Table 1.
Noise Model | Motor noise parameters | Sensory noise parameters | Fit Error | |||||||
---|---|---|---|---|---|---|---|---|---|---|
r m1 | n m | α m | r m2 | n p | n g | n t | α s | r s | ||
M1 | 0.0114 | 588 | 1.31 | 395 | ||||||
M2 | 274 | 1.87 | 0.0449 | 573 | ||||||
M3 | 0.0098 | 540 | 1.35 | 0.0109 | 390 | |||||
S1 | 5.03 × 10-4 | 0.0067 | 8037 | 1.26 | 150 | |||||
S2 | 4.99 × 10-4 | 0.0063 | 9573 | 1.22 | 0.0130 | 136 | ||||
S3 | 5.07 × 10-4 | 0.0039 | 7033 | 1.28 | 0.00346 | 146 | ||||
S1M1 | 1.63 × 10-6 | 0.148 | 3.64 | 6.09 × 10-4 | 0.0067 | 2727 | 1.21 | 115 | ||
S1M2 | 0.445 | 3.58 | 0.0143 | 5.44 × 10-4 | 0.0061 | 0 | 1.27 | 128 | ||
aS1M3 | 1.45 × 10-6 | 0.157 | 3.67 | 0.0163 | 6.01 × 10-4 | 0.0063 | 1850 | 1.20 | 102 | |
aS2M1 | 2.19 × 10-6 | 0.0487 | 3.61 | 5.84 × 10-4 | 0.0072 | 10225 | 1.07 | 0.0140 | 101 | |
S2M2 | 0.409 | 3.60 | 0 | 5.60 × 10-4 | 0.0061 | 112 | 1.26 | 0.0126 | 126 | |
aS2M3 | 6.44 × 10-7 | 0.0344 | 3.88 | 0 | 5.89 × 10-4 | 0.0064 | 5182 | 1.17 | 0.0130 | 98 |
S3M1 | 9.99 × 10-7 | 0.142 | 3.75 | 6.29 × 10-4 | 0.0059 | 322 | 1.25 | 8.20x10-4 | 116 | |
S3M2 | 0.959 | 3.38 | 0.0147 | 5.23 × 10-4 | 0.0044 | 0 | 1.25 | 0.0025 | 128 | |
aS3M3 | 3.93 × 10-6 | 0.558 | 3.43 | 0.0166 | 6.03 × 10-4 | 0.0064 | 45 | 1.17 | 0 | 103 |
aindicates the noise models that had low and comparable fit errors values
The functional form of the various sensory and motor noise models are given in Methods. The fit error is defined as the value of the loss function J 2 (see Methods)