
Scriptable Access to the Caenorhabditis elegans
Genome Sequence and Other

ACEDB Databases
Lincoln D. Stein1,3 and Jean Thierry-Mieg2

1Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 USA; 2Centre National
de la Recherche Scientifique (CNRS), Centre de Recherches de Biochimie Macromolèculaire (CRBM),

and Physique Mathematique, Montpellier, France

Much of the world’s genomic data are available to the community through networked databases that are
accessed via Web interfaces. Although this paradigm provides browse-level access and has greatly facilitated
linking between databases, it does not provide any convenient mechanism for programmatically fetching and
integrating data from diverse databases. We have created a library and an application programming interface
(API) named AcePerl that provides simple, direct access to ACEDB databases from the Perl programming
language. With this library, programmers and computer-savvy biologists can write software to pose complex
queries on local and remote ACEDB databases, retrieve the data, integrate the results, and move data objects
from one database to another. In addition, a set of Web scripts running on top of AcePerl provides Web-based
browsing of any local or remote ACEDB database. AcePerl and the AceBrowser Web browser run on Unix
systems and are available under a license that allows for unrestricted use and redistribution. Both packages can
be downloaded from URL http://stein.cshl.org/AcePerl. A Microsoft Windows port of AcePerl is in the
planning stages.

The ACEDB database engine is an object-oriented
system capable of storing and retrieving complex
biological information (Durbin and Thierry-Mieg
1991). Originally designed for the storage of data
from the Caenorhabditis elegans sequencing project,
it has been adapted by multiple groups for use with
various model organisms. In addition to its continu-
ing role as the primary repository of all C. elegans
sequencing and mapping data (Waterston and Sul-
ston 1995), ACEDB is currently being used as the
engine behind the Saccharomyces cerevisiae genome
database (SGD; Cherry et al. 1998), the human se-
quencing projects at the Sanger Centre and the
Washington University Genome Sequencing Center
(Waterston and Sulston 1998; C. elegans sequencing
consortium 1998), and a variety of crop plant and
livestock genome analysis projects (Bigwood 1997).

ACEDB provides an intuitive object-oriented
view of biological data, rapid response times, and
the ability to store very large objects, such as mega-
bases of contiguous DNA sequence. It also provides
a graphical user interface complete with many spe-
cialized data visualization tools, such as a genetic

map viewer and a sequence annotation display.
However, the original ACEDB architecture was ham-
pered by the lack of a client/server architecture and
the difficulty in adapting the hard-coded graphical
displays to new purposes; therefore, some groups
have abandoned ACEDB in favor of commercial re-
lational database systems.

These deficiencies have been corrected over the
past 2 years by the development of a client/server
version of ACEDB. Client/server ACEDB allows both
graphical and text-only clients to connect to remote
ACEDB databases from across the Internet, send da-
tabase queries to the server, and retrieve whole or
partial data objects in response. In addition, clients
with sufficient privileges can update a remote data-
base by adding new objects or modifying existing
ones.

This paper announces the availability of
AcePerl, a Perl programming language interface to
ACEDB. Perl (Wall et al. 1996) is used widely in the
bioinformatics community for everything from lo-
cal data management, to data format conversion, to
access to remote Web-based databases and is easily
learned even by those without formal training in
programming. This interface allows direct access to
both local and remote ACEDB databases via an el-

3Corresponding author.
E-MAIL stein@cshl.org; FAX (516) 751-8461.

METHODS

1308 GENOME RESEARCH 8:1308–1315 ©1998 by Cold Spring Harbor Laboratory Press ISSN 1054-9803/98 $5.00; www.genome.org

egant programmer’s interface.
Biologists and novice pro-
grammers can write simple
scripts to fetch and display
ACEDB data objects, whereas
the more experienced can for-
mulate batch queries to per-
form complex data mining op-
erations. The interface allows
multiple ACEDB databases to
be opened simultaneously and
data objects compared, inte-
grated, and moved from one
to the other. In addition to the
basic interface, a set of Perl
CGI scripts known collectively
as AceBrowser allows any net-
worked or local ACEDB data-
base to be browsed via World
Wide Web (WWW) pages, and
serves as a template for the de-
sign of application-specific
Web pages.

RESULTS

API Design

In ACEDB, all data are orga-
nized into a series of ‘‘models’’
that represent familiar biological objects. For ex-
ample, there is a Genome Sequence model that
contains all of the structural and annotation infor-
mation about a large stretch of genomic sequence, a
Protein model that stores functional information
about proteins, and a Genetic Map model, contain-
ing information about a particular genetic map. In
addition, most ACEDB databases hold nonbiologi-
cal information as well, such as Author and Citation
models. The data types stored by an ACEDB data-
base are completely under the control of the data-
base designer.

A typical Genome Sequence object is shown in
Figure 1, which is a screen shot taken from the Ace-
Browser application described below. An object con-
sists of a unique identifier, in this case ‘‘C01C4,’’
and a series of tags, in this case ‘‘DNA,’’ ‘‘Structure,’’
‘‘DB info,’’ and so forth. Tags may have subtags, as
seen, for instance, to the right of the Structure tag,
which has the subtags ‘‘From’’ and ‘‘Subsequence.’’
Subtags may be nested to any degree, forming hier-
archical structures similar to the outline of a paper.

The tags act like field names to identify the po-
sition of the actual data. For example, to the right of

Subsequence are entries for four predicted genes (or
other transcriptional units), along with their start-
ing and ending positions. The data can be a simple
value, as for instance, the text to the right of the tag
‘‘DB remark,’’ or it can be a link to another database
object. Examples of links are the four predicted
genes, which are database Sequence objects.

Our goal in designing the AcePerl application
programming interface (API) was to closely mirror
the structure of the ACEDB database. Biological data
are fetched, modified, and written as whole objects,
and the objects provide specialized functions for re-
trieving their tags and tag data. Box 1 shows a short
Perl script that fetches the C01C4 sequence from a
remote database, retrieves and prints the value of
the DB remark field, and prints out the names and
brief identifications of each of the genes in the se-
quence. The intent is not to teach Perl program-
ming but to demonstrate the simplicity of the API.

#!/usr/bin/perl

The first line of the program identifies it as a Perl
script, and is required by the Unix operating system.

use Ace;

Figure 1 An ACEDB database object is a hierarchical set of tags and data
values.

SCRIPTABLE ACCESS TO C. ELEGANS SEQUENCE

GENOME RESEARCH 1309

This loads the ACDB interface, making its function-
ality available to the script.

$db=Ace->connect(-host=> 8wormsrv1.sanger.ac.uk 8,

-port=>210201);

This line attempts to connect to a public access C.
elegans database located at Internet address
wormsrv1.sanger.ac.uk and at Internet port 210201.
There may be several different databases running
simultaneously on a given host, and the port allows
them to be distinguished from one another. If suc-
cessful, a database object is created and stored in the
Perl variable $db ($ is the Perl language indication
that this is a single-valued variable). Scripts may
connect to multiple databases simultaneously if
they wish.

$sequence = $db->fetch(Genome Sequence=> 8C01C48);

Using the database object stored in $db , this line
attempts to fetch the Genome Sequence named
C01C4. If successful, a new sequence object is cre-
ated and stored in a Perl variable named $se-
quence. This is the simplest way to fetch objects,
by referring to them specifically by model name and
identifier. Users of the API may also fetch objects by
using a key word search, a partial name match, or an
ACEDB query language statement. The latter allows
the database to be searched for objects that satisfy
one or more conditions or that satisfy more com-
plex relationships between objects.

print $sequence->DB remark, 9\n 9;

This statement fetches the contents of the DB remark
tag and prints it out. Note that this works even
though DB remark is a subtag of DB info. The
9\n 9 is a Perl notation that prints a newline charac-
ter at the end of the line.

@genes=$sequence->Subsequence;

foreach $gene (@genes) {

print $gene, 9 9,

$gene=>Brief identification, 9\n 9;

}

These four lines display informa-
tion about each of the predicted
genes in the sequence. The first
line fetches the contents of the
Subsequence tag and stores it
into the Perl variable @genes. In
Perl, the @ symbol indicates that
multiple values are expected. In
fact, this operation retrieves a list
of four Sequence objects.

The next line begins a
foreach loop, in which the program iterates over
each member of the @genes list in turn, storing the
object into a variable named $gene with each it-
eration. (This is a feature of Perl and is not directly
related to the AcePerl API.) Within the body of the
loop, the program fetches the contents of the
Brief identification tag, which indicates the
database curator’s best guess as to the identity of the
gene. The value returned by Brief identifica-
tion is printed, along with the gene’s database
identification, separated by a space. Note that this
operation has transparently performed several data-
base accesses to fetch each of the sequence objects
in turn.

The output of this script is shown below. From
this we learn that C01C4.t1 is a transcription unit
for tRNAMet, C01C4.1 is weakly similar to the Aply-
sia californica buccalin protein, C01C4.3 is a serine/
threonine protein kinase, and C01C4.2 is as yet uni-
dentified:

The 5 8 cosmid is C02F12, 3200 bp overlap; 3 8 cosmid is T14G12, 200 bp

overlap. Actual start of this cosmid is at base position 197 of

CELC01C4; actual end is at 12926 at CELT14G12

C01C4.t1 tRNA-Met

C01C4.1 A. californica buccalin precursor (weak)

C01C4.2

C01C4.3 serine/threonine protein kinase

Moving Objects between Databases

If the author of the script wished to store copies of

Box 1. This program fetches and displays information about a C. elegans
genomic sequence and its predicted genes.

STEIN AND THIERRY-MIEG

1310 GENOME RESEARCH

the four retrieved genes into a local database, he/she
could add the following two lines to the script:

$localdb=Ace−>connect (−path=> 8/home/acedb/mydata 8);

$localdb−>put (@genes);

The first line opens up a connection to a local non-
networked database (the -path argument points to
the location of the database directory in the file sys-
tem), and the second copies the list of genes into the
newly opened database. The sequence objects are
now incorporated into the user’s private database,
where he/she is free to examine and modify them or
view them using ACeDB’s graphical tools. It is
equally straightforward to create new objects,
modify existing ones, or to delete objects entirely.

Retrieving Meta-Information about Objects

Unlike some other database APIs, the AcePerl inter-
face does not require the script author to under-
stand the design of the database before accessing it.
Information about which models are defined by the
database, how the objects are structured, and other
schema information is available through a few func-
tion calls.

For example, to obtain the list of models con-
tained within a database, the programmer could
write the following piece of code:

@models=$db−>models

This will return a list of available data models such
as ‘‘Allele,’’ ‘‘Author,’’ ‘‘Clone,’’ and so forth. These
models can be explored further to discover their in-
ternal structure. It is similarly easy to discover the
structure of a data object. For example, the tags
function will return a list of all tags in an object:

@tags=$sequence−>tags

These functions make it possible for a programmer
to work productively with a database that he/she is
encountering for the first time.

Format Conversion

Because ACeDB databases must live in a heterog-
eneous environment of many database engines and
file formats, the AcePerl API has a rich set of func-
tion for interconverting ACeDB objects with other
formats. A sampling follows:

$sequence−>asDNA

This converts Sequences and objects that contain
sequence data into FASTA format for analysis by use

of BLAST, FASTN, and other nucleotide analysis
tools. It also facilitates moving objects into other
nucleotide databases. An asPeptide function pro-
vides the equivalent conversion for protein se-
quences.

$sequence−>asTable

This converts the object into tab-delimited text, for
importation into spreadsheets, relational databases,
and proprietary databases such as Microsoft Access.

$sequence−>asString

This converts the object into a pretty-printed string
representation of the object, preserving its hierar-
chical structure.

$sequence−>asHTML

This converts the object into HTML for incorpora-
tion into web pages. Hypertext links are automati-
cally created when appropriate. This is how Figure 1
was generated.

$sequence−asGIF

This converts the object into a graphical represen-
tation of the data and returns a GIF image for dis-
play in a web page or other graphical application.
An example of this format is shown in Figure 2.

$sequence−>asAce

This converts the object into the flat-file repre-
sentation of ACEDB data known as ‘‘.ace’’ for-
mat. Another function is available to reverse the op-
eration and import .ace format files.

AceBrowser Web Interface

We have built a set of WWW Common Gateway
Interface (CGI) scripts on top of the AcePerl API,
both as a demonstration of how to use the interface
and as a useful service in itself. When these CGI
scripts are installed on a Web server, remote and
local ACEDB databases can be browsed via a series of
dynamically generated Web pages. Figures 1 and 2
show sample output from the CGI scripts in text
and graphical modes, respectively. The pages are
fully active and linked. In text mode, selecting a
data field that corresponds to another object in the
database will link to a new page that displays the
contents of the object. Selecting a tag will cause a
portion of the hierarchy to collapse or expand like
an outline in a word processing program. In graphic
mode, all buttons and objects are links, allowing the
user to change the view and to display related data-
base objects in much the way that he/she could

SCRIPTABLE ACCESS TO C. ELEGANS SEQUENCE

GENOME RESEARCH 1311

with the original graphical ACEDB. Graphical ob-
jects that are stored in the database, such as JPEG
pictures, are displayed in the pages as inline images.

The AceBrowser scripts provide four database
search interfaces. An object-browsing mode allows
the user to retrieve objects by class, optionally re-
stricting the search to names that match a pattern. A
text-browsing mode allows the user to search the
entire database for matching text or key words (see
Fig. 3) for an example of a search for the word
‘‘pathogen.’’ A sequence-similarity search allows the
user to search the database for matching Sequence
entries using BLASTN or BLASTP. Finally, we pro-
vide direct access to the Ace query language for
more sophisticated searches.

AceBrowser scripts are similar in many respects
to WebAce, a set of Perl scripts originally written in
Douglas Bigwood’s laboratory at the U.S. Depart-
ment of Agriculture and now supported by the
Sanger Centre (WebAce 1998). AceBrowser can be
used side-by-side with WebAce or as a template on
which to build application-specific Web interfaces
to ACEDB data sources. AceBrowser and WebAce

both lack some of the user inter-
face features of the stand-alone X-
windows Ace client (such as DNA
analysis) but provide all of the ba-
sic functionality for searching
and navigating ACEDB databases.

Performance

The performance of the AcePerl
API depends on the speed of the
network connecting the client
program to the server database.
To reduce the impact of network
speed, a great deal of effort has
been made to minimize the
amount of information that must
be transferred between server and
client. For example, when data-
base objects are first retrieved
from the remote database, only
their identifiers are transferred.
The operation of fetching the
body of the object is deferred un-
til the data are requested, and
then only the portion of the ob-
ject that is needed is transferred.

Operations that do not re-
quire the transmission of large
objects are fast. For example, it
takes just 5 sec to retrieve the da-

tabase identifiers of all 3782 Genomic Sequence ob-
jects from a server located at the Sanger Centre in
the United Kingdom and transmit them to a client
located at Cold Spring Harbor in New York. How-
ever, fetching the DNA sequences associated with
those objects (average size, 35 kb) takes significantly
longer, ∼3 sec per object.

DISCUSSION

Before the advent of the WWW, biologists who
wished to mine the resources of biological databases
faced formidable challenges. If the amount of data
was small, one option was to copy the database onto
the researcher’s own machine, an operation that
usually required the installation of specialized soft-
ware and a certain degree of technical expertise. An-
other option, suitable for larger databases, was to
use Telnet to log into the database host machine
from across the Internet and to access the database
via a specialized command-line interface. Unfortu-
nately, most biologists found these barriers to be
inconvenient at best, and insurmountable at worst.

Figure 2 Graphical representation of the C01C4 Genome Sequence object
returned by the asGIF function.

STEIN AND THIERRY-MIEG

1312 GENOME RESEARCH

The web altered this situation radically by in-
troducing a paradigm in which biological data
could be retrieved in a universal format, HTML, dis-
played by a widely available software viewer, the
web browser, and fetched by use of a standardized
object naming nomenclature, the Uniform Resource
Locator (URL). It became possible for biologists to
access large comprehensive biological databases
such as GenBank (Benson 1998) and Genome Data
base (GDB) (Letovsky 1998), as well as smaller or-
ganism-specific databases such as FlyBase (FlyBase
Consortium 1998) and SGD (Cherry 1998), all with-
out installing new software or learning an unfamil-
iar command-line interface. Almost as significantly,
this paradigm made it possible for diverse biological
databases to achieve a first-order level of integration
by providing cross-reference style links to connect
objects in the different databases.

Although web-based front ends to biological da-
tabases do provide interactive, browse-level access
to biological data, they are deficient in at least one
aspect: There is no programmable, batch-level inter-
face. This is important when the questions the bi-
ologist seeks to answer move beyond object-at-a-
time retrieval to more sophisticated problems.

To give a concrete example, the National Center
for Biotechnology Information’s (NCBI’s) excellent
Web Entrez system (Benson et al. 1998) makes it
easy to retrieve the GenBank entry for a genomic
sequence given its accession number. Once the

GenBank entry is retrieved, one
can follow links to the proteins
encoded by the sequence and to
the position of the sequence on
any of several genome maps.
However, as soon as the re-
searcher needs to interact with
the data in a more complex way,
things get difficult. For example,
what if the researcher wishes to
find all sequences located on
chromosome 3, retrieve their pre-
dicted ORFs, and return the pro-
tein sequences as a list sorted by
position? This could not be done
easily with Web Entrez, because
like other web-based systems, the
types of questions that the re-
searcher is allowed to ask of the
system are limited to a set of pre-
packaged queries that are hard-
coded into the scripts that drive
the web pages. To move beyond
this, researchers must be able to

go around the web interface and ‘‘talk’’ directly to
the underlying database. Furthermore, they must
engage in some programming, either directly by
writing a Perl script themselves or indirectly by hir-
ing someone to do it for them.

A number of technologies have the potential to
provide direct access to biological databases. Rela-
tional databases such as SyBase (Anderson 1997),
Oracle (Hipsley 1996), and mySQL (T.c.X 1998) pro-
vide client/server APIs that allow software programs
to send structured query language (SQL) requests to
remote databases and to retrieve the results. Al-
though these APIs provide some very compelling
advantages, including operating system indepen-
dence and the ability to interact with databases
from different vendors, they are rarely used to pro-
vide public access to biological databases. The pri-
mary reason for this is that in a typical relational
database, a biological data type, such as a DNA se-
quence and its associated information, must be split
across multiple tables in the interests of efficiency.
The result of ‘‘fracturing’’ the object in this way is
that the database design becomes large and difficult
for outsiders to understand, making casual public
access impractical.

The Common Object Request Broker Architec-
ture (CORBA) (Orfali and Harkey 1998) technology
solves the problem of fractured data types by pro-
viding a standard for sharing whole data objects
across the Internet. CORBA includes a data defini-

Figure 3 The results of a text search for the word ‘‘pathogen’’ with the
AceBrowser interface.

SCRIPTABLE ACCESS TO C. ELEGANS SEQUENCE

GENOME RESEARCH 1313

tion language, a data access protocol, and common
services for naming and locating objects. CORBA
has the potential to overcome the limitations of re-
lational database APIs by keeping biological data
types intact and providing a uniform cross-platform
interface to heterogeneous databases and other ser-
vices (Rodriguez-Tome et al. 1997; Barillot 1998).
Although CORBA will likely be the ultimate solu-
tion to the problem of biological database access, in
the short term, CORBA-based interfaces have been
slow to appear because of the complexity of CORBA
application programming and the need to agree on
standardized biological data types (OiB 1998).

At least as far as ACEDB databases are con-
cerned, AcePerl provides direct access to biological
databases in a way that preserves the original bio-
logical object. It allows simple queries, such as name
searches and full text searches, as well as complex
ones with the full ACEDB query language. For ex-
ample, the task proposed earlier of fetching a ge-
nome’s worth of predicted peptides and presenting
them in mapped order can be performed with a Perl
script ∼20 lines long. Multiple databases can be
opened simultaneously, and objects can be moved
between them, facilitating the integration and con-
solidation of diverse sources of biological informa-
tion. Finally, a rich set of conversion routines allow
ACEDB objects to be interconverted with other
common data formats, making it possible to move
data between ACEDB and other databases and data
analysis programs.

AcePerl was designed with the intent of making
the rich information sources stored in various
ACEDB databases more available to the public, as
well as making it easier to set up and maintain pri-
vate ACEDB databases in researchers’ own laborato-
ries. To that end, the programmer’s interface is
simple, consistent, and well documented. The pro-
cess of building and installing the AcePerl library
itself is done in an automated fashion by use of tools
that are familiar to Perl programmers. The AcePerl
interface can be readily learned by novice Perl pro-
grammers, and, it is hoped, by computer-savvy bi-
ologists.

AcePerl is complementary to JADE, an ACEDB
interface for the Java programming language (Stein
et al 1998). In a production setting, JADE can be
used to develop fast graphical displays for ACEDB
objects, whereas AcePerl can be used to provide data
entry, batch processing, scripted queries, and other
nongraphical tasks.

There are a number of issues that still need to be
addressed in the AcePerl API. Currently it is only
possible to move a data object from one ACEDB

database to another if both databases share the same
model for the object. A future version of AcePerl will
relax this requirement so that objects with substan-
tially similar models (e.g., a model that is a subset of
another) can be transferred as well. A related issue is
object naming. The AcePerl library currently makes
no attempt to resolve naming conflicts when ob-
jects are transferred from one database to another. A
future version of the library will resolve naming
conflicts by optionally qualifying copied objects
with the name of its original database.

We also intend to augment the format conver-
sion routines to increase the flexibility of the inter-
face. One current project is to provide import and
export routines for the NCBI ASN.1 and GenBank
flat file formats (Ostell and Kans 1998). Another is
to provide conversion routines for the BoulderIO
format used at the Whitehead Institute/MIT Center
for Genome Research (Stein et al 1994).

A final important task is to port AcePerl to the
Microsoft Windows architecture, so that it can be
used from Windows 95/98 and Windows NT sys-
tems. Currently, it is only practical to use AcePerl
from Unix machines, and although the increasingly
popular freeware Linux operating system is sup-
ported, this will present an obstacle for many labo-
ratories. We are currently collaborating with Rich-
ard Bruskiewich (University of British Columbia,
Vancouver) the author of the Windows port of
ACEDB, to achieve this goal.

AcePerl and AceBrowser are freely available un-
der terms that allow unrestricted use and redistribu-
tion. Source code, documentation, demos and ex-
ample scripts, as well as lists of publicly accessible
ACEDB databases, are available at http://stein.cshl.
org/AcePerl.

METHODS
AcePerl operates on top of the ACEDB 4.6 distribution, avail-
able at ftp://ncbi.nlm.nih.gov/repository/acedb/ace.4 6/. It
will also interoperate with ACEDB version 4.5e after applying
source code patches that are included in the AcePerl package.
AcePerl requires a machine running the Unix or Linux oper-
ating systems and Perl version 5.004 or higher. You will also
need a working C compiler and an Internet connection. These
are standard features of most Unix distributions.

AcePerl was developed on an Intel Pentium 300 running
Slackware Linux version 2.0.33. Memory requirements are
generally small, but 32 Mb is recommended. More memory
will be required to run a local ACEDB database. At least 96 Mb
is recommended for the current C. elegans release.

ACKNOWLEDGMENTS
We gratefully acknowledge the contributions and insights of

STEIN AND THIERRY-MIEG

1314 GENOME RESEARCH

the following individuals during the design of AcePerl and the
preparation of this manuscript: LaDeana Hillier, Richard
Durbin, Richard Bruskiewich, James Gilbert, Mark Yandell,
Tim Hubbard, Michael Hoffman, and Sam Cartinhour. This
work was supported by National Institutes of Health grant
5P50 HG01458-03.

The publication costs of this article were defrayed in part
by payment of page charges. This article must therefore be
hereby marked ‘‘advertisement’’ in accordance with 18 USC
section 1734 solely to indicate this fact.

REFERENCES
Anderson, G.W. 1997. Client/server database design with
sybase: A high-performance and fine-tuning guide.
McGraw-Hill, New York, NY.

Barillot, E., F. Guyon, C. Cussat-Blanc, E. Viara, G. Vaysseix.
1998. HuGeMap: A distributed and integrated Human
Genome Map database. Nucleic Acids Res. 26: 106–1077.

Benson, D.A., M.S. Boguski, D.J. Lipman, J. Ostell, and B.F.
Ouellette. 1998. GenBank. Nucleic Acids Res. 26: 1–7.

Bigwood, D. 1997. Databases at the National Agricultural
Library. http://probe.nalusda.gov:8000/alldbs.html.

C. elegans sequencing consortium. 1998. Genome sequence
of the nematode Caenorhabditis elegans: a platform for
investigating biology. Science (in press).

Cherry, J.M., C. Adler, C. Ball, S.A. Chervitz, S.S. Dwight,
E.T. Hester, Y. Jia, G. Juvik, T. Roe, M. Schroeder, S. Weng,
and D. Botstein. 1998. SGD: Saccharomyces genome
database. Nucleic Acids Res. 26: 73–80.

Durbin, R. and J. Thierry-Mieg. 1991. A C. elegans database.
Documentation, code and data available from anonymous
FTP servers at lirmm.lirmm.fr, cele.mrc-lmb.cam.ac.uk and
ncbi.nlm.nih.gov.

FlyBase Consortium. 1998. FlyBase: A drosophila database.
Nucleic Acids Res. 26: 85–88.

Hipsley, P. 1996. Developing client/server applications with
Oracle Developer/2000. SAMS Publishing, Indianapolis, IN.

Letovsky, S.I., R.W. Cottingham, C.J. Porter, P.W.D. Li.
1998. GDB: The human genome database. Nucleic Acids Res.
26: 94–100.

OiB. 1998. Objects in bioinformatics 1998.
http://www.ebi.ac.uk/oib98/.

Orfali, R. and D. Harkey. 1998. Client/server programming
with JAVA and CORBA. John Wiley & Sons, New York, NY.

Ostell, J.M. and J.A. Kans. 1998. The NCBI data model. In
Bioinformatics: A practical guide to the analysis of genes and
proteins (ed. A. Baxevanis and Y. Ouellette), pp. 121–144.
John Wiley & Sons, New York, NY.

Rodriguez-Tome, P., C. Helgesen, P. Lijnzaad, and K.

Jungfer. 1997. A CORBA server for the Radiation Hybrid
DataBase. Intell Systems Mol. Biol. 5: 250–253.

Stein, L.D., A. Marquis, E. Dredge, M.P. Reeve, M.J. Daly, S.
Rozen, and N. Goodman 1994. Splicing UNIX into a
genome mapping laboratory. USENIX Summer Technical
Conference 2: 221–229 (available at
http://www.usenix.org/publications).

Stein, L.D., S. Cartinhour, D. Thierry-Mieg, and J.
Thierry-Mieg. 1998. JADE: An approach for interconnecting
bioinformatics databases. Gene 209: GC39–GC43.

T.c.X. (Data Konsult AB) 1998. MySQL home page.
http://www.tcx.se/.

Wall, L., T. Christiansen, and R. Schwartz. 1996.
Programming Perl, 2nd ed. O’Reilly and Associates,
Sabastopol, CA.

Waterston, R. and J. Sulston. 1995. The genome of
Caenorhabditis elegans. Proc. Natl. Acad. Sci.
92: 10836–10840.

———. 1998. The human genome project: Reaching the
finish line. Science 282: 53–54.

WebAce. 1998. WebAce home page.
http://webace.sanger.ac.uk/

Received November 4, 1998; accepted in revised form November
10, 1998.

SCRIPTABLE ACCESS TO C. ELEGANS SEQUENCE

GENOME RESEARCH 1315

