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Abstract
Objective—The value of different algorithms that estimate cardiac output (CO) by analysis of a
peripheral arterial blood pressure (ABP) waveform has not been definitively identified. In this
investigation, we developed a testing data set containing a large number of radial ABP waveform
segments and contemporaneous reference CO by thermodilution measurements, collected in an
intensive care unit (ICU) patient population during routine clinical operations. We employed this
data set to evaluate a set of investigational algorithms, and to establish a public resource for the
meaningful comparison of alternative CO-from-ABP algorithms.

Design—A retrospective comparative analysis of eight investigational CO-from-ABP algorithms
using the Multiparameter Intelligent Monitoring in Intensive Care II database.

Setting—Mixed medical/surgical ICU of a university hospital.

Patients—A total of 120 cases.

Interventions—None.

Measurements—CO estimated by eight investigational CO-from-ABP algorithms, and COTD as
a reference.

Main Results—All investigational methods were significantly better than mean arterial pressure
(MAP) at estimating direction changes in COTD. Only the formula proposed by Liljestrand and
Zander in 1928 was a significantly better quantitative estimator of COTD compared with MAP
(95% limits-of-agreement with COTD: –1.76/+1.41 L/min versus –2.20/+1.82 L/min, respectively;
p < 0.001, per the Kolmogorov-Smirnov test). The Liljestrand method was even more accurate
when applied to the cleanest ABP waveforms. Other investigational algorithms were not
significantly superior to MAP as quantitative estimators of CO.

Conclusions—Based on ABP data recorded during routine intensive care unit (ICU) operations,
the Liljestrand and Zander method is a better estimator of COTD than MAP alone. Our attempts to
fully replicate commercially-available methods were unsuccessful, and these methods could not be
evaluated. However, the data set is publicly and freely available, and developers and vendors of
CO-from-ABP algorithms are invited to test their methods using these data.
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Cardiac output (CO) is a cardinal parameter of cardiovascular state, and a fundamental
determinant of global oxygen delivery. Historically, routine clinical measurement of CO has
been limited to critically-ill patients, often with invasive indicator-dilution methods such as
thermodilution (COTD). Alternative CO measurement strategies have not replaced indicator-
dilution methods in critical care, and outside the intensive care unit, imprecise metrics (e.g.,
blood pressure, urine output, mental status, etc.) are used to assess CO and circulatory
adequacy.

For more than a century (1), the premise that relative changes in CO could be estimated by
analysis of the arterial blood pressure (ABP) waveform has captured the attention of many
investigators. Today, peripheral ABP is routinely available in intensive care unit (ICU)
patients, and noninvasive devices exist to measure peripheral ABP in noncritically-ill
populations (2,3). Tracking changes in CO continuously via ABP waveform analysis,
without the risks of central catheterization, may be valuable both within and beyond the ICU
setting: such a “vital sign” might be a sensitive and specific indicator of circulatory
pathology and useful in optimizing therapies such as volume resuscitation and
catecholamine infusions. Today, several commercially-available methods offer competing
algorithms that derive CO from the ABP waveform (4–6). Other algorithms have been
proposed in the medical literature but not incorporated into commercial products (7–13).
There are major challenges that each of these algorithms must confront to accurately
estimate global blood flow from a peripheral blood pressure waveform. For instance, the
relationship between arterial pressure and volume (i.e., compliance) varies from person to
person, and for any given individual, compliance also varies as a nonlinear function of ABP
and adrenergic state. Furthermore, the pressure pulse represents the superposition of
antegrade waves that drive forward flow as well as retrograde reflected waves that retard
forward flow. To date, the relative capability of the various algorithms is difficult to
ascertain, because published evaluations are performed in different sets of patients with
different physiologic ranges and different pathologies, making direct comparisons between
studies problematic.

In this investigation, we used a subset of the Multiparameter Intelligent Monitoring in
Intensive Care II (MIMIC II) database (14) containing radial artery waveform data and
contemporaneous reference COTD measurements to evaluate eight CO-from-ABP
algorithms previously described in the literature. The test data were collected in an ICU
patient population during routine clinical operation and contain “real-world” (e.g., not
artificially pristine) ICU physiologic data that can be fairly applied to any number of
disparate CO-from-ABP algorithms, establishing a resource for their meaningful
comparison. Furthermore, we are making this data set publicly available to support the
evaluation and further development of CO-from-ABP techniques (available at
http://www.physionet.org/physiotools/cardiac-output/). The MIMIC II COTD/ABP data set
is in this sense an analog of the public access arrhythmia databases that have played an
indispensable role in the development, refinement, and— ultimately—widespread
acceptance of automated algorithms for electrocardiogram analysis (15).
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MATERIALS AND METHODS
Database Development

Our COTD/ABP data set was extracted from the MIMIC II database (14). The MIMIC II
database includes physiologic and wide-ranging clinical data from over 2,500 ICU patients
(medical ICU, critical care unit, and surgical ICU) hospitalized at the Beth Israel Deaconess
Medical Center, Boston, USA between 2001 and 2005. Radial ABP waveform data from the
M1006B invasive pressure module and COTD data (temporally resolved to the nearest
minute) were originally sourced from Philips CMS bedside patient monitors (Philips
Medical Systems, Andover, MA), so both shared the same electronic time reference.
Waveforms were sampled at 125 Hz with 8 bit resolution. The patients’ gender and age were
input by the nursing staff as part of routine clinical operations, using the Philips CareVue
system, and these archived data were another component of the MIMIC II database.
Additional details about the MIMIC II database are available in (14). The data were
collected and analyzed with institutional approval by the local IRB.

We identified and extracted MIMIC II cases with COTD measurements and one-minute-long
segments of radial ABP waveform that immediately preceded the COTD measurement (up to
and including the time of the COTD measurement). All algorithms used in our analyses were
implemented in Matlab (Math-works, Natick, MA). These algorithms, and the MIMIC II
COTD/ABP data set, have been contributed to PhysioToolkit (16) and are available for free
public use (http://www.physionet.org/physiotools/cardiac-output/).

ABP Signal Processing
Within each minute-long ABP segment, individual heart beats were identified using a
Matlab (Math-works, Natick, MA) implementation of an algorithm by Zong (17). The
waveform quality of each ABP pulse was assessed automatically using a signal abnormality
index (SAI) algorithm (18). A set of features from each ABP pulse was computed, including
the peak (systolic blood pressure, [SBP]), trough (diastolic blood pressure [DBP]), mean
arterial pressure (MAP) and pulse pressure (SBP minus DBP); see Figure 1. Each ABP
pulse's average of negative slopes was computed, providing a metric of spiky,
nonphysiologic noise in the ABP pulse waveform. After computing the preceding features
for an ABP pulse, the SAI algorithm checked that all were within normal limits (18). The
SAI also checked that the features’ variations from one ABP pulse to the next were within
normal limits. The SAI algorithm reported a binary ‘normal’ or ‘abnormal’ rating for each
ABP pulse, depending if all the normality criteria were met (18). Any abnormal beat was
excluded from further analysis. If a given minute-long ABP segment contained more than
40% of abnormal beats, the entire segment (and its corresponding COTD) was excluded from
further analysis.

In addition, we estimated the duration of each entire beat and its systolic interval. There is
no single widely accepted method to identify the systolic interval in a peripheral ABP pulse
(in contrast to a central ABP pulse, the dicrotic notch—if present—in a peripheral ABP
pulse does not indicate closure of the aortic valve). Therefore, we chose two alternative
criteria to identify the end of systole. First, we computed a heuristic estimate of systolic
duration, (0.3 ·√beat_period), originally suggested as an approximation of the QT interval
(19). Second, we identified the point after SBP with the lowest nonnegative slope, as shown
in Figure 1. In practice, this method located the trough of the dicrotic notch, or any relative
plateau which persisted for two or more ABP samples.
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Investigational CO-from-ABP Algorithms
The investigational algorithms are summarized in Table 1. Most algorithms predict stroke
volume, and CO is taken as the product of median stroke volume and median heart rate over
the one-minute window. Many of the algorithms were initially intended for a central aortic
ABP waveform; in this investigation, we explored their application to a peripheral radial
ABP.

MAP is positively but imperfectly correlated with CO. Of course, variable degrees of
systemic vasoconstriction or dilation (which affect peripheral vascular resistance [PVR]), as
well as variable venous pressure, make MAP an unreliable predictor of CO. ABP waveform
analysis assumes that other features in the waveform are less affected by confounders such
as PVR, and are thus more reliable correlates of CO. MAP serves as our control method
against which eight investigational CO-from-ABP methods are compared.

(A) Pulse Pressure
In 1904, Erlanger and Hooker suggested that the pulse pressure is a surrogate of stroke
volume (7). This notion naturally arises from a basic Windkessel model of the arterial tree,
in which the arterial system is considered a single elastic tank, with flow exiting through a
distal resistive element. Assuming that cardiac ejection is near-instantaneous, then the
product of pulse pressure and heart rate is a predictor of CO.

(B) Liljestrand and Zander
The compliance of the arterial tree varies with blood pressure. The Liljestrand algorithm
accounts for the dependence of arterial compliance on arterial pressure by scaling its CO
estimate to the reciprocal of MAP (8).

(C) Systolic Area
A number of methods treat the arterial tree as a long viscoelastic tube, a “transmission line”
model. Within a transmission line, pressure gradients accelerate or decelerate flow. By
assuming that retrograde (reflected) pressure waves are negligible during systole, it is
possible to estimate the pressure gradient and the forward flow from an ABP waveform.
Specifically, stroke volume is proportional to the area under the systolic portion of the ABP
pulse (9, 10).

(D) Kouchoukos Correction
A potential source of error is the assumption that cardiac ejection is so rapid that no blood
flows out of the arterial tree during systole (“run-off”). Kouchoukos proposed a simple
correction factor, related to the ratio of systolic-to-diastolic duration (11); this was a
variation of an earlier method proposed by Warner (12).

(E) Diastolic Decay
Bourgeois developed an algorithm to quantify systolic run-off (13). This method leads to an
estimation of PVR (CO can then computed from MAP/PVR, assuming venous pressure is
negligible). Bourgeois’ method is based on a constant compliance Windkessel model. In
such an idealized model, a mono-exponential diastolic decay (due to the arterial run-off) is
expected in the ABP pulse waveform, and that diastolic curve changes solely as a function
of PVR (20). Our diastolic decay method adapts the original Bourgeois method to the radial
ABP (and thus its performance is likely to be degraded significantly due to the loss of the
dicrotic notch). We fit a monoexponential curve to just two points of each ABP pulse, taking
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the peak of systole as the onset of a mono-exponential decay, and the trough of diastole as
its end (21).

(F) Herd
Systolic blood pressure may be prone to amplification due to early reflected waves. Herd et
al proposed an empirical method, the difference between mean and diastolic pressure, as a
predictor of stroke volume that would be less confounded by this effect (22).

(G) Corrected Impedance
Wesseling's Corrected Impedance method provides an empirical correction to the systolic
area-under-the-ABP curve approach, to account for some of the sources of error described
above (23).

(H) AC Power
Reportedly the commercial LiDCO Plus PulseCO method of pulse power analysis (LiDCO
Ltd., London, England) makes use of the power of the ABP signal, deriving the “beat power
factor (r.m.s.—root mean square) which is proportional to the nominal stroke volume
ejected into the aorta” (4). This method also entails additional processing steps that are not
comprehensively described; therefore we could not independently replicate their
methodology. Rather we assessed how well the stroke volume could be estimated with just
the computed ABP waveform root-mean-square, which is one component of the LiDCO
Plus PulseCO method.

We attempted to evaluate two additional methods that are distributed commercially,
Modelflow (Finapres Medical Systems, Amsterdam, The Netherlands) and PiCCO
(PULSION Medical Systems, Munich, Germany), by developing new software routines that
were consistent with published details about these algorithms. However, the results of our
implementations were unsatisfactory and we decided to exclude these algorithms from our
trial. This is considered further in the Discussion section.

Calibration
We applied the investigational algorithms described above (and summarized in Table 1) to
the data of subjects who had at least two paired measurements of COTD and a
contemporaneous, minute-long segment of ABP waveform of sufficient quality. Each
algorithm was calibrated to each patient, using two different methods. First, the “best-
possible calibration factor” was computed, C1 (Fig. 2). C1 was selected to minimize the
root-mean-square of the differences of each pairing of COTD and CO-from-ABP. It provides
the best accuracy that could be obtained with a single calibration factor. Next, each
algorithm was calibrated to each patient using a different methodology, C2 (Fig. 2). C2 was
calculated only from the first pairing of the CO estimate and COTD. C2 describes an
algorithm's lower limits of performance, if caregivers rely on just one initial pairing of
COTD and CO-from-ABP to calibrate the algorithm. All investigational algorithms were
compared against MAP as predictors of CO. MAP was calibrated exactly like other
algorithms, i.e., C1 and C2.

Statistical Analysis
Each paired CO-from-ABP and COTD had an identifiable “error” (their difference). The
distribution of errors for each investigational algorithm was computed, for both the C1 and
C2 calibration methods. From these error distributions, 95% limits-of-agreement were
computed for each CO-from-ABP algorithm, per Bland-Altman methodology (24).
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We tested if the error distribution for an investigational algorithm was statistically different
from the error distribution of “calibrated MAP” (using the C1 data), using the Kolmogorov-
Smirnov test (in Matlab). The Kolmogorov-Smirnov test can detect if one error distribution
has a significantly wider limits-of-agreement. We did not apply statistical methods such as
the Student's t test, repeated measures analysis of variance, or mixed-effects models, because
these assess if the means of the distributions are different. Because we calibrated the
investigational methods to the reference method, the means of these error distributions were
expected to be near-zero, i.e., minimal measurement biases, so these tests would be
nonsignificant.

For each subject, we also computed the root-mean-square of the CO-from-ABP versus
COTD errors. This yielded a number that measures the width of the error distribution, for a
given subject and a given algorithm. Grouping all the r.m.s. values for a given algorithm, we
applied a paired Student's t test versus calibrated MAP. This statistical methodology is quite
conservative, treating repeated observations in a given subject as only one datum (one r.m.s.
value).

Finally, we computed the frequency with which directional changes (i.e., increase or
decrease) of each CO-from-ABP algorithm agreed with COTD. To avoid analysis of trivial
changes in COTD we identified the single largest magnitude percent change in each patient
record (increase or decrease) and computed the incidence of algorithm/COTD directional
agreement. We tested if each algorithm was significantly different from the performance of
“calibrated MAP” using McNemar's test.

RESULTS
Table 2 shows the characteristics of the 120 subjects analyzed. Typical of an ICU
population, the subjects were older (age 69 yrs ± 12 SD), 67% were male. The average length
of stay in the ICU was slightly over 2 days with an average of ten COTD measurements per
patient. On average, each subjects’ COTD varied by ±46%, PVR varied by ±50%, and MAP
varied by ±32%.

We excluded 13.7% of the available minute-long ABP data segments (and their paired
COTD measurements) which did not pass our data quality criteria (those segments contained
more than 40% of abnormal ABP pulses). Table 3, tabulates the 95% limits-of-agreement
for eight of our investigational algorithms using both the C1 and C2 calibration methods.
The Liljestrand algorithm performed the best, and was statistically superior to calibrated
MAP by the Kolmogorov-Smirnov test. Figure 3 plots the differences (“errors”) between the
Liljestrand method and COTD, and subplots in Figure 3 show error plotted as a function of
various physiologic parameters. One notable trend is that the Liljestrand error grew larger as
PVR lessened.

In 79 cases the largest magnitude change in COTD was an increase (ranging from +5% to
+192%, with an average of +65%), and in 29 cases the largest magnitude change was a
decrease (ranging from –10% to –56%, with an average of –32%). For these largest
magnitude changes, all eight of the reported algorithms showed similar frequencies of
directional agreement with COTD, and all were significantly different from calibrated MAP.
See Table 3.

The results in Table 3 and Figure 3 are exclusive of the minute-long ABP segments with
>40% abnormal beats. After recomputing the Liljestrand 95% limits-of-agreement for all
data segments (i.e., regardless of data quality) the Liljestrand limits-of-agreement grew to –
1.88/+1.57 L/min. By contrast, applying more stringent ABP quality criteria (analyzing
minute-long ABP waveform segments with no more than 5% of abnormal beats), the limits-
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of-agreement were reduced to –1.48/+1.29 L/min, although this more stringent ABP quality
criteria excluded 40% of the available ABP data segments.

Some of the algorithms required determining the end-of-systole in a radial ABP pulse. The
results in Table 3 were all based on our heuristic method 0.3 ·√beat_period. For select
algorithms, superscripts in Table 3 report the results for an alternative method of identifying
the end-of-systole (the “lowest nonnegative slope” method), which trended toward worse
results.

Grouping all the subjects’ r.m.s. error values for each algorithm and for calibrated MAP, we
compared the algorithms’ distributions versus calibrated MAP, using the paired Student's t
test. This statistical methodology was more conservative, treating repeated observations in a
given subject as only one datum (one r.m.s. value). We found that the Liljestrand method
was again significantly better than calibrated MAP (p < 0.01). The Herd method yielded p =
0.04. The other p values were greater than 0.05.

DISCUSSION
In 1983, Wesseling pointed out that the ability to monitor CO continuously by analyzing the
ABP waveform could provide “an early warning signal if cardiac output would rise or fall
suddenly, to adjust drug rates and infusion rates [...] to sense bleeding [...] to get a true mean
cardiac output under arrhythmias, etc (23).” Yet the optimal method and clinical
applicability of ABP waveform analysis have not been definitively identified. Perhaps this is
in part because these algorithms haven't been adequately evaluated in a comparative manner
(25).

In this investigation, we found that all eight of the investigational algorithms were superior
to MAP as directional, qualitative indicators of major changes in COTD. Although the
methods offer similar information about major directional changes in COTD (i.e., about
78%), they can differ drastically in magnitude. Only the Liljestrand method was a superior
quantitative predictor of CO than calibrated MAP, which is essential for meaningful
interpretation of directional changes. The Liljestrand predictor may be a useful parameter for
intelligent monitoring algorithms when a patient's radial ABP is measured, providing more
information than MAP alone. As quantitative predictors of CO, the other investigational
algorithms failed to surpass calibrated MAP, including several algorithms that we developed
which incorporated publically-disclosed aspects of the Modelflow, PulseCO, and PiCCO
methodologies. We conclude that it is difficult to satisfactorily implement proprietary
methods. As we were unable to independently evaluate these proprietary algorithms, it
underscores the need for a fair method for publicly comparing competing CO-from-ABP
methodologies.

Such evaluation could be enabled by one or more publicly available testing databases. In the
1970s, this laboratory made the Beth Israel Hospital-Massachusetts Institute of Technology
Arrhythmia database publicly available (15). That database, together with other public
access databases, e.g., the European ST-T database, promoted the development of automated
electrocardiogram (ECG) interpretation algorithms. Thirty years later, computerized ECG
arrhythmia analysis has evolved so that it is now standard in bedside monitors and even
automated defibrillators.

The Database
Academic and commercial developers can freely access and download the MIMIC II COTD/
ABP data set (www.physionet.org/physiotools/cardiac-output/), apply their algorithms, and
report their results. This database contains a large number of radial ABP waveforms and
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paired measurements of COTD (over 1000 paired data points from over 100 patients),
archived during routine clinical operations. We observe that the typical record shows distinct
intervals of relative stability and other intervals of dynamic physiologic change, as in the
example in Figure 4. The range of physiologic states in the overall database is summarized
in Table 2. The data quality in this data set—motion artifacts, incidence of dampened
catheters, etc.—is consistent with routine practice, rather than idealized research conditions.
To our knowledge, there is presently no comparable public database. The performance of a
novel algorithm, including breakdown conditions or generally unsatisfactory performances,
can be identified using this testing database. Furthermore, direct comparisons of different
algorithms using a common testing database should breed healthy competition, and promote
clear, iterative improvements. Finally, credible evaluation using a standard database may
encourage adoption of innovative methods by caregivers, particularly when some methods
are proprietary and not fully disclosed to the public. The usefulness of ancillary algorithms
for CO estimation (e.g., generalized transfer functions to estimate central aortic pressure, or
ABP dampening detectors) can likewise be tested.

Because this COTD/ABP data set contains “real-world” ICU data, collected during routine
operations, the reference CO measurements were single COTD determinations. This reflects
our ICU's clinical practice, even though it is an imperfect CO reference method (26,27). As
for quality control of the ABP signals, the ICU protocol calls for rezeroing and the flush test
at least once per shift, although there was no explicit mechanism for us to assess protocol
compliance. Despite these limitations, however, this large data set offers a fair basis for the
relative comparisons of different CO-from-ABP algorithms. Even if there are random errors
in some of the COTD measurements and random artifacts in some ABP waveforms, a
superior algorithm should, on average, prove to be a better predictor of COTD than an
inferior CO-from-ABP algorithm, given a data set of this size. (Such sources of error tend to
be carefully minimized during controlled clinical trials, and so such trials may or may not be
applicable to routine clinical conditions). Arguably, the fact that these are “real-world” data
(e.g., real-world incidence of improper transducer zeroing, damping, etc.) enhances the
validity of such relative comparisons, since these measurements reflect the actual conditions
under which any useful algorithm must operate. On the other hand, this data set is
problematic for evaluating the absolute accuracy of a given algorithm; the use of single
COTD measurement, an imperfect reference method, will widen the overall limits-of-
agreement, because the investigational algorithm and the CO reference will differ due to
error in both the CO algorithm and in COTD.

If and when future investigators collect additional data sets (perhaps using alternative CO
reference methods as in (28), or ABP measured from other anatomical locations such as the
femoral artery), these data sets can also be freely posted on PhysioNet for public access,
permitting further standardized comparisons of different CO estimators. We suggest that it is
beneficial to make available the largest volume of data for the widest range of populations
and physiologic states, rather than idealized, smaller data sets.

Investigational Algorithms
We report results from eight CO-from-ABP algorithms, many of which were originally
intended for use with a central ABP waveform. One finding in this trial was the superiority
of the CO-from-ABP algorithm described in 1928 by Liljestrand and Zander, which is a
modestly but significantly superior estimator of COTD than MAP alone (95% limits-of-
agreement with COTD are 0.85 L/min smaller). To the extent that COTD is a useful
parameter to monitor, the Liljestrand algorithm may enhance standard vital signs. Also,
compared with MAP, the Liljestrand method offers additional (although imperfect)
directional information about major changes in COTD, 78% versus 56%, respectively. Many
of the other algorithms offered very similar directional agreement with COTD, although
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failed to track COTD changes quantitatively (relative to MAP). We speculate that one reason
why the algorithms do not exceed 79% agreement with these major changes in COTD is
because of noisy or artifactual measurements in either ABP or COTD, which skew these
results. The former might be addressed in the future with improved preprocessing of the
ABP waveform. One exemplary case of CO estimated continuously by the Liljestrand
algorithm versus COTD measured episodically is illustrated in Figure 4.

The performance of the Liljestrand method is notable because the ABP data were collected
during routine ICU clinical operations, during which some degree of motion artifact,
catheter damping, improperly calibrated transducers, etc. are inevitable. We employed
lenient ABP quality criteria (analyzing all data with ≤40% abnormal ABP pulses), which
only excluded 13.7% of the noisiest minute-long ABP waveform segments. We found that
the 95% limits-of-agreement between the Liljestrand CO estimates and COTD are a function
of ABP waveform quality: as the ABP quality criteria are made increasingly stringent, the
limits-of-agreement grow tighter, although more data are excluded. Note that we did not
explicitly exclude dampened ABP waveforms, aside from requiring that the pulse pressure
was >20 mm Hg. Waveform damping (due to air bubbles, thrombus, partial lumen
occlusion, etc.) can subtly reduce the measured pulse pressure and so is a potentially serious
source of error for the Liljestrand algorithm, which contains pulse pressure in its numerator).
If an automated algorithm were able to detect or exclude slightly dampened ABP
waveforms, or if the clinical staff took special care to avoid dampened intra-arterial
measurements, it is likely that the Liljestrand method, or indeed any of the investigational
methods in Table 1, would prove even more accurate.

Presently, the best known CO-from-ABP algorithms are the commercially-available
methods, such as PiCCO, Modelflow, and LiDCO Plus PulseCO (4–6), which are
procedurally more complex than the simple formulas in Table 1. We attempted to implement
algorithms based on limited published descriptions of the commercial systems. We
examined the pulse power (r.m.s.), which is reportedly one component of the LiDCO Plus
PulseCO method (4); the results are provided in Table 3. In addition, we developed
operational algorithms that were consistent with certain published details of the Modelflow
and PiCCO methods. To test the Modelflow method, we developed a nonlinear three
element model consistent with (6). To test the PiCCO method, we implemented an algorithm
that uses mathematical formulas reported in (29), to estimate arterial compliance as a
nonlinear function of ABP and a calibration factor, and subsequently, to estimate CO as a
function of ABP and arterial compliance. The references described certain details about the
methods, but not numerous additional details that are necessary for functional signal
processing software. Because these commercial methods are not “open source” we had to
rely extensively on our own software engineering judgments to produce functional data
processing software, consistent with what we thought the commercial products might do.
The performance of our algorithms, however, was not significantly better than calibrated
MAP in terms of both 95% limits-of-agreement, and frequency of directional agreement
with COTD for major changes in COTD.We therefore chose to exclude these algorithms from
our study, in case they might be misconstrued as relating to the actual commercial
algorithms, rather than our own unsuccessful software development efforts. Our software
implementations are available for review on the Physionet website. We conclude that it is
very difficult to satisfactorily implement proprietary methods and independently evaluate
their capabilities.

Ideally, vendors would make the source code for their methods available for public
inspection, to bring unreliable methods to light and accelerate acceptance of rigorous
algorithms. However, this is simply not standard practice for commercial biomedical
algorithms. Because most commercial algorithms will remain proverbial “black-boxes” to
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the user community, and because it is challenging to evaluate these algorithms
independently, publicly and freely available testing databases are all the more essential.
Indeed, testing proprietary ECG arrhythmia detection algorithms using standard testing
databases is a mandatory step in obtaining United States Food and Drug Administration
approval (15). The clinical community might want to demand similar comparative
evaluation of other types of diagnostic algorithms, such as CO-from-ABP algorithms, before
relying on these methods for patient care. The MIMIC II COTD/ABP data set is now
publicly and freely available as a first step toward providing such a database. We invite
developers and vendors of CO-from-ABP algorithms to test their methods and report their
performance on the MIMIC II COTD/ABP data set. Our best performing algorithm, the
Liljestrand method, may be a useful basis for comparison.

The modest performance of most of the investigational algorithms requires discussion. As
noted in the Introduction, it is a theoretical challenge to rigorously estimate global blood
flow from a peripheral pressure measurement, because of arterial compliance changes,
superposition of antegrade and retrograde pressure waves, and other factors. In this
investigation, furthermore, additional factors may have contributed to the poor
performances, including: use of real-world ABP waveform data rather than pristine research
data (discussed above); use of radial ABP waveforms rather than central ABP waveforms;
one-time calibration rather than repeated recalibration; and inclusion of all subjects
regardless of cardiac valve function.

Most of the investigational algorithms were originally intended for use with a central ABP
waveform, where the systolic interval of the ABP may have relatively fewer retrograde
components (i.e., reflected waves). The PiCCO method has been applied primarily to
femoral ABP (e.g., 5). Yet measurement of a radial ABP is a common clinical practice, and
algorithms which perform suitably using a radial ABP may prove more valuable because
radial ABP is more often available, and because noninvasive devices exist to measure distal
extremity ABP. Therefore we feel that investigation of these algorithms applied to a radial
ABP is warranted. There is precedent for applying an algorithm intended for a central ABP
on a peripheral BP (6,28). Indeed, we discovered that the Liljestrand method performs well
when applied to radial ABP.

Many pulse contour methods prescribe recalibration after each new reference CO
measurement, although we did not use this methodology in our investigation. More frequent
calibrations will certainly improve accuracy, not only because this accounts for dynamic
changes in arterial compliance, but because each COTD is, on average, a good predictor of
the subsequent COTD. Yet this does not reveal the key question: when the patient's
cardiovascular state is changing but COTD is unknown—and this is precisely when
continuous CO-from-ABP could prove useful—how accurate is the algorithm? Taking a
new measurement of COTD (for recalibration) defeats the need for CO to be independently
estimated via waveform analysis. Thus, in this study, we compared how well each algorithm
can estimate CO using just a single calibration factor. The calibration methods in this study
included C1, the “best possible calibration” (a retrospective construct, in which one optimal
calibration factor that minimizes the overall estimation error is employed); and C2, in which
only the first pairing of CO-from-ABP and COTD are employed for calibration, and
subsequent pairings are examined for accuracy. Presumably, real-world performances
(making some use of recalibration) will lie somewhere between the ideal of the C1
calibration method and the imprecision of the C2 method.

We did not exclude subjects based on heart valve function. Rather, we trusted that the ICU
staff would only measure COTD in appropriate patients (e.g., without significant tricuspid
regurgitation), and that the ideal CO-from-ABP algorithm would tolerate some aortic valve
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dysfunction. When we studied the subset of cases with documented normal tricuspid and
aortic valve function, we did not find improvement in any of the algorithms’ performances.
Echocardiograms were available in 56 subjects, and normal cardiac valve function was
found in 64% of them (36 subjects). For all eight investigational algorithms, the 95% limits-
of-agreement with COTD were no better in this subset of 36 subjects with documented
normal valve function.

CONCLUSION
All of the investigational algorithms were superior to MAP as directional, qualitative
indicators of major changes in COTD. However, only the Liljestrand method was superior to
calibrated MAP as a quantitative predictor of CO (which is essential for meaningful
interpretation of directional changes). The Liljestrand predictor may be a useful parameter
for intelligent monitoring algorithms when a patient's radial ABP is measured, providing
more information than MAP alone. In this study, we developed complex algorithms that
incorporated publicly-disclosed details of two commercial CO-from-ABP methods but their
performances were unsatisfactory and we excluded these methods from study. We conclude
that it is very difficult to satisfactorily implement proprietary methods and independently
evaluate their capabilities. Since our testing data set is publicly and freely available,
investigators and vendors of CO-from-ABP algorithms are invited to test their methods
using these data, offering a fair basis for comparison of different CO-from-ABP algorithms
under real-world clinical conditions. The clinical community might expect vendors to
publically report how well their algorithms perform in public testing databases before
relying on the algorithms for patient care, and the MIMIC II COTD/ABP data set is a first
step toward such a public resource.
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Figure 1.
Five examples of arterial blood pressure waveforms and their key features as identified by
our automated algorithms. The horizontal axis is sample number, with 125 samples = one
second. Onset point of each beat is indicated by an asterisk “*”; end of systole, estimated by
0.3 · √beat_period, is indicated by “X”; end of systole, estimated by the ‘lowest nonnegative
slope’ method, is indicated by a “0”.
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Figure 2.
We studied two methods of calibrating the algorithms for a subject. In C1 the “best-possible
calibration factor” was computed, minimizing the root-mean-square of the difference of
each pairing of cardiac output thermadilution (COTD) (stem plots) and the corresponding
CO-from-arterial blood pressure estimations (black line). In C2, the first pairing of the CO-
from-arterial blood pressure estimate (gray line) and COTD was used to establish the
calibration factor, which was then used for all subsequent CO estimation.
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Figure 3.
A, Bland-Altman plot comparing cardiac output (CO) estimated by the algorithm
(Liljestrand, using the C1 calibration methodology) with CO thermadilution (COTD). 95%
limits-of-agreement for this algorithm and the other investigational algorithm are
summarized in Table 3. B, Liljestrand algorithm estimation error as a function of several
variables. Bins of equal sample sizes are illustrated. Rectangular bars represent 95% limits-
of-agreement for each bin. For example, as shown, CO estimation error decreases as
peripheral vascular resistance (PVR) increases. MAP, mean arterial pressure; HR, heart rate.
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Figure 4.
Example of continuous cardiac output (CO)-from-arterial blood pressure (ABP) estimated
by the Liljestrand algorithm (gray line) versus episodic thermodilution CO measurements
(stem plots) for a subject over a 50-hr time interval, using a single calibration factor (C1, see
text for details). Pulse pressure (PP), mean arterial pressure (MAP) and heart rate (HR)
through this same temporal window, as computed by our algorithm, are also shown (gray
lines) with stem plots illustrating their values each time CO thermadilution (COTD) was
measured. C1 calibration minimizes the root-mean-square of the difference of each pairing
of COTD and the corresponding CO-from-ABP estimations. C2 calibration uses the first
pairing of the CO-from-ABP estimate and COTD only. For each investigational algorithm,
the distribution of errors versus COTD was compared with the distribution of errors of
‘calibrated MAP’ using the Kolmogorov-Smirnov test. *Significantly different from
calibrated MAP (p < 0.001) per McNemar's test. #When using the alternative “lowest
nonnegative slope” method to estimate the systolic interval, the lower/upper limits are –
1.94/+1.54 L/min. Results in Table 3 employ 0.3 ·√beat_period to estimate systolic
interval. ##When using the alternative “lowest nonnegative slope” method to estimate the
systolic interval, the lower/upper limits are –2.40/+1.97 L/min.
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Table 1

Investigational CO-from-ABP algorithms

(CO = Stroke Volume × HR)

Pulse pressure (7) Stroke volume = k × (SBP – DBP)

Liljestrand (8)
Stroke volume = k × (SBP − DBP)

(SBP + DBP)

Systolic area (9, 10) Stroke volume = k × ∫Systole ABP(t)dt

Systolic area with
Kouchoukos correction (11) Stroke volume = k × (1 + DurationSystole

DurationDiastole
) × ∫SystoleABP(t)dt

Diastolic decaya Solves for beat-to-beat peripheral vascular resistance, fitting a monoexponential curve to each ABP pulse's peak
of systole and trough of diastole, where: PDiastolic = PSystole × e–k × time/PVR

Herd (22) Stroke volume = k × (MAP – DBP)

Corrected impedance (23) Stroke volume = k × (163 + HR – 0.48 · MAP) × ∫SystoleABP(t)dt

AC power (root-mean-square)
Stroke volume = k × 1

T ∫T (ABP(t) − MAP)2dt where: T = duration of heart beat

CO, cardiac output; ABP, arterial blood pressure; HR, heart rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial
pressure; AC, alternating current.

a
Adopted from Circ Res 1976; 39:15–24.
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Table 2

Characteristics and physiologic variation of the study population

Units Mean ± SD N

Study population

    Age yr 69 ± 12 120

    Stay duration day 2.3 ± 2.2 120

    COTD measurements per patient 10 ± 8 120

    COTD range per patient L/min 2.3 ± 1.2 120

    Mean arterial pressure range per patient mm Hg 24 ± 10 120

    Peripheral vascular resistance range per patient mm Hg-s/ml 0.5 ± 0.3 120

Pooled data

    COTD L/min 5 ± 2 1164

    Mean arterial pressure mm Hg 75 ± 10 1164

    Heart rate bpm 88 ± 17 1164

    Peripheral vascular resistance mm Hg·s/ml 1 ± 0.4 1164

COTD, cardiac output thermadilution.
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Table 3

Agreement between thermodilution CO and investigational CO-from-ABP algorithms

Investigational Predictors of COTD “Best Possible Single
Calibration” (C1) 95%
Limits Agreement (±L/
min)

KS Test vs. Mean
Arterial Pressure

(p)

“First Pairing
Calibration” (C2)

95% Limits
Agreement (±L/min)

% Agreement of
Directional Δ's vs.

COTD

Liljestrand –1.76/+1.41 0.0001 –2.81/+2.04 78b

Corrected impedance –1.91/+1.57a <0.01 –3.39/+2.28 78b

Pulse pressure –2.07/+1.73 >0.05 –3.05/+2.76 74b

Systolic area –2.07/+1.73c >0.05 –2.85/+3.05 77b

Systolic area with Kouchoukos
correction

–2.08/+1.71 >0.05 –3.20/+2.89 78b

AC power (root-mean-square) –2.09/+1.73 >0.05 –3.12/+2.78 79b

Diastolic decay –2.23/+1.77 >0.05 –3.22/+2.57 78b

Mean arterial pressure –2.20/+1.82 – –3.19/+3.42 56

Herd –2.66/+1.89 >0.05 –3.65/+3.16 78b

CO, cardiac output; ABP, arterial blood pressure; COTD, CO thermadilution; KS, Kolmogorov-Smirnov; AC, alternating current.
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