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Abstract
Traditionally, the pathology of human disease has been focused on microscopic examination of
affected tissues, chemical and biochemical analysis of biopsy samples, other available samples of
convenience, such as blood, and noninvasive or invasive imaging of varying complexity, in order
to classify disease and illuminate its mechanistic basis. The molecular age has complemented this
armamentarium with gene expression arrays and selective analysis of individual genes. However,
we are entering a new era of epigenomic profiling, i.e., genome-scale analysis of cell-heritable
nonsequence genetic change, such as DNA methylation. The epigenome offers access to stable
measurements of cellular state and to biobanked material for large-scale epidemiological studies.
Some of these genome-scale technologies are beginning to be applied to create the new field of
epigenetic epidemiology.
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Epigenetics
The term epigenetics was coined by the Cambridge University embryologist Conrad
Waddington in a series of monographs, and he used it to describe his original view of
developmental biology that the morphological and functional properties of an organism arise
sequentially under a program defined by the genome under the influence of the organism’s
environment [1]. The modern definition of epigenetics is modifications of the DNA or
associated proteins, other than DNA sequence variation itself, that carry information content
during cell division [2], although a few scientists take a more relaxed or stricter view, either
including RNA modification or limiting to vertical (generational) transmission. Remarkably,
the modern definition and Waddington’s have converged. That is because the epigenetic
state of an organism progresses from gamete to zygote to somatic tissue, all of which have
profoundly different epigenomes, while the DNA is the same. Furthermore, given that the
developmental state of a cell can be completely reprogrammed by somatic cell nuclear
transfer, or by specific genes in combination, the information specifying cell state is not the
DNA alone but the epigenetic program layered on top of this genetic code and is heritable
during cell division but ultimately reprogrammable.

The focus of this review is the specific epigenetic modification involving DNA methylation
(DNAm), a covalent addition of a methyl (CH3) group to the nucleotide cytosine. DNAm is

© Springer-Verlag 2009
Correspondence to: Andrew P. Feinberg.

NIH Public Access
Author Manuscript
Virchows Arch. Author manuscript; available in PMC 2011 June 4.

Published in final edited form as:
Virchows Arch. 2010 January ; 456(1): 13–21. doi:10.1007/s00428-009-0847-2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the only epigenetic modification whose mechanism for propagation is well understood
biochemically. CpG dinucleotides show heritable methylation during cell division because
the complementary strand shows the same sequence, and both cytosines are normally
methylated. During DNA replication, the two daughter strands contain hemimethylated
DNA, i.e., the parent strand is methylated and the daughter strand is not. The enzyme DNA
methyltransferase I (DNMT1) has high affinity for this hemimethylated strand and adds a
methyl group to the newly synthesized daughter cytosine at that site, likely within the same
DNA replication complex. Dietary methionine and a cofactor synthesized from folic acid are
necessary for the success of methylation maintenance, providing a strong link between the
environment and the epigenome. Indeed in animals, the epigenome and gene expression can
be modified by dietary manipulation of methylation precursors, and dietary deprivation of
methionine leads to liver cancer in animals [3].

“CpG islands” are regions rich in CpG dinucleotides (formally defined as G + C content≥0.5
and CpGobs/CpGexp≥0.6)[4], and they are often described as uniformly unmethylated in
normal cells, with the exception of the inactive X chromosome, and are near imprinted
genes [5, 6]. However, the assumption that autosomal CpG islands (except for imprinted
genes) are never methylated is clearly not the case [7-10]. It is also important to note that
functionally important DNAm information is often not within conventionally defined CpG
islands, e.g., the H19 and insulin-like growth factor II gene (IGF2) differentially methylated
regions (DMRs) that regulate imprinting of IGF2 [11, 12].

Epigenetics of human disease
How can one identify disease-specific epigenetic differences? One would like to know that
the epigenome varies normally in the population, is associated in particular ways with
disease, and does not always simply reflect normal tissue-specific differences in gene
expression. Individual gene data in support of this epigenetic variation were first reported in
the 1980s [13]. Other genomic regions showing epigenetic variation in the population
include X inactivation [14] and both familial and environmental determinants of IGF2/H19
imprinting, or parent of origin-specific gene silencing [14].

A common theme of disease epigenetics is the role of defects in phenotypic plasticity, the
ability of cells to change their behavior in response to internal or external environmental
cues; this was reviewed recently in detail [15]. For example, hereditary disorders of the
epigenetic apparatus lead to developmental defects, a dramatic example being the Rett
syndrome. This disorder involves loss of function of methyl-CpG-binding protein 2
(MeCP2), which recognizes DNAm. Children with Rett syndrome develop normally until 6–
12 months and then gradually lose developmental milestones over years, due to a failure to
maintain gene silencing in the brain. This process of delayed onset of disease is also a
hallmark of bipolar disorder and schizophrenia.

The study of epigenetic changes in human cancers began with the discovery of widespread
hypomethylation [16]. Cancer involves both hypomethylation and hypermethylation,
attendant overexpression of oncogenes, silencing of tumor suppressor genes, and loss of
imprinting. Here too, the mechanism by which epigenetic changes leads to cancer appears to
involve disruption of normal phenotypic plasticity, in this case of the programming that
leads a cell to differentiate normally within a given tissue compartment [2]. Moreover,
epigenetic changes that arise constitutionally are associated with increased risk of common
disease, such as loss of imprinting of the IGF2 gene in cancer, which has been shown in
both human [17] and mouse [18, 19] studies. Prospective or nested case–control studies are
needed to establish a cause and effect relationship in colorectal cancer.
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Epigenetic alterations have long been linked to human disease, originally through disorders
of genomic imprinting [20]. Defects in the epigenetic machinery also lead to developmental
abnormalities, such as MeCP2 mutations in Rett syndrome [21] and DNMT3B mutations in
immunodeficiency, centromeric region instability, and facial anomalies (ICF) syndrome
[21].

Epigenetic alterations may also contribute to neuropsychiatric disease. Bipolar disorder
shows several features consistent with an epigenetic contribution: lack of complete
concordance in monozygotic twins; onset of illness in adolescence or adulthood rather than
childhood, the often episodic nature of the illnesses, and the apparent relationship to
environmental factors, such as stress [22, 23]. Stress has been shown to alter epigenetic
marks including DNAm and histone modifications in the brain in animal models [24, 25].
Interestingly, three important bipolar disorder medications, the mood stabilizer valproate
[24, 25], the antidepressant imipramine [25], and the antipsychotic haloperidol [26], have
also been shown to induce epigenetic changes in the brain. More direct evidence in support
of an epigenetic effect in bipolar disorder: is based on the identification of an excess of
maternal transmission in some pedigrees [27]. The mounting evidence for epigenetic
involvement in autism includes relationships with related phenotypes as well as direct
evidence. For example, imprinted genes on the X chromosome are thought to be involved in
social skills in girls because defects in these skills are found in Turner syndrome and in
children lacking the paternal X chromosome but not the maternal X chromosome [28]. Both
fragile X, a disorder with known phenotype overlap with autism, and ICF syndrome arise
from malfunctions in the establishment of normal DNAm patterns [29, 30]. Rett syndrome,
also associated with autistic features, is caused by mutations in the gene encoding DNA
methyl-binding protein MeCP2, a protein important for interpreting DNAm and controlling
the repression of gene transcription [31]. Patients with these three disorders exhibit mental
retardation, demonstrating the importance for proper DNAm in the regulation of cognitive
function. Furthermore, one mechanistic study has shown that abnormally hypomethylated
CNS neurons were impaired functionally and were selected against in postnatal development
[32]. Another suggests that neuronal activity can drive the transcription of genes important
for controlling neurotransmitter release by regulating their DNAm status [33].

The potential for imprinting of autism-related genes could explain the lack of Mendelian
inheritance in autism and the inconstant results across linkage and association studies that do
not account for these features. Direct evidence for this idea comes from a study of the gene
for contactin-associated protein-like 2 (CNTNAP2), identified by multiple studies as
associated with autism spectrum disorders (ASD) [34-38]. In one of these studies, risk for
ASD associated with the identified single nucleotide polymorphism (SNP) showed parent-
of-origin specificity suggesting a role for imprinting [36].

Epigenetics of aging
Increasing evidence supports a role for epigenetics in the biology of aging. X-inactivated
genes in the mouse show an increased frequency of reactivation with aging, consistent with
age-related epigenetic change [39, 40]. The frequency of epigenetic changes in mice may be
one to two orders of magnitude greater than the rate of somatic DNA mutation [41]. This fits
with a role of epigenetics in late-onset disorders such as frailty, a syndrome of decreased
resiliency and reserves, in which a mutually exacerbating cycle of declines across multiple
systems results in negative energy balance, sarcopenia, and diminished strength and
tolerance for exertion [42]. Accumulation of DNA sequence changes might not occur at
enough high rate during the lifespan to induce common disease, but epigenetic changes may
occur at a frequency that could contribute to this effect. Very few studies have demonstrated
epigenetic changes in humans with age due to technical and biosample limitations. A recent
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study has shown differences in local and global methylation by age by examining the
similarity in methylation patterns between MZ twins aged 3 years old and MZ twins aged
50. Although these analyses were not in the same individuals (the same twins were not
followed longitudinally), the similarity in methylation patterns between young twins
compared to the dissimilar patterns among older twins argues strongly for age-related
changes in the epigenome [43]. Direct evidence comes from a recent study showing changes
in DNA methylation in the same individual over time, described in more detail below.

Epigenomics
Epigenomics refers to genome-scale analysis of epigenetic marks. The term “methylome,”
or genome-wide state of DNAm, was first introduced by the author in 2001 [44]. Despite the
availability of an essentially complete genome sequence for several years, understanding the
methylome has progressed more slowly, largely due to limitations in technology affecting
sensitivity, specificity, throughput, quantitation, and cost among the previously used
detection methods. All of the available methods involve trade-offs among these variables.
Furthermore, all of these variables are themselves moving targets, particularly cost. The rule
in genomic science generally is that increased demand substantially reduces cost because of
three factors: fierce competition in the biotechnology sector; production efficiencies as
methods are automated; and continued technological advances. It is also important to define
clearly what is meant by genome scale. The term is commonly applied to any method not
limited to specific predefined genes, but no epigenomic method in common use examines
the entire epigenome. For the sake of this article, the discussion will be limited to DNAm
analysis because of its particular suitability for pathological and epidemiological studies due
to its stability in biobanked specimens.

The human genome contains ~3 × 109bp of DNA, of which there are ~3 × 107 CpG
dinucleotides, and half of that is nonrepetitive single- or low-copy sequence [45]. CpG
dinucleotides are the sites that can be methylated and the methylation in turn replicated
faithfully during cell division by DNA methyltransferase 1. While non-CpG methylation
exists, it is not currently considered epigenetic information since no mechanism is known
for its propagation during DNA replication.

What are the methods in common practice for measuring genome-scale DNAm? While this
review naturally is written from the perspective of our own approaches, there are several
other excellent reviews of epigenomics [46, 47]. Most investigators are drawn to
commercially available methods, particularly those that can be performed as a service, with
only DNA needing to be prepared by the investigator. However, these methods are not
necessarily the most comprehensive or most accurate. A method similar to array-based SNP
analysis is the Illumina GoldenGate methylation assay [48], or its more recent cousin, the
Illumina Infinium methylation platform. Both methods involve bisulfite conversion of
unmethylated DNA to uracil, followed by polymerase chain reaction (PCR) which
propagates a thymine residue at the converted base [49]. Methylated cytosine is unconverted
and thus read as cytosine. Thus, the methylation state (C/mC) is transformed to a
pseudopolymorphism (T/C, respectively). The readout is then as for any SNP and is
semiquantitative, accurate within ~17% for the GoldenGate assay [50]. The major limitation
of this approach is the relatively poor coverage of the genome by both methods, only ~1,500
CpG by GoldenGate and ~27,000 CpG by Infinium, thus representing 0.01% to 0.18% of
the single-copy methylome. A second limitation is the choices involved in selecting CpG
sites for analysis. The chips are designed based in part on the idea that functional CpG
methylation lies within canonical gene promoters and CpG islands. CpG islands are defined
algorithmically, i.e., based on a formula given above. The major rationale for this choice is
literature showing hypermethylation of CpG islands in cancer. Yet, those studies are largely
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self-referential in design, and recent studies described below suggest that most variable
DNAm occurs outside of these islands. Nevertheless, great advances have been made
possible by these reagents and methods, and they show the promise of increasing efforts by
many laboratories to improve the resolution of genome-scale technology.

Furthermore, there are comparatively few data supporting the choice specifically of
promoters and CpG islands for studies of other diseases, or normal population variation.
Indeed, a relatively small scale but very comprehensive study was performed by Stephan
Beck at the Sanger Center on ~1.8 Mb of DNA including ~40,000 CpG sites across 12
tissues [10]. The study showed that most methylation variation was not at transcriptional
start site-associated CpGs or at CpG islands [10]. One encouraging result from that study,
for those who wish to use CpG chips as described above, was a high degree of correlation
between CpG site methylation within a few hundred base pairs. However, the choice of one
or two CpGs per candidate region seems precariously underrepresented.

A second approach in common practice is hybridization of antibody-purified methylated
DNA to high-density genome arrays [51]. For example, NimbleGen offers of methylated
DNA immunoprecipitation (MeDIP) to a ~2-Mb array tiled through gene promoters and
CpG islands. The coverage of this array is much greater than the SNP-based arrays
described above. However, choice of selection is still a significant issue given that complete
tiling of the genome would currently require ten arrays, which is cost-prohibitive for large-
scale epidemiological studies. Furthermore, MeDIP shows significant limitations in
discriminating methylation differences in regions of medium- to low-density CpG content
[52], and our recent study shows that that is exactly where many or most significant
variation in DNAm occurs [53]. Another method focused on CpG islands is restriction
landmark genome scanning [54]. There are emerging alternatives for methylation
fractionation, including affinity purification of methylated DNA on methyl-CpG-binding
protein [55], or affinity purification of unmethylated DNA [56].

Two promising methods for genome-scale analysis use methylated DNA fractionation based
on restriction endonuclease digestion. One of these, developed by John Greally and
colleagues at Albert Einstein College of Medicine in New York, is termed HELP for HpaII-
tiny fragment Enrichment by Ligation-mediated PCR [57]. It takes advantage of the
difference in sizes of Hpa-II fragments, which are generated from unmethylated DNA, and
Msp-I fragments, which recognize the same cleavage site but are methylation-independent.
While initial specificity was relatively limited, recent improvements involve additional
methylcytosine sensitive endonucleases and allow representation of >98% of CpG islands
and >90% of refSeq promoters, and it can also be combined with next generation sequencing
for readout [58]. A second involves fractionation of the unmethylated component with
McrBC, which recognizes methylated DNA if there are two methylcytosines preceded by
purines and separated by ~40–100 b, an easy condition to meet for methylated DNA except
at very low CpG density. This approach was first applied to specific chromosome analysis
[59] but was subsequently extended to study of human cancer [60].

Rafael Irizarry and I with our colleagues developed an array-based readout method that is
independent of methylation fractionation method and can be applied equally to McrBC,
HELP, or antibody-based methods. This approach, termed CHARM for comprehensive
high-throughput array-based relative methylation analysis, involves two essential
components. First, the array is agnostic to presuppositions about the location of differential
methylation and tiles through regions based only on the relative CpG content in decreasing
abundance [52]. It, therefore, includes all CpG islands, but that represents only 38% of the
CpG “real estate,” or available oligonucleotide probe positions for analysis on the array. One
could use additional arrays or soon to be released higher density arrays to increase coverage,

Feinberg Page 5

Virchows Arch. Author manuscript; available in PMC 2011 June 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



which is now about one fourth of the entire nonrepetitive methylome. The second
component is genome-weighted smoothing, or correction for the hybridization properties of
the target (i.e., sample) genome at each location, which is in turn calculated from empirical
measurements of hybridization efficiency with regard to GC content, CpG density, and
length of fragments [52]. A statistical suite of postprocessing algorithms, written in R, is
termed CharmR and is continually revised. The arrays and CharmR are open access and
open source (http://www.biostat.jhsph.edu/~maryee/charmR/). Thus, while not
commercially available, this technology is readily transportable to core laboratories that
have statistical and programming support.

Although my colleagues and I have developed one of the current approaches to epigenomic
analysis, we gladly welcome the advent of second generation sequencing technology for
DNAm analysis. There are multiple competing commercial platforms for massively parallel
sequencing on slides, with throughput per machine >300 Gb per run at <1% of the cost of
conventional automated sequencing [61, 62]. A particular advantage of sequencing-based
methylation analysis is the ability to ascertain allele-specific methylation by virtue of DNA
polymorphisms within the same sequencing read. This is particularly true as longer reads
become cost-effective.

Nevertheless, whole genome bisulfite sequencing applied to humans is not presently cost-
effective for epidemiological studies. Costs are in the many tens of thousands of dollars,
compared to hundreds of dollars per sample for alternative less comprehensive methods.
Therefore, sequencing-based methods all involve significant trade-offs. One method
involves “reduced representation,” using restriction enzymes to limit the sequenced target to
regions within CpG islands [63], which may miss significant normal variation in patient
populations or across tissues [53]. Single molecule sequencing detection, such as in
development by Pacific Biosystems, or other methods not widely discussed publicly, might
reduce costs to the point of making whole genome shotgun sequencing inexpensive
compared to other methods for epigenomic profiling. Until that day comes, however, a great
deal can be learned about the methylome of human normal and disease populations using
array or chip-based approaches.

The first genome-scale epigenetic analysis of human cancer: CpG island
shores

We recently exploited CHARM methodology to perform the first genome-scale analysis of
the human cancer methylome and to compare it to the normal tissue-varying methylome. A
comparison was first made of DNA from five autopsy specimens, three matched tissues each
representing the three embryonic lineages, brain, liver, and spleen. Surprisingly, most tissue-
specific DNAm was not at CpG islands but at regions of intermediate CpG density located
up to 2 kb from the islands, and which we termed “CpG island shores” [53]. Even though
CpG islands accounted for 33% of the CpG real estate on the arrays, they only accounted for
6% of these tissue-varying differentially methylated regions, or T-DMRs. In contrast 76% of
T-DMRs were in CpG island shores. Furthermore, the T-DMRs were located for the most
part outside of promoters (96%), and more than half were >2 kb from the nearest annotated
gene [53].

Next, comparing 13 colorectal cancers to matched normal mucosa from the same patients,
2,707 regions were identified showing cancer-specific differentially methylated regions, or
C-DMRs, under a false discovery rate of 5%. These, too, were highly enriched at CpG island
shores (67%), and islands were comparatively underrepresented (8% compared to 38% on
the arrays). The data were highly reproducible, being validated by independent quantitative
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bisulfite pyrosequencing on a replicate set of 50 colon cancers and matched normal mucosa
[53].

Remarkably, there was a comparable amount of hypermethylation as hypomethylation, even
though the cancer literature is heavily biased toward the former. That may be because the
CpG islands, even though underrepresented for C-DMRs overall, show hypermethylation
when methylation is altered in cancer, while the shores away from the islands tend toward
relative hypomethylation. In retrospect, this is not surprising, since CpG islands are
protected against normal DNA methylation, and thus, the only direction they can commonly
change in disease is toward relative hypermethylation. In any case, the common dictum that
cancer shows repetitive DNA hypomethylation and gene-specific hypermethylation appears
to be false. While the former is true, single genes are numerically comparably altered by
hypomethylation and hypermethylation in cancer [53]. These results are illustrated in Fig. 1.

This comparative methylome analysis also showed that C-DMRs and T-DMRs largely
overlap (65% using an F statistic). Indeed, if one performs supervised clustering to identify
the C-DMRs that distinguish colorectal cancer from normal mucosa, those same DMRs in
unsupervised clustering completely discriminate spleen from liver from brain [53]. Thus, the
DMRs that regulate normal differentiation are involved in aberrant methylation in cancer,
and this may occur generally across cancer, since they even distinguish tissues not of the
type from which the cancer derives.

What do CpG island shores do? This is of great relevance to any investigator interested in
the disease epigenome, since they were previously unapparent yet obviously at the heart of
normal and abnormal variation. One clue comes from their localization, as they appear to be
enriched in alternative transcriptional start sites for annotated genes, as well as unannotated
RNAs. This localization was functionally supported by rapid amplification of
complementary DNA ends experiments showing that hypomethylated CpG island shores in
cancer show activation of alternative transcriptional start sites within them in the same
tumor showing hypomethylation at these sites [53].

The new field of epigenetic epidemiology
Epidemiology is the study of disease in populations, and genetic epidemiology, or the
relationship of genetic variation to disease, has exploded by taking advantage of the data
generated by the HapMap project, a consortium effort to identify six million common
polymorphisms across the genome and in the major human population groupings [64].
Genome-wide association studies have become the mainstay of human genetics research and
have identified nearly 100 loci for over 40 diseases [65]. Concomitant copy number variant
(CNV) analysis which can be performed on the same chip platform has also identified
insertions or deletions that contribute to common disease [66]. However, epigenomics has
not yet been integrated into the routine search for variation contributing to human disease
susceptibility.

The new field of epigenetic epidemiology will measure and catalog such epigenetic variation
within and across populations and to characterize the correlation properties of methylation,
similar to the catalog of SNP/CNV variation and linkage disequilibrium. Epigenetic
epidemiology can also provide a unique perspective on the environmental factors
contributing to common disease. Several examples of environmentally mediated epigenetic
effects have been documented, including the influence of methyl donors and folate from diet
on methylation levels, smoking influence on methylation, and the effects of metallotoxins
[67, 68]. DNA methylation occurs by homocysteine conversion to methionine, which is then
converted to S-adenosylmethionine, the common methyl donor for DNAm. Animal work
has shown that folate-deprived rats become hypomethylated locally, at particular genes [69,
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70] and globally [71]. Human cell work has shown that specific genes may be hyper- or
hypomethy-lated with reduced folate [72]. Also, clinical studies have shown a correlation
between serum folate levels and hypomethylation [73], and epidemiologic interventions
show older women put on folate-depleted diets result in increased plasma homocysteine and
decreased methylation [74, 75]. A hypomethylation defect was associated with assisted
reproductive technology in the conception of children with Beckwith–Wiedemann
syndrome, a disorder of prenatal overgrowth, birth defects, and cancer [76], which has been
borne out by several other groups [77, 78]. Thus, prenatal exposure can act through an
epigenetic mechanism.

The prior focus of epigenomics on the simple interface between epigenetics and human
disease phenotype variation has prepared us now to address the more complex task of
including genetic variation in genome-scale analysis. Going forward, it is critical to develop
genome-wide tools to determine the relationship between genetic variation, epigenetic
variation, and disease simultaneously. This area of overlap, the hashed area in Fig. 2, is
deliberately drawn as the larger fraction of the overlap between genetics and phenotype to
emphasize that most genetic findings must be considered in an epigenetic context and to
highlight that the full value of typical genetic epidemiology studies cannot be realized until
the complementary epigenetic measures and statistical tools are developed and performed on
these samples.

Fallin, Bjornsson, and I have proposed a common disease genetic and epigenetic (CDGE)
model for human disease, which states that DNA sequence variation (traditional genetics),
environment, and epigenetic mechanisms interact to cause or accelerate common disease,
especially those of later onset [23, 79]. CDGE provides a model for understanding how one
might integrate epigenetics into traditional studies genetics and the environment. For
example, epigenetic marks such as DNAm may influence disease risk, either directly (such
as aberrant DNAm turning a gene on/off inappropriately) or indirectly (through masking/
unmasking DNA sequence variation that has disease consequences). This type of DNA
variation, whose penetrance is dependent on epigenetic context, is denoted “gdep,” since it is
only one risk factor in the context of certain epigenetic patterns. This type of sequence
variation would be difficult to discover in traditional genetic association approaches, without
knowledge of the epigenetic background. Parent-of-origin analyses in genetic epidemiology
are aimed at accommodating this problem in the context of imprinting, but this is often low-
powered and only addresses one kind of epigenetic model. Whether epigenotype (e.g.,
DNAm) acts directly or indirectly on disease risk, factors that control epigenotype are
themselves critical risk factors. DNA variation that controls epigenotype such as DNAm
may be located, for example, in genes that encode proteins in the one-carbon transfer
pathway and may affect the cell’s ability to maintain DNAm. This type of risk-related DNA
variation is denoted “gepg” to indicate that the multiple effects manifest through an
epigenetic mechanism. With these thoughts in mind, at least three models can be considered
for how DNA variation may contribute to risk: (1) independently of epigenetic mechanisms
(gind), (2) as genetic mediators of epigenetic modifications of other genes (gepg), or (3)
where the effect of the genetic variant depends on its epigenetic context (gdep). Only the first
of these would be easily detected in current genetic association studies. Current genetic
studies might have reduced power to detect gepg without epigenotype measures or
knowledge of the factors that contribute to epigenotype. Current genetic studies would have
virtually no power to detect gdep without epigenetic measurement [23, 79].

A critical clue to CDGE comes from a global genome-scale measurement of DNAm termed
luminometric methylation assay (LUMA), a precise quantitative measure of Hpa II site
methylation. Using LUMA, intraindividual change in DNA methylation was found over
time with familial clustering. DNA from 111 participants in the AGES Reykjavik Study [80]
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was first analyzed. In this cohort, 8.1% of individuals showing changes greater than 20% in
Hpa II methylation over time, and these were approximately equally divided between gains
and losses of DNAm. Permutation analysis showed that the change observed was much
greater than by chance (P<0.0001) [81]. Next examined was a second cohort of 126
individuals from a collection of Utah pedigrees that had been sampled twice over an average
of 16 years. In this group, 11% of individuals show changes greater than 20% in Hpa II
methylation over time. The Utah pedigrees showed high heritability, with a heritability
estimate of 0.99 (P<0.0001) [81]. The familial clustering of methylation changes raises the
possibility that methylation changes could be directly related to genetic variation, as
suggested by CDGE. Another recent study shows associations of single nucleotide
polymorphisms with nearby differences in DNA methylation [82], consistent with CDGE.

Future needs for epigenetic epidemiology will require advances in three areas. First, we
must develop scalable, cost-effective approaches for population-level epigenetic profiling.
This includes technical advances in measurement and quantification of DNAm. We must
also develop even more comprehensive coverage of the epigenome. This can be done by
increasing real estate on the arrays, in part perhaps by reducing coverage of highly
comparable adjacent sequences on the tiled regions, or by increasing array density as will
occur this year. A substantial advance will come from combining array-based advances with
second generation sequencing technology. For example, one could capture the relevant
epigenome target (identified by studies on arrays) using arrays or molecular inversion probe
or other solution-based technologies and then perform bisulfite-based shotgun sequencing
for single nucleotide resolution.

Second, we must further develop the statistical tools and concepts that are necessary to
analyze, interpret, and compare population-level epigenetic data. A critical requirement for
epidemiological analyses is the transformation of granular individual epigenotypes into the
higher-level epidemiological data types without significant information loss. This will
include developing new statistical tools for identifying the subset of variable DNAm regions
relevant to human disease and developing methods to simplify granular methylation patterns
into epigenetic “barcodes,” similar to the work by Irizarry on gene expression [83].

Third, we must integrate conventional genetic epidemiology with these epigenetic data to
fully develop epigenetic epidemiology. We must answer fundamental questions about type,
frequency, and properties of epigenetic variation within and across individuals, families, and
populations. This can be done by relating genetic variation to epigenetic variation in normal
populations, or by investigating epigenetic differences among monozygotic twins. A critical
question is whether epigenetic marks are transmitted intact from parent to offspring and
whether DNAm is allele-specific and covaries with allele-specific gene expression. For
example, can we develop an epigenetic transmission test comparable to the transmission
disequilibrium test used in genetic epidemiology? Finally, and most excitingly, we must
begin to examine the epigenome comprehensively in large population-based epidemiological
studies of disease. Such studies will greatly enhance cancer risk assessment and prevention
and are already showing promise in better understanding common neuropsychiatric disease.
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Fig. 1.
Altered DNA methylation of CpG island shores in human colon cancer. Shown are an
example of hypomethylation (Gene A, top) and hypermethylation (Gene B, bottom) in
cancer revealed by a genome-scale analysis of the cancer methylome. Gene A is normally
methylated at the shore and not at the island, and it acquires a hypomethylated pattern at the
shore in colon cancer, resembling that of the normal liver. Aberrant expression at an
alternate promoter, or for an untranslated RNA, is activated at the shore. Gene B is normally
unmethylated at both shore and island, and it acquires a hypermethylated island at the shore,
resembling the normal liver, and potentially at the island as well. Aberrant silencing ensues
at the shore and potentially at the canonical promoter
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Fig. 2.
Epigenetic epidemiology. New genome-scale tools for epigenetic analysis will allow us to
determine the relationship between genetic variation, epigenetic variation, and disease
simultaneously. The area of overlap is deliberately drawn as the larger fraction of the
overlap between genetics and phenotype to emphasize that most genetic findings must be
considered in an epigenetic context and to highlight that the full value of typical genetic
epidemiology studies cannot be realized until the complementary epigenetic measures and
statistical tools are developed and performed on these samples
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