
former, yi = �̂i and vi =var(�̂i ), where �̂i denotes the maximum likelihood estimate of �i and var(�̂i )
its variance. For the latter, we may write yi = Zi/Vi and vi =1/Vi , where Zi is the efficient score
for �i and Vi is Fisher’s information, both evaluated at �i =0. When sample sizes are large and �i is
reasonably near 0, there will be little difference between the results from the two approaches.

2.2. A monitoring boundary approach to sequential random-effects meta-analysis

To follow the progress of a meta-analysis over time we require a measure of the amount of relevant
information contained within it. One approach is to use the total number of study participants [11, 15, 16].
Pogue et al. introduce a desirable total that they refer to as the ‘optimal information size’, based on
standard sample size calculations [11]. Wetterslev et al. adapt this to account for observed heterogeneity
in a retrospective cumulative meta-analysis [16], although in our applications this heterogeneity is yet
to be observed. In contrast, Whitehead [9] and Lan et al. [13, 14] use statistical information in the
form of the inverse variance of �̂ or, equivalently, the sum of the weights (specifically, Whitehead uses
Fisher’s information). We choose the statistical information approach, since it relates directly to the
precision of the meta-analysis estimate and hence the amount of evidence contained in the collection of
studies. In particular, if highly heterogeneous studies are combined sequentially over time, the precision
of a random-effects meta-analytic estimate may decrease while the number of participants increases.
Our approach may be used when study estimates yi and wi are calculated either from Wald statistics
(as in Lan et al.) or score statistics (as in Whitehead).

A boundaries approach to sequential meta-analysis involves monitoring information using the sum
of weights, Vj =

∑t j
i=1 w∗

i after t j studies have been included, j =1,2, . . . . A plot of Vj against the

cumulative effect size, Z j =
∑t j

i=1 w∗
i yi , at each update of the meta-analysis provides a visualization

of the path of the meta-analysis over time. A line from the origin to a point (Z j ,Vj ) has slope equal to
the simple random-effects meta-analytic estimate at the corresponding stage. Note that as information
about �2 changes over time, the individual study weights, w∗

i , are recalculated on each update.
In the absence of heterogeneity, and when �2 is assumed to be zero (as in a fixed-effect meta-

analysis), this approach may be justified formally [9]. It is equivalent to the group-sequential approach to
monitoring clinical trials described by Whitehead [10]. Monitoring boundaries may be used to stop the
meta-analysis when there is sufficient evidence of an effect or lack of an effect based on a pre-specified
significance level, power and clinically important effect.

Whitehead [9] describes the implementation of a triangular design in the context of a prospectively
planned meta-analysis, and Bollen et al. implement a double-triangular design [25]. Here we focus
on the restricted procedure of Whitehead, equivalent to an O’Brien and Fleming stopping rule [26].
The O’Brien and Fleming design produces a rectangular stopping boundary in the (Z ,V ) plane, with
symmetric upper and lower boundaries at Z =±H and a vertical boundary at V =Vmax reflecting the

Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 903--921
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Figure 1. Sequential fixed-effect meta-analysis of peptic ulcers data.

Table I. Monitoring boundaries in the (Z ,V ) plane for the O’Brien and Fleming design.

�

1−� Boundary 0.001 0.01 0.05

0.8 Horizontal (±H ) ±14.576 ±9.779 ±6.457
Vertical (Vmax) 17.535 12.138 8.299

0.9 Horizontal (±H ) ±16.120 ±11.029 ±7.461
Vertical (Vmax) 21.447 15.438 11.079

0.95 Horizontal (±H ) ±17.394 ±12.061 ±8.288
Vertical (Vmax) 24.972 18.461 13.673

Values presented correspond to a reference effect size of �R =1. Boundaries for other values of �R are obtained
by dividing H by �R , and Vmax by �2

R .

maximum amount of information to be collected (Figure 1). Table I provides monitoring boundaries
for a selection of choices of two-sided significance level (�) and power (1−�), obtained using the
software PEST 4.0 [17]. To allow for the possibility of the path crossing the boundary between updates,
a ‘Christmas tree correction’ is applied, bringing the vertical boundaries in at update j to values
H ′

j = H −0.583
√

Vj −Vj−1 and −H ′
j =−H +0.583

√
Vj −Vj−1, where V0 =0 [10].

As soon as |Z j |�H ′
j or Vj�Vmax, the meta-analysis will be stopped with the conclusion that the

mean effect is in one direction or the other (for the former criterion) or that the mean effect is zero (if
only the latter criterion is true). We refer to the values of Z j and Vj at this point as Zend and Vend. If
the path stops with Vend>Vmax, then we extend the Christmas tree correction to Vend, and consider an
effect to be present if |Zend|�H ′

end.
The methods we describe can be extended to address incremental information within studies as well

as across studies. For instance, if at time j , study i has interim data yielding an estimate yij and weight
w∗

ij (based on the current estimate of �2 across currently available data), then we can calculate

Vj =
t j∑

i=1
w∗

ij Z j =
t j∑

i=1
w∗

ij yij.

This situation was addressed by Whitehead [9] but we do not pursue it further in the present paper.

2.3. Repeated confidence intervals

The sequential procedure, described in the previous section in terms of monitoring boundaries, may
also be presented using the repeated confidence intervals approach introduced by Jennison and Turnbull
[27]. This enables us to present sequential meta-analyses using forest plots, the conventional way of
illustrating meta-analyses. Lower and upper limits, L j and U j , for repeated confidence intervals after
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the inclusion of t j studies can be obtained by inverting the sequential design, yielding

L j =
Z j − H ′

j

V j
, U j =

Z j + H ′
j

V j
. (1)

The stopping rules based on the horizontal monitoring boundaries, that is stop the meta-analysis if
Z j�− H ′

j or if Z j�H ′
j , is equivalent to stopping if the interval (L j ,U j ) excludes 0.

The repeated confidence intervals (L j ,U j ) have the property that all of them, calculated up until
V =Vmax, contain the true value of the parameter � with probability 1−�, where � is the chosen
two-sided significance level. When the amount of information is less than Vmax, the confidence interval
series has probability greater than 1−� that the truth is contained in every interval. This means that at
any time, an individual confidence interval has probability greater than 1−� of containing the truth,
and is therefore wider than a confidence interval from a conventional meta-analysis.

The repeated confidence interval calculated at V =Vmax is the last valid member of the sequence.
Thus if the amount of information exceeds Vmax it is unclear how to proceed. For consistency with
the previous section, we propose the calculation of repeated confidence intervals until and including
the first time that Vmax is exceeded. Thereafter, this last confidence interval is used irrespective of
how many additional data accumulate. This is likely to be conservative, but is based on the result that
the coverage property of the valid sequence of repeated confidence intervals is also satisfied by the
intersection of all of the repeated confidence intervals.

2.4. Formal versus ad hoc stopping rules

At each analysis the repeated confidence interval provides confidence limits that are valid and not
dependent on any stopping rule which might be used. Thus information about the magnitude of �
can be obtained from the latest confidence interval. If the sequential meta-analysis follows a formal
stopping rule, then a final analysis would be conducted after a stopping boundary had been crossed.
A point estimate of � is given by Zend/Vend and the repeated confidence interval can be calculated.
However, this point estimate may be a biased estimate. Methods for obtaining adjusted estimates and
confidence intervals are available based on sequential methodology (see, for example, Chapter 5 of
Whitehead [10]), but these require specialized software, and we do not address them in detail here.
The adjusted confidence interval will be narrower than that based on repeated confidence interval
methodology. This is because the latter is not dependent on the stopping rule that has been used.

2.5. Estimation of heterogeneity variance

A key issue in sequential random-effects meta-analysis is the heterogeneity variance parameter, �2. In
the early stages of a sequential procedure, when very few studies are included, uncertainty surrounding
any estimate of among-study variance will be considerable. Lan et al. prefer to over-estimate �2 by using
the arithmetic mean of the yi when there are five or fewer studies, mainly to avoid spurious estimates
of zero [13, 14]. Whichever estimate is used, consecutive point estimates of the parameter are likely to
be variable, and if �̂ j>�̂ j−1 it is possible that Vj will be smaller than Vj−1. As a consequence, the path
(Z j ,Vj ) of the sequential meta-analysis will go backwards. The situation also has implications for the
Christmas tree correction, and if Vj is smaller than Vj−1 we set H ′

j = H , so that a correction is only
made if the path goes forwards. Within a repeated confidence interval framework, a decrease from Vj−1
to Vj yields a confidence interval wider than the previous one. We consider that the possibility that the
confidence intervals can become wider (or that the path goes backwards)—and the actual widening of
the confidence intervals—is a suitable reflection of the increased uncertainty resulting from identifying
inconsistency among the studies.

In Section 3 we consider five methods for addressing the heterogeneity variance in a sequential
meta-analysis: (i) ignoring it (a fixed-effect meta-analysis); (ii) implementing a standard random-
effects method (using the DerSimonian–Laird estimate); (iii) accounting for uncertainty in �2 (using
the approach of Biggerstaff and Tweedie [28]); (iv) Bayesian updating of uncertainty in �2; and (v)
approximate Bayesian updating of uncertainty in �2. The last two approaches are proposed to allow for
prior information on �2 to be incorporated in the early stages of the sequential meta-analysis. We refer
to the sequential approaches using Bayesian inference for �2 as ‘semi-Bayes’ to reflect the fact that
inference on the parameter of interest (�) is frequentist. We compare the five approaches, contrasting
them with a naïve cumulative random-effects meta-analysis without correction for multiple looks, in a
simulation study in Section 4.

Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 903--921
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3. Specific methods for sequential meta-analysis

3.1. Fixed-effect sequential meta-analysis using the general parametric approach

For a fixed-effect sequential meta-analysis, as described by Whitehead [9] , we take

Z j =
t j∑

i=1
wi yi , Vj =

t j∑
i=1

wi ,

where yi and wi are as defined in Section 2.1. As with all methods described below, we apply the
confidence interval formulae in Equation (1) to produce repeated confidence intervals.

3.2. Random-effects sequential meta-analysis using the general parametric approach

For a random-effects sequential meta-analysis, also described by Whitehead, we take

Z j =
t j∑

i=1
w∗

i yi , Vj =
t j∑

i=1
w∗

i ,

where yi and w∗
i are as defined in Section 2.1 and w∗

i involves the DerSimonian–Laird estimator, �̂2
DL, j ,

applied to the studies accumulated so far in the sequential meta-analysis. The estimate of �2
j is assumed

known at each update, as in a conventional meta-analysis.

3.3. Accounting for uncertainty in the estimation of �2

Methods that incorporate uncertainty in �̂2 are available (Biggerstaff and Tweedie [28], Hardy and
Thompson [29]). Biggerstaff and Tweedie consider an approach for accounting for uncertainty in the
DerSimonian–Laird estimate based on a gamma approximation to the distribution of Q. This leads the
authors to a revised weighting scheme for combining the effect estimates, yi :

�̂BTj =
∑t j

i=1 w̃i yi∑t j
i=1 w̃i

,

where w̃i are obtained as the expected values of the DerSimonion–Laird weights, w∗
i , over the approx-

imating distribution for �̂2
DL (allowing for truncation at zero), obtained for example using numerical

integration.
As the new weights, w̃i , are no longer inverse variances, we define Z j and Vj as

Z j =
�̂BT j

var(�̂BT j )
, Vj = 1

var(�̂BT j )
.

Incorporating uncertainty in estimates of �2 into the meta-analysis should slow the progress of the
(Z ,V ) path towards the boundary, since the uncertainty is reflected in a smaller value for V . Early
repeated confidence intervals are likely to be wide.

3.4. Incorporating prior information about heterogeneity: Bayesian updating of �2

A natural approach to making inferences about �2 in the presence of a small number of studies is
to draw on external evidence about its likely value. An informative prior distribution may contribute
heavily to producing a realistic estimate in the early stages of a sequential meta-analysis. We may
therefore expect the estimates of �2 in the meta-analysis to be less erratic, and the path to proceed
forward towards the boundaries. We propose to use Bayes’ theorem to update the value of �2, and to
insert this into the frequentist sequential approach outlined above.

A suitable prior distribution may be developed following the ideas of Higgins and Whitehead [30],
who gathered a collection of meta-analyses in the same therapeutic area and produced an empirical
distribution from the observed degrees of heterogeneity for a similar type of outcome. A point summary
from the prior distribution may be used in the analysis of the first study in the sequential meta-analysis,
and point summaries from updated posterior distribution for �2 may be used in subsequent updates of
the sequential meta-analysis.
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Let p(�2) represent the prior distribution for �2, which here will be considered to be an inverse gamma
distribution with shape parameter � and scale parameter �. At the j th meta-analysis the likelihood
function for the data L(�,�2; {y1, . . . , yt j },{v1, . . . ,vt j }) is a product of normal distributions with means
equal to � and variances equal to (vi +�2). The joint posterior distribution of � and �2 at this meta-
analysis, assuming an independent prior distribution, p(�), for �, is given by

p(�,�2|{y1, . . . , yt j },{v1, . . . ,vt j })
∝ p(�)p(�2)×L(�,�2; {y1, . . . , yt j },{v1, . . . ,vt j })

∝ p(�)(�2)−�−1 exp

(
− �

�2

)
×

t j∏
i=1

√
1

2	(vi +�2)
exp

(
−1

2

t j∑
i=1

[
(yi −�)2

vi +�2

])
.

Inference on �2 would normally be performed by integration or simulation. However, � is unknown
and in our frequentist analysis is not associated with a probability distribution, so cannot be integrated
out. A solution is to replace � by its estimate from the ( j −1)th meta-analysis. This makes �2 the only
unknown parameter in the posterior formula, and a simple one-dimensional numerical integration can
be performed to obtain its posterior mean, �̂2

B, j as follows.

�̂2
B, j =

∫
(�2)−� exp

(
− �

�2

)
×∏t j

i=1

√
1

2	(vi +�2)
exp

(
−1

2

∑t j
i=1

[
(yi − �̂ j−1)2

vi +�2

])
d�2

∫
(�2)−�−1 exp

(
− �

�2

)
×∏t j

i=1

√
1

2	(vi +�2)
exp

(
− 1

2

∑t j
i=1

[
(yi − �̂ j−1)2

vi +�2

])
d�2

.

If the first meta-analysis ( j =1) contains several studies (i.e. t1>1), then a suitable value for �̂ j−1 might
be provided by the estimate from a standard random-effects meta-analysis based on the first (t1 −1)
studies. If the first meta-analysis contains exactly two studies (t1 =2) we would set �̂ j−1 equal to y1.

We opt for the mean rather than the median or mode since not only is it straightforward to calculate,
but it will tend to overestimate �2 in the early stages, producing an analysis that is less likely to yield
a false positive result. As information accumulates, and the posterior distribution of �2 develops a
stronger peak, the mean will move towards the median and the mode.

For a random-effects sequential meta-analysis, we take

Z j =
t j∑

i=1
w∗

B,i yi , Vj =
t j∑

i=1
w∗

B,i ,

where w∗
B,i = (vi + �̂2

B, j )
−1. In principle, the approach could be extended to incorporate additional

uncertainty in �2 by applying the ideas of Biggerstaff and Tweedie. Specifically, the integrations in
the calculation of �̂2

B, j could be performed for the weights w∗
B,i rather than for �̂2

B, j . We have not
implemented this extension.

3.5. An approximation to the Bayesian approach for updating �2

We now propose a simpler approach that avoids the numerical integration. Suppose the true effects
in the studies to date were known exactly, so that yi =�i and vi =0. Then the inverse gamma prior
distribution for �2 is the conjugate prior distribution for the unknown variance of a normal distribution,
and the posterior distribution for �2 is then an inverse gamma posterior distribution with parameters
(�+(t j/2)) and (�+(t j�2

j/2)), where �2
j =
∑t j

i=1 (�i −�)2/t j is the heterogeneity variance among the

studies up to t j . We may estimate this variance using the DerSimonian–Laird estimate �̂2
DL, j . As the

mean of an inverse gamma distribution with parameters � and � is given by �/(�−1), it follows that
the posterior mean for �2 is given by

�̂2
AB, j =

2�+ t j �̂
2
DL, j

2�+ t j −2
= 2(�−1)�̂2

AB0 + t j �̂
2
DL, j

2(�−1)+ t j
,

where �̂2
AB,0 is the mean of the prior inverse gamma distribution. The posterior mean can therefore be

viewed as a weighted average of the prior estimate of �2 and the usual estimate from the studies in the
meta-analysis. As the number of studies increases, the effect of the prior information decreases.

Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 903--921
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For a random-effects sequential meta-analysis, our approximate semi-Bayes approach takes

Z j =
t j∑

i=1
w∗

AB,i yi , Vj =
t j∑

i=1
w∗

AB,i ,

where w∗
AB,i = (vi + �̂2

AB, j )
−1. R code for this method is included in the Appendix.

In practice, the approximations here might be expected to yield adequate results when the studies are
large (in which case yi ≈�i and vi ≈0), and to overestimate �2 when the studies are small, due to the
overdispersion in the distribution of the estimates, yi , compared with the distribution of the true effects, �i .

4. Simulation study

4.1. Methods of the simulation study

We conducted a simulation study to examine the behaviour of the five sequential meta-analysis methods
described in Section 3 under a wide range of conditions. These were also compared with a traditional
cumulative meta-analysis approach that simply performs a conventional random-effects meta-analysis
on the addition of each study. We chose an O’Brien and Fleming design with 90 per cent power to detect
an effect �R of 0.5 with a two-sided significance level of 5 per cent. This value for �R corresponds to
a moderately sized standardized mean difference [31], or to an odds ratio, hazard ratio or risk ratio of
1.65. The boundaries for the design, obtained from the package PEST 4.0, are given by H =14.92 and
Vmax =44.32 (see Table I).

The simulation study was conducted with true effect sizes of �=0, 0.25, 0.5, and 1, that is ranging
from no effect to an effect substantially larger than �R . Values for the heterogeneity variance �2 were
0, 0.0625, and 0.25. We simulated studies such that the expected number of studies under the null
hypothesis under a fixed-effect analysis would be t =5, t =10, and t =20, as described below. This
corresponds to an approximate doubling of sample size for each case we investigated. In total we
examined 36 scenarios.

Within each simulated sequential meta-analysis the true effect size from each study, �i , was sampled
from a N (�,�2) distribution. The mean within-study variance of the effect estimates, yi , across all
studies was taken to be 
2 = t/Vmax, ensuring that there would be approximately t studies in a sequential
fixed-effect meta-analysis if the vertical boundary was crossed at Vmax and �2 =0. The within-study
variance of the effect estimate for each study was sampled from a uniform distribution in the range
(
2 −0.75
2,
2 +0.75
2). This ensures that the studies have different degrees of precisions, reflecting
a realistically wide range of study sizes within each meta-analysis. As an approximate interpretation,
for the case of one-group studies estimating means with a between-person standard deviation equal to
4 in every study, this ensures that, for t =5, sample sizes would be distributed between 81 and 567
rather than all being equal to 142. The prior distribution for �2 for the semi-Bayes methods was an
inverse gamma distribution with parameters �=1.5 and �=0.08. This corresponds to a prior estimate
for �2 of 0.16. This is less than the maximum simulated heterogeneity, and, if the true effect size were
0.5, allows for some studies to have negative effect sizes. Taking �=1.5 is equivalent to having prior
information with the weight of one study, so the prior estimate contributes less than 10 per cent towards
the posterior estimate of heterogeneity after ten studies have been included in the meta-analysis.

For each of the 36 scenarios 5000 sequential meta-analyses were simulated and analysed using
each of the six approaches, using the procedures described in Section 2. The stopping rule for the
naive cumulative meta-analysis method was to stop (conclude an effect exists) if the naive 95 per cent
confidence interval excludes 0; or to stop (conclude no effect) if Vj exceeds Vmax; or otherwise to
continue. The simulation was conducted in R (the program is available upon request).

From the simulations, for each approach, we recorded (i) the mean number of studies taken to reach
a stopping boundary of the design; (ii) the proportion of simulations stopping having crossed the upper
boundary (in order to evaluate Type I error under the null hypothesis); (iii) the percentage of simulations
in which all calculated two-sided 95 per cent confidence intervals contained the true effect size � (that
is, the coverage of all confidence intervals); (iv) the percentage of simulations in which the confidence
interval at the time when a stopping boundary is crossed (based on Zend and Vend) contained the true
effect size � (coverage of the last confidence interval); (v) estimates of the heterogeneity variance, �2,
at the time when a stopping boundary is crossed and (vi) mean value of Vend.
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4.2. Results of the simulation study

Tables II–IV give a selection of the results when t =5 (few, large studies), t =10 (more, average
sized studies) and t =20 (many, small studies). The results of the simulations should be interpreted in
comparison with the fixed-effect sequential method as well as in isolation. The fixed-effect sequential
method should in theory have good properties in the absence of heterogeneity. However, the results
do not agree with the expectations due to a combination of (i) the inadequacy of the Christmas tree
correction; (ii) our random sampling of within-study variances from a uniform distribution, which
means that we cannot guarantee to hit the Vmax boundary with the t th study and (iii) the ad hoc
decision to consider an effect present when Vend>Vmax and |Zend|�H ′

end, a region in which sequential
theory does not formally apply. The third issue is expected to increase the probability of declaring that
an effect exists, with a larger increase the further away Vend is from Vmax. When �=0, the vertical

Table II. Results from simulation study with approximately five studies.

Naïve Fixed- Random- Approx. Semi-
� �2 random-effects effect effects BT semi-Bayes Bayes

0 0 Studies at stopping 6.1 5.5 6.4 6.4 7.5 8.6
P(benefit|�) 0.048 0.039 0.034 0.033 0.017 0.007
Coverage, all CIs 90.2 92.2 93.1 93.2 96.5 98.4
Coverage, last CI 90.2 92.2 93.1 93.2 96.5 98.4
�2 median 0.014 0 0.015 0.015 0.035 0.060
�2 mean 0 0 0 0 0.021 0.057
V at stopping 48.6 48.7 49.0 49.0 48.5 47.4

0.0625 Studies at stopping 7.1 5.3 7.7 7.8 8.8 9.2
P(benefit|�) 0.102 0.095 0.067 0.071 0.045 0.027
Coverage, all CIs 79.9 81.5 86.2 86.3 91.2 94.6
Coverage, last CI 79.9 81.5 86.2 86.3 91.2 94.6
�2 median 0.040 0 0.044 0.044 0.063 0.074
�2 mean 0.0072 0 0.015 0.14 0.041 0.066
V at stopping 47.7 48.5 48.3 48.3 48.0 47.2

0.25 Studies at stopping 10.8 4.8 13.1 13.1 14.3 12.7
P(benefit|�) 0.181 0.225 0.115 0.114 0.084 0.083
Coverage, all CIs 64.0 55.6 77.7 77.7 83.7 83.9
Coverage, last CI 64.0 55.6 77.7 77.7 83.7 83.9
�2 median 0.15 0 0.16 0.17 0.19 0.16
�2 mean 0.12 0 0.15 0.15 0.18 0.12
V at stopping 45.5 46.3 46.1 46.1 46.2 46.2

0.5 0 Studies at stopping 3.3 3.7 4.3 4.3 5.2 5.9
P(benefit|�) 0.958 0.948 0.958 0.959 0.968 0.974
Coverage, all CIs 89.3 91.6 92.5 92.5 95.8 98.2
Coverage, last CI 96.0 96.3 97.0 96.9 98.4 99.2
�2 median 0.03 0 0.018 0.010 0.045 0.068
�2 mean 0 0 0 0 0.032 0.065
V at stopping 22.2 32.0 32.0 32.0 31.1 30.3

0.0625 Studies at stopping 3.8 3.7 5.2 5.2 6.0 6.2
P(benefit|�) 0.942 0.909 0.938 0.939 0.947 0.948
Coverage, all CIs 80.8 80.9 86.7 86.7 91.3 94.6
Coverage, last CI 92.9 91.5 94.5 94.5 96.7 97.9
�2 median 0.062 0 0.046 0.046 0.012 0.073
�2 mean 0.0014 0 0.0046 0.0046 0.043 0.081
V at stopping 21.0 31.4 30.7 30.7 30.6 29.8

0.25 Studies at stopping 5.3 3.7 8.3 8.3 9.1 8.0
P(benefit|�) 0.924 0.840 0.909 0.909 0.908 0.901
Coverage, all CIs 63.8 56.4 77.9 78.1 83.1 83.5
Coverage, last CI 86.7 79.5 91.8 91.9 94.9 94.6
�2 median 0.17 0 0.15 0.15 0.15 0.14
�2 mean 0.10 0 0.11 0.11 0.18 0.11
V at stopping 18.1 30.6 28.4 28.4 28.5 28.2

BT, Biggerstaff and Tweedie.
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Table III. Results from simulation study with approximately 10 studies.

Naïve Fixed- Random- Approx. Semi-
� �2 random-effects effect effects BT semi-Bayes Bayes

0 0 Studies at stopping 10.9 10.5 11.9 11.9 12.5 13.9
P(benefit|�) 0.075 0.032 0.028 0.027 0.023 0.015
Coverage, all CIs 84.7 93.2 93.9 93.9 95.1 96.9
Coverage, last CI 84.7 93.2 93.9 93.9 95.1 96.9
�2 median 0.022 0 0.025 0.022 0.033 0.067
�2 mean 0 0 0 0 0.015 0.065
V at stopping 46.3 46.4 46.6 46.6 46.7 46.1

0.0625 Studies at stopping 11.6 10.3 13.4 13.4 14.0 14.5
P(benefit|�) 0.108 0.057 0.046 0.046 0.037 0.027
Coverage, all CIs 77.4 88.5 90.9 90.9 92.5 94.5
Coverage, last CI 77.4 88.5 90.9 90.9 92.5 94.5
�2 median 0.049 0 0.057 0.057 0.067 0.079
�2 mean 0.0066 0 0.024 0.024 0.038 0.071
V at stopping 46.0 46.4 46.5 46.5 46.5 46.0

0.25 Studies at stopping 15.1 9.7 19.5 19.5 19.9 17.5
P(benefit|�) 0.177 0.136 0.069 0.070 0.060 0.063
Coverage, all CIs 64.9 71.8 85.9 85.8 87.8 87.7
Coverage, last CI 64.9 71.8 85.9 85.8 87.8 87.7
�2 median 0.16 0 0.19 0.19 0.20 0.15
�2 mean 0.13 0 0.18 0.18 0.19 0.12
V at stopping 45.1 45.9 45.7 45.8 45.8 45.7

0.5 0 Studies at stopping 5.1 7.0 7.9 7.9 8.5 9.4
P(benefit|�) 0.958 0.933 0.943 0.944 0.942 0.947
Coverage, all CIs 85.9 93.6 94.6 94.6 95.5 97.4
Coverage, last CI 96.3 97.7 98.1 98.1 98.2 99.0
�2 median 0.043 0 0.031 0.031 0.048 0.073
�2 mean 0 0 0 0 0.023 0.069
V at stopping 16.1 30.0 29.7 29.7 29.6 29.5

0.0625 Studies at stopping 5.6 7.0 9.0 9.0 9.5 9.7
P(benefit|�) 0.945 0.903 0.922 0.922 0.926 0.932
Coverage, all CIs 78.2 87.9 90.8 90.9 92.7 94.6
Coverage, last CI 94.3 95.7 96.8 96.8 97.4 98.1
�2 median 0.075 0 0.061 0.061 0.077 0.085
�2 mean 0 0 0.013 0.014 0.037 0.076
V at stopping 15.4 29.9 29.7 29.7 29.7 29.4

0.25 Studies at stopping 7.1 6.8 12.3 12.4 12.7 11.3
P(benefit|�) 0.938 0.861 0.909 0.909 0.909 0.901
Coverage, all CIs 65.0 72.1 85.4 85.2 87.0 86.5
Coverage, last CI 89.9 90.2 95.5 95.5 95.9 95.5
�2 median 0.18 0 0.18 0.18 0.19 0.14
�2 mean 0.11 0 0.15 0.15 0.18 0.11
V at stopping 13.5 29.1 28.1 28.1 28.3 28.4

BT, Biggerstaff and Tweedie.

boundary will be crossed in the majority of simulations, and it can be seen from Table II (�2 =0) with
approximately five studies to reach Vmax that the Type I error rate is 0.039 instead of 0.025. When there
are more and smaller studies, for example in Table IV, Vend moves closer to Vmax and it can be seen
that the Type I error rate reduces to 0.028. In addition, the probability that all confidence intervals up to
and including the one at Vend will contain the true effect size will only be equal to 0.95 if Vend =Vmax.
If Vend<Vmax, this probability will be greater than 0.95, and if Vend>Vmax this probability will be less
than 0.95. The closer that Vend is to Vmax, the closer will be the probability to 0.95. When �=0 and
�2 =0, this probability is equal to 0.922 (Table II) and 0.939 (Table IV). The results for the other
sequential meta-analysis approaches should be viewed in this light.

The Biggerstaff and Tweedie method is not noticeably different from the sequential random-effects
meta-analysis. This is because it does not change the estimate of heterogeneity, but widens the confidence
interval in line with the uncertainty in the estimation of heterogeneity. This difference in confidence
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Table IV. Results from simulation study with approximately 20 studies.

Naïve Fixed- Random- Approx. Semi-
� �2 random-effects effect effects BT semi-Bayes Bayes

0 0 Studies at stopping 19.7 16.3 22.5 22.5 22.8 24.2
P(benefit|�) 0.097 0.028 0.023 0.023 0.021 0.016
Coverage, all CIs 80.7 93.9 94.7 94.8 95.2 96.3
Coverage, last CI 80.7 93.9 94.7 94.8 95.2 96.3
�2 median 0.035 0 0.038 0.038 0.044 0.073
�2 mean 0 0 0 0 0.0008 0.069
V at stopping 45.3 45.4 45.5 45.5 45.5 45.3

0.0625 Studies at stopping 20.3 20.3 24.1 24.1 24.4 24.8
P(benefit|�) 0.122 0.040 0.036 0.032 0.031 0.025
Coverage, all CIs 76.1 91.5 93.1 93.2 93.6 95.0
Coverage, last CI 76.1 91.5 93.1 93.2 93.6 95.0
�2 median 0.063 0 0.071 0.071 0.076 0.084
�2 mean 0.0017 0 0.023 0.023 0.031 0.076
V at stopping 45.2 45.4 45.5 45.5 45.5 45.2

0.25 Studies at stopping 23.7 19.7 30.6 30.6 30.7 27.2
P(benefit|�) 0.157 0.079 0.046 0.045 0.044 0.049
Coverage, all CIs 67.0 83.7 90.5 90.5 90.8 89.8
Coverage, last CI 67.0 83.7 90.5 90.5 90.8 89.8
�2 median 0.17 0 0.21 0.21 0.21 0.14
�2 mean 0.14 0 0.20 0.20 0.20 0.11
V at stopping 44.8 45.2 45.3 45.3 45.3 45.2

0.5 0 Studies at stopping 8.6 13.6 15.2 15.2 15.5 16.3
P(benefit|�) 0.952 0.910 0.918 0.918 0.920 0.929
Coverage, all CIs 79.9 93.4 94.4 94.4 94.7 95.8
Coverage, last CI 95.8 97.8 97.8 97.8 97.9 98.7
�2 median 0.067 0 0.049 0.049 0.058 0.081
�2 mean 0 0 0 0 0.016 0.076
V at stopping 13.6 29.3 29.1 29.1 29.1 28.9

0.0625 Studies at stopping 9.0 13.6 16.2 16.2 16.4 16.6
P(benefit|�) 0.952 0.897 0.913 0.913 0.914 0.919
Coverage, all CIs 75.8 91.7 93.3 93.4 93.9 95.4
Coverage, last CI 95.0 97.6 98.1 98.1 98.0 98.6
�2 median 0.092 0 0.079 0.079 0.087 0.090
�2 mean 0 0 0.015 0.015 0.028 0.081
V at stopping 13.1 29.2 28.8 28.8 28.8 29.0

0.25 Studies at stopping 10.1 13.2 19.8 19.9 20.0 17.8
P(benefit|�) 0.950 0.878 0.908 0.908 0.907 0.896
Coverage, all CIs 66.0 84.0 90.8 90.8 90.7 89.6
Coverage, last CI 91.7 94.8 97.1 97.1 97.1 96.8
�2 median 0.20 0 0.20 0.20 0.21 0.11
�2 mean 0.10 0 0.17 0.17 0.18 0.14
V at stopping 11.3 28.0 27.8 27.8 27.9 28.1

BT, Biggerstaff and Tweedie.

intervals appears to be small after the first few studies, so the Biggerstaff and Tweedie adjustment has
little impact on the analysis.

The simulation results show that the sequential random-effects meta-analysis generally takes at
least one study more to reach a stopping boundary than the sequential fixed-effect meta-analysis,
the additional number of studies increasing with increasing heterogeneity. The semi-Bayes methods
generally result in about one more study than the sequential random-effects meta-analysis. This shows
that taking account of heterogeneity can reduce the risk of early stopping.

As the number of studies increases it can be seen that the Type I error rate for the naïve cumulative
random-effects meta-analysis without correction for multiple looks also increases, in contrast to the
other random-effects approaches which allow for the multiple looks. Type I error rates increase with
increasing heterogeneity, this being most noticeable for the sequential fixed-effect meta-analysis, which
makes no allowance for heterogeneity. The use of a sequential random-effects meta-analysis improves
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the Type I error rate in the presence of heterogeneity, but it is still unacceptably high when there is
a moderate amount of heterogeneity. Hence these methods may produce spurious findings if there is
heterogeneity. The semi-Bayes methods produce values closer to the desired value, but they too show
a slight increase with heterogeneity.

The semi-Bayes methods show considerably greater coverage than the sequential fixed-effect meta-
analysis when there is no heterogeneity. This over-coverage is caused by their invalid prior assumption
of non-zero heterogeneity. The coverage falls off rapidly with heterogeneity for the sequential fixed
and random-effects meta-analyses. This reduction in coverage is smaller for the semi-Bayes methods.

There is some underestimation of heterogeneity in the sequential random-effects meta-analysis,
which may lead to smaller confidence intervals and hence to early stopping. The semi-Bayes methods
provide estimates of �2 that are closer to the true value provided that �2 is not equal to 0. If there is no
heterogeneity the Bayesian methods give an overestimate.

In conclusion, the semi-Bayes and approximate semi-Bayes methods had the most desirable false-
positive and coverage properties in our simulation study, despite the prior distribution being informative
and derived independently of the simulated meta-analyses. Our findings may be dependent on the
choice of prior distribution, and we return to this issue in the Discussion.

5. Application

Sacks et al. consider the data from 23 trials that compare endoscopic haemostasis with a control
treatment for the treatment of bleeding peptic ulcers [32]. The outcome of interest is post-treatment
bleeding and the treatment effect recorded here is the log-odds ratio of ‘no bleeding’. The trial estimates
yi and vi are calculated from Wald statistics, that is

yi = log

(
S1 F2

S2 F1

)
and vi = 1

S1
+ 1

S2
+ 1

F1
+ 1

F2
,

where S1 and F1 are the number of patients with ‘no bleeding’ and ‘bleeding’ in the endoscopic
haemostasis group, and S2 and F2 are defined similarly for the control group. A positive value for yi
favours the experimental treatment. The data and log-odds ratio estimates and confidence intervals for
the individual studies are presented in Table V. For trials in which there were no patients with ‘no

Table V. Peptic ulcers data: randomized trials of endoscopic hemostasis compared with control for
bleeding peptic ulcers: Log-odds ratio of ‘no bleeding’.

Hemostasis Control
Log-odds ratio 95 per cent CI

Trial, i Bled Total Bled Total wi wi yi (yi ) [odds ratio] (yi ±1.96/
√

wi )

1. Vallon (1980) 20 68 23 68 7.32 1.50 0.20 [1.2] −0.52, 0.93
2. Swain (1981) 11 36 17 40 4.29 2.22 0.52 [1.7] −0.43, 1.47
3. Papp (1982) 1 16 13 16 0.68 2.83 4.17 [65] 1.79, 6.56
4. Rutgeerts (1982) 5 52 19 54 3.31 5.39 1.63 [5.1] 0.55, 2.71
5. MacLeod (1983) 6 21 8 24 2.38 0.53 0.22 [1.3] −1.05, 1.49
6. Jensen (1984) 2 7 7 9 0.74 1.62 2.17 [8.8] −0.10, 4.44
7. Kernohan (1984) 9 21 7 24 2.52 −1.51 −0.60 [0.5] −1.83, 0.63
8. Goudie (1984) 7 21 5 25 2.15 −1.49 −0.69 [0.5] −2.03, 0.64
9. Freitas (1985) 7 36 17 42 3.62 3.75 1.04 [2.8] 0.01, 2.07
10. Swain (1986) 7 69 27 68 4.54 8.00 1.76 [5.8] 0.84, 2.68
11. O’Brien (1986) 17 101 34 103 8.72 7.76 0.89 [2.4] 0.23, 1.55
12. Krejs (1987) 19 85 18 89 7.28 −0.92 −0.13 [0.9] −0.85, 0.60
13. Brearley (1987) 6 20 8 21 2.27 0.82 0.36 [1.4] −0.94, 1.66
14. Moreto (1987) 1 16 11 21 0.80 2.23 2.80 [16.5] 0.61, 5.00
15. Laine (1987) 0 10 12 14 0.39 1.81 4.65 [105] 1.51, 7.80
16. Panes (1987) 3 55 25 58 2.36 6.09 2.57 [13.1] 1.30, 3.85
17. Chung (1987) 0 34 34 34 0.25 2.09 8.47 [4761] 4.52, 12.4
18. Balanzo (1988) 7 36 15 36 3.43 3.72 1.08 [3.0] 0.03, 2.14
19. Fellerton (1989) 0 20 5 23 0.44 1.09 2.50 [12] −0.46, 5.46
20. Angerinas (1989) 7 33 4 32 2.14 −1.36 −0.63 [0.5] −1.97, 0.71
21. Rutgeerts (1989) 10 40 12 20 2.93 4.40 1.50 [4.5] 0.36, 2.65
22. Chiozzini (1989) 4 34 5 19 1.80 1.78 0.99 [2.7] −0.47, 2.45
23. Laine (1989) 7 38 15 37 3.48 3.85 1.11 [3.0] 0.05, 2.16
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Figure 2. Random-effects meta-analysis and naïve random-effects cumulative meta-analysis of peptic ulcers data.

bleeding’ or no patients with ‘bleeding’ in at least one treatment group, 0.5 was added to all of the four
cells of the 2×2 contingency table. Although this is common practice, for meta-analyses of rare events it
is often preferable to use alternative approaches such as logistic regression [33]. However, such methods
do not fall conveniently into the general sequential framework we describe. A conventional random-
effects meta-analysis of the full data set (Figure 2) demonstrates a significant benefit of treatment, with
a log-odds ratio of 1.09 (an odds ratio of 3.0), but with considerable heterogeneity (�̂DL =0.91).

We suppose for the purposes of illustration that this meta-analysis had been planned with the aim
of incorporating observations at the end of each trial as they became available. Given the anticipated
heterogeneity of effects, we apply the random-effects methods described above. The analysis uses an
O’Brien and Fleming design in order to avoid early stopping unless the odds ratio is very large, with
a significance level of 5 and 90 per cent power to detect a log-odds ratio of 0.693 (an odds ratio of 2).
From Table I, for �R =0.693 this gives H =10.77 and Vmax =23.07 (Figure 1).

The sequential random-effects meta-analysis and the approximate semi-Bayes and semi-Bayes
methods are applied and compared with a sequential fixed-effect meta-analysis (Figure 3). To assess
sensitivity to prior distributions, two inverse gamma prior distributions for �2 are used for the semi-
Bayes methods: an IG(1.5,0.08) has a prior mean of 0.16 and an IG(1.5,1) has a prior mean of 2.
These prior means are respectively much smaller and much larger than the DerSimonian–Laird estimate
based on all of the trials. Table VI shows the number of studies included at the point when the stopping
criterion is met, together with estimates of the treatment effect (Zend/Vend) and heterogeneity, and the
last repeated confidence interval. If the plan for this sequential meta-analysis had been to follow the
formal stopping rule of the O’Brien and Fleming design, then it would be more appropriate to present
a ‘final’ analysis which correctly adjusts for earlier looks. The results from conducting this ‘final’
analyses using the PEST package [17] are included in Table VI. Such an analysis corrects for the bias
in the Zend/Vend estimate, and provides an appropriate P value and confidence interval. The confidence
interval is narrower than the last repeated confidence interval, because the repeated confidence intervals
have had no effect on the decision to conduct further studies.

These results show that a sequential fixed-effect meta-analysis, which ignores the heterogeneity, stops
after four studies (see also Figure 1), leading to a smaller estimate of the treatment effect compared
with that from all trials and a confidence interval that is narrow. The sequential random-effects method
requires 11 studies, and produces a slightly larger estimate of the treatment effect and a wider confidence
interval. When the prior distribution provides a much smaller underestimate of �2 than is apparent in
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Figure 3. Sequential meta-analysis of peptic ulcers data.

the dataset, as with the IG(1.5,0.08) prior, the semi-Bayes method stops after a smaller number of
studies (nine) although the approximate semi-Bayes method carries on for the same 11 studies as for
the sequential random-effects method. The earlier stopping of the semi-Bayes IG(1.5,0.08) method
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Table VI. Results from the sequential meta-analyses of the peptic ulcers data.

Approx semi- Approx semi- Semi-Bayes Semi-Bayes
Fixed Random Bayes IG(1.5,0.08) Bayes IG(1.5, 1) IG(1.5,0.08) IG(1.5, 1)

At Number of trials 4 11 11 15 9 15
stopping Zend/Vend 0.77 0.82 0.82 0.89 0.61 0.90

Last
confidence 0.14, 1.39 0.014, 1.63 0.042, 1.59 0.032, 1.75 0.015, 1.20 0.0054, 1.79
interval
�̂2 0 0.55 0.52 0.74 0.17 0.79

PEST P-value 0.0055 0.0052 0.0041 0.0048 0.0161 0.0039
analysis Median 0.74 0.81 0.82 0.81 0.60 0.84

unbiased [2.1] [2.2] [2.3] [2.2] [1.8] [2.3]
estimate of �
[odds ratio]
Confidence
interval for � 0.22, 1.24 0.24, 1.38 0.26, 1.37 0.25, 1.37 0.11, 1.09 0.27, 1.41

results in smaller estimates of treatment effect and heterogeneity. The use of an IG(1.5,1) prior with its
large prior estimate of heterogeneity causes the approximate semi-Bayes and semi-Bayes methods to
stop after 15 trials. The estimates of treatment effect and heterogeneity from the sequential approaches
are smaller than those from the overall random effects analysis of 23 studies. This is mainly due to the
seventeenth trial, which has a large, beneficial effect of treatment, increasing the heterogeneity.

In our example, we have assumed that a sequential approach to the meta-analysis had been planned
before the trials had reported their results. The example is instructive in illustrating some of the
limitations of applying our generic statistical methods prospectively in a meta-analysis situation. We
have remarked already that 2×2 contingency tables may be better analysed using binomial likelihoods.
This would have avoided the need to make continuity corrections by adding 0.5 s to cell counts.
Furthermore, the use of maximum likelihood estimates of odds ratios also creates a correlation between
the yi and vi . Indeed, a commonly applied test for association between the estimates and standard
errors produces P =0.005 [34], although a more appropriate test based on efficient score and Fisher
information statistics, which overcomes artefactual correlation between the estimates and weights,
produces P =0.44 [35]. Also, some of the studies display extreme treatment effects; for example, in the
Chung study, 0 and 100 per cent of the patients bled in the treatment and control groups, respectively.
This study is not very informative about the magnitude of the odds ratio, and receives very little weight
in the meta-analysis, despite providing convincing evidence that the treatment has a large effect on
the absolute risk of bleeding. Using risk differences rather than odds ratios as the effect size would
have given this study more weight, but risk differences are generally discouraged as a metric for
meta-analysis [36].

6. Discussion

This paper has considered the use of sequential methods for meta-analyses that incorporate random
effects to allow for heterogeneity between studies. Our emphasis has been on determining a straight-
forward approach that has good empirical properties. We have developed and compared five methods,
including a direct extension of the standard random-effects meta-analysis method, an extension of
the approach of Biggerstaff and Tweedie, a semi-Bayes method involving Bayesian updating of the
heterogeneity variance, and an approximation to the semi-Bayes method. The choice of an O’Brien
and Fleming sequential design with a Christmas tree correction for discrete monitoring leads to a
simple procedure for calculating repeated confidence intervals, which enables us to present sequential
meta-analyses using forest plots, the conventional way of illustrating meta-analysis results. When either
a repeated confidence interval excludes zero or Vmax is reached, then the recommendation can be made
that no further research is required to inform the question addressed by the meta-analysis.

Some issues are worthy of discussion, including philosophical, practical, and technical considerations.
First, should sequential methods be applied to meta-analysis? Second, if sequential methods are to be
used, what methods should be implemented in practice? Third, what technical problems remain that
require further research?
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The use of sequential methods for meta-analysis is contentious. Whereas the steering committee
for a prospective study has control over the recruitment of participants, researchers undertaking meta-
analyses may have no direct control over whether further studies are performed. Whether sequential
methods have a role for updating of meta-analyses that are unconnected with primary researchers (such
as those in Cochrane reviews) remains an open question. Chalmers and Lau [37] question the need
to correct for multiple looks within a cumulative meta-analysis because of the lack of direct control.
However, we would remark that many systematic reviews contain recommendations for practice and for
research, and decisions over the content of these recommendations are similar to decisions over whether
a primary research study should continue to recruit participants. Formal sequential methods for this
process allow the wider field of evolving knowledge to be subject to the same rigorous considerations
of Type I and Type II errors that individual randomized trials have traditionally received.

Meta-analyses are now well established as part of the research process, and many have argued for
the need for primary studies to both be informed by meta-analyses of existing evidence, and be rounded
off with an updated meta-analysis including the newly generated evidence. Thus primary research is
increasingly viewed as part of a wider sequential process, and the methods described here may have
application in this context. For instance, there may well be more enthusiasm for conducting a new
study if the effect estimate is close to an upper or lower stopping boundary in a scheme such as Figure
1. Finally, we believe that sequential meta-analyses can play an important role in the actual design of
individual studies, since the amount of further information that would be required to meet a pre-specified
Vmax can be determined. However, there are many considerations in the design of a new study, and it is
rare for them to be designed primarily around an updated meta-analysis. Related issues are discussed by
Sutton et al. [38].

One area of potential application of sequential methods is the monitoring of adverse effects of
pharmacological interventions. However, as we remark in Section 5, the particular general parametric
approach we describe does not lend itself well to rare events. Furthermore, it is not clear that strict
control over false-positive findings is important in this context, since a small, non-statistically significant,
signal should still be investigated when the adverse effect is major. More research is required to explore
appropriate methods for this issue.

If sequential methods are to be implemented, can the methods we have described be recom-
mended? Certainly we would recommend against a fixed-effect approach. However, in a random-
effects framework, a key problem in the early stages of a sequential meta-analysis is the poor
estimation of the heterogeneity variance. We argue that prior information is therefore necessary.
Of our two semi-Bayes methods, the approximate semi-Bayes approach is straightforward to
implement, and this is the one we recommend from among those we investigated. From the simu-
lation results, it appears that the method has reasonable false-positive and coverage properties,
although these are likely to be dependent on the choice of prior distribution for the among-
study variation. Our application demonstrated that the early stages of the sequential meta-analysis
can be affected by the prior distribution. Further empirical research is needed to characterize
the degree of heterogeneity that can be anticipated in a meta-analysis with particular clinical and
methodological features, so that realistic informative prior distributions can be formulated. An alter-
native approach would be a sensitivity analysis in which the sequential meta-analysis is repeated for a
variety of plausible values of �2, but an explicit stopping rule does not follow from such an approach.

Our recommendations are interim, since more work is required in this area. We have commented
on methods based on the law of the iterated logarithm proposed by Lan et al. [13, 14]. Their open-
ended boundaries have the advantage of allowing studies to continue being conducted as long as the
null hypothesis is not rejected, but they do not ensure that a pre-specified power is achieved. Open-
ended boundaries with specified Type 2 error may offer preferable methods. Some technical issues
with the proposed methods might also be investigated. For example, we have assumed that primary
inference is to be made on the mean effect across studies. This does not take into account the extent
of heterogeneity. It may be more appropriate to base decisions on alternative characteristics of the
random-effects distribution, such as the probability that an individual study will have an effect of a
particular size. Such inferences can be drawn from the predictive distribution of the effect in a new
study [24]. Another limitation is that we have proposed the calculation of repeated confidence intervals
until and including the first time that Vmax is exceeded. When this last repeated confidence interval is
calculated, there is a probability of slightly less than 1−� that the truth is contained in every interval.
The reduction in the probability depends on the increase in V from Vmax, and will be greater if only a
few sequential steps have been conducted. A better understanding of this issue would be useful. Finally,
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the advantage of using the Christmas tree correction for discrete monitoring with the O’Brien and
Fleming design is that this leads to a simple procedure for calculating the repeated confidence intervals,
but there are also some disadvantages to this approach. First, Stallard and Facey [39] show that the
Christmas tree correction is less accurate for the O’Brien and Fleming design than for other types of
sequential design, particularly if there are only a few looks at the data. Second, the Christmas tree
correction depends on the information at the current (Vj ) and previous (Vj−1) meta-analysis update.
If (Vj −Vj−1) is less than 0, there is no Christmas tree correction. However, if at the next update
(Vj+1 −Vj ) is greater than 0, there will be a Christmas tree correction. However, Vj+1 may be less than
Vj−1. Further work is needed to assess the effect that this might have on the validity of the results.

We have considered a frequentist sequential approach to meta-analysis, proposing semi-Bayes
approaches to allow prior information about �2 to be incorporated. The entire meta-analysis could
alternatively be undertaken within a fully Bayesian framework. The meta-analyst would then calculate
a new credibility interval for every meta-analysis update. The credibility interval, unlike the frequentist
repeated confidence interval, is not corrected for multiple looks. The posterior distributions of � and
�2 from the first meta-analysis would become the prior distribution for the second and so on. If �2

increases during the course of the sequential meta-analysis, the credibility interval may become wider,
but this causes no problem. Bayesian stopping rules for individual clinical trials have been proposed
by various authors (see, for example [40, 41]). However, as the Bayesian inference is not affected by
the repeated updates, Bayesian monitoring procedures can have very poor frequentist properties, such
as inflated Type I errors [42].

Appendix

# An R function to perform a sequential meta-analysis using the approximate
# Semi-Bayes method to update estimates of the heterogeneity variance.
# Input:
# y, var: effect estimate and variance from each trial
# Vmax, H: vertical and horizontal boundaries of O’Brian and Fleming design
# eta, lambda: parameters of IG(eta,lambda) prior.
# Requires ’rmeta’ package (http://cran.r-project.org/web/packages/rmeta/)

seq.ma.appbayes <-
function(y,var,Vmax,H,eta,lambda){

# set up output data
require(rmeta)
yout <- varout <- Zout <- Vout <- tausqout <- lowerout <- upperout <- stopping

<- rep(0,length(y))
Vlast <- 1 / var[1]

# loop for each trial in the sequential meta-analysis
for (i in 1:length(y)){

# Compute approximate Bayes estimate of heterogeneity variance
# from DerSimonian-Laird estimate and prior distribution
tau.sq.DL <- meta.summaries(y[1:i],sqrt(var[1:i]),method="random")$tau2
tausqout[i] <- tau.sq.AB <- max((2 * lambda + i * tau.sq.DL)/(2 * eta + i - 2), 0)
# Compute cumulative Z and V and estimates of y and var(y)
Vout[i] <- cumul.V <- sum(1/(var[1:i] + tau.sq.AB))
Zout[i] <- cumul.Z <- sum(y[1:i]/(var[1:i] + tau.sq.AB))
yout[i] <- cumul.Z / cumul.V
varout[i] <- 1 / cumul.V

# Compute "Christmas tree" correction
Vdiff <- max(0, cumul.V - Vlast)
corrected.upper <- H - 0.583 * sqrt(Vdiff)
corrected.lower <- -H + 0.583 * sqrt(Vdiff)
Vlast <- cumul.V
# Compute repeated confidence intervals
lowerout[i] <- (cumul.Z - corrected.upper)/cumul.V
upperout[i] <- (cumul.Z - corrected.lower)/cumul.V

# Determime if a stopping boundary is crossed
# 1 = boundary crossed , 0 = not crossed

Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 903--921
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stopping[i] <- ifelse((i>2) & (lowerout[i]>0 | upperout[i]<0 | cumul.V>Vmax),
1, 0)

}

# output results
out <-

data.frame(y=yout,var=varout,Z=Zout,V=Vout,lower=lowerout,
upper=upperout,tausq=tausqout,stopping=stopping)

return(out)

}
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