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The parieto-insular vestibular cortex (PIVC) is thought to contain an important representation of vestibular information. Here we
describe responses of macaque PIVC neurons to three-dimensional (3D) vestibular and optic flow stimulation. We found robust vestib-
ular responses to both translational and rotational stimuli in the retroinsular (Ri) and adjacent secondary somatosensory (S2) cortices.
PIVC neurons did not respond to optic flow stimulation, and vestibular responses were similar in darkness and during visual fixation.
Cells in the upper bank and tip of the lateral sulcus (Ri and S2) responded to sinusoidal vestibular stimuli with modulation at the first
harmonic frequency and were directionally tuned. Cells in the lower bank of the lateral sulcus (mostly Ri) often modulated at the second
harmonic frequency and showed either bimodal spatial tuning or no tuning at all. All directions of 3D motion were represented in PIVC,
with direction preferences distributed approximately uniformly for translation, but showing a preference for roll rotation. Spatiotem-
poral profiles of responses to translation revealed that half of PIVC cells followed the linear velocity profile of the stimulus, one-quarter
carried signals related to linear acceleration (in the form of two peaks of direction selectivity separated in time), and a few neurons
followed the derivative of linear acceleration (jerk). In contrast, mainly velocity-coding cells were found in response to rotation. Thus,
PIVC comprises a large functional region in macaque areas Ri and S2, with robust responses to 3D rotation and translation, but is unlikely
to play a significant role in visual/vestibular integration for self-motion perception.

Introduction
Signals arising from the vestibular labyrinths are indispensable
for many cognitive functions related to maintaining spatial ori-
entation and interacting with the environment as we move
through the world (Angelaki and Cullen, 2008). These functions
include the following: the perception of self-motion (i.e., how we
move in space; for review, see Guedry, 1974; MacNeilage et al.,
2008), spatial constancy and memory (i.e., keeping our per-
ceived world constant as we move our head and body; for
review, see Klier and Angelaki, 2008), static visual orientation
perception (i.e., the subjective visual vertical) (Bronstein,
1999; Vingerhoets et al., 2009), and locomotor navigation (Is-
raël et al., 1993, 1997; Glasauer et al., 1994; Mittelstaedt and
Jensen, 1999; Taube, 2007).

Many of these functions likely depend on cortical representa-
tions of vestibular signals. Unlike in other sensory systems, how-
ever, a “primary” vestibular cortex, in which all cells respond
exclusively to labyrinthine stimulation, has not been described.
Rather, vestibular responses are found in many sensory and mo-
tor areas, typically in combination with visual, somatosensory,

and/or motor-related signals. Some of these cortical areas may
receive relatively direct vestibular input from ascending brain-
stem/cerebellar pathways, whereas others may be interconnected
by corticocortical projections (Akbarian et al., 1992). Thus far,
there is no clear evidence that cortical vestibular areas are hierar-
chically organized as in visual cortex (Felleman and Van Essen,
1991; Van Essen et al., 2001).

The area most often described as “vestibular cortex” is the
parieto-insular vestibular cortex (PIVC), which was first de-
scribed by Pandya and Sanides (1973) on the basis of cytoarchi-
tecture. They speculated that the macaque retroinsular cortex
(Ri) may have a vestibular function (Pandya and Sanides, 1973).
Nearly 2 decades later, it was shown that approximately half of
neurons located in and around the lateral sulcus (LS) of both Java
and squirrel monkeys responded to vestibular stimulation, with
many cells showing convergent somatosensory and optokinetic
responses (Akbarian et al., 1988; Grüsser et al., 1990a,b). No
PIVC neurons responded to static tilt, leading to the conclusion
that only canal-driven, and not otolith-driven, representations
exist in PIVC (Akbarian et al., 1988). Since the first description by
Grüsser and colleagues, no study has systematically quantified
the vestibular response properties of PIVC neurons.

Here we identify PIVC for the first time in rhesus macaques
and we quantify responses to an extensive set of stimuli, including
three-dimensional (3D) rotations, 3D translations, and 3D optic
flow. Unlike the original conclusions of Grüsser and colleagues,
we show that PIVC neurons are tuned to both rotation and
translation, thus being driven by both semicircular canal and
otolith signals. However, we found that PIVC responses are
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not selective to optic flow, a finding that places strong con-
straints on potential functions of this area in comparison with
the extensive visual/vestibular convergence seen in extrastri-
ate areas, e.g., the dorsal medial superior temporal area
(MSTd) (Bremmer et al., 1999; Page and Duffy, 2003; Gu et al.,
2006; Takahashi et al., 2007) and the ventral intraparietal area
(VIP) (Schlack et al., 2002).

Materials and Methods
Subjects and apparatus
Extracellular recordings were obtained from four hemispheres in two
male rhesus monkeys (Macaca mulatta) weighing between 6 and 10 kg.
The surgical preparation, experimental apparatus, and methods of data
acquisition have been described in detail previously (Gu et al., 2006;
Fetsch et al., 2007; Takahashi et al., 2007). Briefly, each animal was
chronically implanted with a circular molded, lightweight plastic ring for
head restraint and a scleral coil for monitoring eye movements inside a
magnetic field (CNC Engineering). Behavioral training was accom-
plished using standard operant conditioning procedures. All animal sur-
geries and experimental procedures were approved by the Institutional
Animal Care and Use Committee at Washington University and were in
accordance with NIH guidelines.

During experiments, the monkey was seated comfortably in a primate
chair, which was secured to a six-degree-of-freedom motion platform
(Moog 6DOF2000E). Three-dimensional movements along or around
any arbitrary axis were delivered by this platform. In all experiments, the
head was positioned such that the horizontal stereotaxic plane was earth
horizontal, with the axis of rotation always passing through the center of
the head (i.e., the midline point along the interaural axis). Computer-
generated visual stimuli were rear projected (Christie Digital Mirage
2000) onto a tangent screen placed �30 cm in front of the monkey
(subtending 90 � 90° of visual angle) and simulated self-motion through
a three-dimensional cloud of random dots (100 cm wide, 100 cm tall, and
40 cm deep). Visual stimuli were programmed using the OpenGL graph-
ics library and generated using an OpenGL accelerator board (Quadro
FX 3000G, PNY Technologies) (Gu et al., 2006). The projector, screen,
and magnetic field coil frame were mounted on the platform and moved
together with the animal.

Tungsten microelectrodes (Frederick Haer; tip diameter 3 �m, imped-
ance 1–2 M� at 1 kHz) were inserted into the cortex through a transdural
guide tube, using a hydraulic microdrive (Frederick Haer). Behavioral
control and data acquisition were accomplished using two separate soft-
ware systems. For protocols involving sinusoidal motion stimuli, exper-
iments were controlled by custom Spike2 scripts and data acquisition was
coordinated by a CED Power 1401 system (Cambridge Electronic De-
sign). For protocols involving transient motion stimuli, task control and
data acquisition were accomplished by custom scripts written for use
with the TEMPO system (Reflective Computing). Neural voltage signals
were amplified, filtered (400 –5000 Hz), discriminated (BAK Electron-
ics), and displayed on an oscilloscope. The times of occurrence of action
potentials and all behavioral events were recorded with 1 ms resolution.
Raw neural signals were also digitized at a rate of 25 kHz using the CED
Power 1401 for off-line spike sorting.

Anatomical localization
The relevant areas in the lateral sulcus were first identified using MRI
scans. An initial (“baseline”) scan was performed on each monkey
before any surgeries using a high-resolution sagittal MPRAGE se-
quence (0.75 mm � 0.75 mm � 0.75 mm voxels). SUREFIT software
(Van Essen et al., 2001) was used to segment gray matter from white
matter. A second scan was performed after the head holder and re-
cording grid had been surgically implanted. Small cannulae filled with a
contrast agent (Gadoversetamide) were inserted into the recording grid
during the second scan to register electrode penetrations with the MRI
volume. The MRI data were converted to a flat map using CARET soft-
ware and the flat map was morphed to match a standard macaque atlas
(Van Essen et al., 2001). The data were then refolded and transferred onto
the original MRI volume (Fig. 1).

To help localize our recording sites, we injected 0.1 mol/L manganese
(Saleem et al., 2002) in monkey U at a site at which robust vestibular
responses were encountered in the upper bank of the lateral sulcus. This
was done using a microinjectrode (Chen et al., 2001; Chowdhury and
DeAngelis, 2008), such that the area responding at the first harmonic of
the stimulus (see Results) was first identified by recording neural activity
through the microinjectrode. Mixed with the manganese was 10 mg/ml
of the GABA agonist muscimol, such that we could verify the effective-
ness of the injection before performing the MRI scan [technique devel-
oped by Liu et al. (2008)]. The manganese/muscimol mixture was
injected slowly (0.2 �l/min) using a minipump while neural activity was
monitored. The effectiveness of the injection was verified on-line by the
silencing of neuronal activity within �20 min following injection of the
manganese/muscimol mixture. The MRI scan was performed within 2–3 h
after the injection; thus, the diffusion of the manganese/muscimol mix-

Figure 1. Anatomical localization of recording sites in the left hemisphere of monkey U.
A, Inflated cortical surface illustrating the coronal sections drawn in B–E. B, A coronal MRI
image showing portions of the LS and intraparietal sulcus (IPS). The filled pink region shows the
dense core of signal produced by a manganese injection into the upper bank of the lateral
sulcus, at a location where vestibular responses were identified physiologically. The outer pink
contour shows the boundaries of the halo of less intense signal surrounding the injection.
Manganese-induced responses have been superimposed on the baseline MRI image for this
animal (see Materials and Methods). C–E, Coronal sections, spaced 4 mm apart, are shown from
posterior (C) to anterior (E); cells located within 2 mm of each section were projected onto that
section. Filled symbols with white borders represent single units that showed clear responses
during sinusoidal translation and/or rotation, whereas open symbols with black borders illus-
trate cells that showed no response.
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ture remained rather restricted relative to the injection site. In addition,
as there was not enough time for manganese to be transported trans-
synaptically, the MRI image reflected the location of the injection site
rather than its projection areas (Saleem et al., 2002).

To delineate the central core and “halo” regions around the manga-
nese injection, the postinjection MRI scan was first registered to the
baseline MRI scan. This allowed us to better visualize the manganese
injection relative to the gray and white matter boundaries. The central
core region of the manganese signal was visible as a high-intensity zone
that could be bounded effectively after image thresholding (Fig. 1 B, filled
pink region, coronal section taken as illustrated in Fig. 1 A). This core
region was surrounded by a more diffuse halo of somewhat less intense
signal. The boundaries of this halo region are illustrated by the pink
contour in Figure 1 B. The location of the central core region is consistent
with the intended injection site in the upper bank of the lateral sulcus,
near the medial tip of gray matter.

With the MRI scans and functional boundaries as a guide, we per-
formed electrode penetrations to map an extensive region of cortex
around the lateral sulcus that extended 15 mm along the anterior–pos-
terior axis. Vestibular responses were recorded at depths between 11 mm
(at the posterior extent) and 17 mm (at the anterior end) from the surface
of the cortex. At the posterior end, the PIVC region was localized lateral
to the border between VIP and lateral intraparietal area and above the
superior temporal gyrus (Fig. 1C). The most posterior sections of PIVC
were located at anterior–posterior coordinates similar to the vestibular-
responsive neurons in area VIP (Chen et al., 2007) and anterior to most
of the vestibular-responsive neurons in area MSTd (Gu et al., 2006).
More anterior, the vestibular-responsive regions of the lateral sulcus
were encountered beneath and lateral to area VIP (Fig. 1 D). At the most
anterior end, the upper bank of the lateral sulcus was the first (and only)
gray matter encountered that modulated in response to sinusoidal ves-
tibular stimuli (Fig. 1 E). Note that both VIP and MSTd were identified
electrophysiologically in these animals (as part of other published and/or
ongoing studies) and the anatomical relationships between all three sites
(VIP, PIVC, and MSTd) were consistent with the MRI images. Thus, we
are confident that neurons with vestibular responses that were assigned
to PIVC were not mistakenly recorded in MSTd or VIP, and the lack of
optic flow responses in PIVC neurons is consistent with the distinctions
made on anatomical grounds.

Experimental protocol
While attempting to isolate single neurons, our search stimulus consisted
of 0.5 Hz sinusoidal translations and rotations about the cardinal axes
(lateral, fore–aft, and up– down for translation; yaw, pitch, and roll for
rotation) in complete darkness. In initial experiments on the right hemi-
sphere of monkey J, sinusoidal modulation was evaluated only on-line
(146/566 of all recorded cells). In later experiments, which comprised
the majority of the data (420/566 cells), sinusoidal responses to transla-
tion (0.5 Hz, �10 cm, �0.1 G) and rotation (0.5 Hz, �7°) were saved for
off-line analysis (see below).

If there was a clear, audible modulation to sinusoidal translation or
rotation, we further examined the cell’s 3D spatiotemporal tuning by
recording neural responses while the animal was translated along each of
26 directions sampled evenly around a sphere (as in previous studies; Gu
et al., 2006; Takahashi et al., 2007). This included all combinations of
movement vectors having eight different azimuth angles (0, 45, 90, 135,
180, 225, 270, and 315°) and three different elevation angles as follows: 0°
(the horizontal plane) and �45° (for a subtotal of 8 � 3 � 24 directions).
Two additional movement vectors, with elevation angles of �90 and 90°,
corresponded to upward and downward directions, respectively. Each of
these 26 movement trajectories had a total displacement of 13 cm and a
duration of 2 s and consisted of a Gaussian velocity profile with a peak
velocity of 30 cm/s and a biphasic acceleration profile with a peak accel-
eration of �0.1 G (0.98 m/s 2).

Following this 3D translation protocol and as long as cell isolation was
maintained, PIVC neurons were also tested with rotations about the
same 26 vectors, which now represented the corresponding axes of rota-
tion according to the right-hand rule (Takahashi et al., 2007). For exam-
ple, azimuth angles of 0 and 180° (elevation � 0°) correspond to pitch-up

and pitch-down rotations, respectively. Azimuths of 90 and 270° (eleva-
tion � 0°) correspond to roll rotations (right-ear-down and left-ear-
down, respectively). Finally, elevation angles of �90 and 90° correspond
to leftward and rightward yaw rotation, respectively. Rotation amplitude
was 9° and peak angular velocity was �20°/s. Because the rotation pro-
tocol was always delivered last, a smaller number of neurons were tested
with rotation stimuli. Note, however, that the 0.5 Hz sinusoidal protocol
was delivered to all well isolated cells during both rotation and transla-
tion; thus, the percentages of neurons with significant responses (Tables
1 and 2) provide a fair representation of the prevalence of rotation/
translation selectivity in PIVC.

The translation and rotation protocols were delivered in separate
blocks of trials and each included vestibular and visual stimulus condi-
tions that were randomly interleaved, along with a null condition (plat-
form stationary and no visual stimulus) to assess spontaneous activity.
(1) In the “vestibular” condition, the monkey was translated or rotated in
the absence of optic flow. The screen was blank, except for a fixation
point that remained at a fixed head-centered location throughout the
motion trajectory. Because the fixation point moved with the animal’s
head, there were no systematic eye movements other than small fixa-
tional saccades. (2) In the “visual” condition, the motion platform was
stationary, while optic flow simulated movement through a three-
dimensional cloud of stars. Note that all stimulus directions are refer-
enced to body motion (real or simulated) when the data are plotted. To

Table 1. Statistics of response modulation during sinusoidal translation (0.5 Hz)

Left–right
motion

Fore–aft
motion

Up– down
motion

Max
direction

p_f1 < 0.01
All (n � 420) 110 (26%) 100 (24%) 104 (25%) 185 (44%)
Upper bank (n � 153) 60 (39%) 58 (38%) 53 (35%) 92 (60%)
Tip (n � 150) 43 (29%) 41 (27%) 37 (25%) 78 (52%)
Lower bank (n � 117) 7 (6%) 5 (4%) 10 (8%) 15 (13%)

p_f2 < 0.01, p_f1 > 0.01
All (n � 420) 45 (11%) 42 (10%) 35 (8%) 67 (16%)
Upper bank (n � 153) 6 (4%) 3 (2%) 5 (3%) 7 (5%)
Tip (n � 150) 9 (6%) 7 (5%) 11 (7%) 14 (9%)
Lower bank (n � 117) 30 (26%) 25 (21%) 26 (22%) 46 (39%)

p_f1 > 0.01, p_f2 > 0.01
All (n � 420) 265 (63%) 278 (66%) 281 (67%) 168 (40%)
Upper bank (n � 153) 87 (57%) 92 (60%) 95 (62%) 54 (35%)
Tip (n � 150) 98 (65%) 102 (68%) 102 (68%) 58 (39%)
Lower bank (n � 117) 80 (68%) 87 (74%) 81 (69%) 56 (48%)

Data shown represent number of cells and corresponding percentages relative to the total population (bold), upper
bank, tip, and lower bank for each row, respectively. Data recorded in monkey U (n � 273: left hemisphere and 58:
right hemisphere) and monkey J (n � 23: left hemisphere and 66: right hemisphere).

Table 2. Statistics of response modulation during sinusoidal rotation (0.5 Hz)

Rotation

Max directionYaw Roll Pitch

p_f1 < 0.01
All (n � 364) 29 (8%) 68 (19%) 59 (16%) 114 (31%)
Upper bank (n � 136) 17 (12%) 40 (29%) 33 (24%) 64 (47%)
Tip (n � 126) 7 (6%) 23 (18%) 20 (16%) 37 (29%)
Lower bank (n � 102) 5 (5%) 5 (5%) 6 (6%) 13 (13%)

p_f2 < 0.01, p_f1 > 0.01
All (n � 364) 51 (14%) 40 (11%) 28 (8%) 66 (18%)
Upper bank (n � 136) 7 (5%) 9 (7%) 4 (3%) 9 (7%)
Tip (n � 126) 17 (14%) 9 (7%) 6 (5%) 19 (15%)
Lower bank (n � 102) 27 (26%) 22 (22%) 18 (18%) 38 (37%)

p_f1 > 0.01, p_f2 > 0.01
All (n � 364) 284 (78%) 256 (70%) 277 (76%) 184 (51%)
Upper bank (n � 136) 112 (82%) 87 (64%) 99 (73%) 63 (46%)
Tip (n � 126) 102 (81%) 94 (75%) 100 (79%) 70 (56%)
Lower bank (n � 102) 70 (69%) 75 (74%) 78 (76%) 51 (50%)

Data shown represent number of cells and corresponding percentages relative to the total population (bold), upper
bank, tip, and lower bank for each row, respectively. Data recorded in monkey U (n � 247: left hemisphere and 51:
right hemisphere) and monkey J (n � 21: left hemisphere and 45: right hemisphere).
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complete five repetitions of all 26 directions for each of the visual/vestib-
ular conditions, plus five repetitions of the null condition, the monkey
was required to successfully complete 26 � 2 � 5 � 5 � 265 trials for
each of the translation and rotation protocols. Neurons were included in
the sample if each stimulus in a block was successfully repeated at least
three times. For 90% of neurons, we completed at least five repetitions of
each stimulus.

For both the visual and vestibular conditions, the animal was required
to fixate a central target (0.2° in diameter) for 200 ms before the onset of
the motion stimulus (fixation windows spanned 2 � 2° of visual angle).
The animals were rewarded at the end of each trial for maintaining fixa-
tion throughout the stimulus presentation. If fixation was broken at any
time during the stimulus, the trial was aborted and the data were dis-
carded. In addition to these fixation protocols, most neurons were also
tested using the same 26 motion trajectories in complete darkness (with
the projector turned off). In these trials, there was no behavioral require-
ment to fixate, and rewards were delivered manually to keep the animal
alert. Note that the order in which the fixation and darkness protocols
were delivered varied among recorded cells, although the 3D translation
protocol was always delivered before the rotation protocol. Thus, there
were two possible sequences of these blocks of stimuli: (1) translation/
fixation, rotation/fixation, translation/darkness, rotation/darkness, or
(2) translation/darkness, rotation/darkness, translation/fixation, rota-
tion/fixation. Because we found no significant differences in tuning
properties or response magnitudes between fixation and darkness con-
ditions (see Fig. 17), data have been combined in the presentation. Spe-
cifically, data for each cell are taken from the fixation condition, if
available. If cell isolation was lost before delivery of the fixation protocol,
then data were taken from the darkness condition. Note that each cell is
represented only once in all population data figures.

Data analysis
Sinusoidal analysis. Quantitative data analyses were performed off-line
using custom-written scripts in Matlab (The MathWorks). Responses
from multiple cycles of sinusoidal stimulation were folded into a single
cycle. Firing rates were then computed in 50 ms bins (40 bins per cycle).
A fast Fourier transform was applied to the binned data, giving the mag-
nitude and phase of the first 20 harmonics of each response. To assess
whether the response was significantly modulated at the fundamental
component of the stimulus and/or its second harmonic, we computed
two Fourier ratios, which were defined as the fundamental frequency or
second harmonic, respectively, over the maximum of the remaining har-
monics (i.e., f1/max(f2,f3,f4, . . . ,f20), and f2/max(f1,f3,f4, . . . ,f20)).
Statistical significance ( p � 0.01) of these ratios was assessed using a
permutation test based on 1000 random reshufflings of the 40 re-
sponse bins.

Response gains were computed from instantaneous firing rate (IFR)
measurements. For each stimulus condition, IFRs from multiple cycles
were “folded” into a single cycle by overlaying the neural responses, as
follows. First, the time of occurrence of each spike was logged. IFR was
then calculated as the reciprocal of the interspike interval and assigned to
the middle of the interval. For each stimulus cycle (e.g., the nth cycle), an
integer multiple (n � 1) of the stimulus period was subtracted from the
times associated with all IFR values for that specific cycle. For example,
for a frequency of 0.5 Hz, 2 s would be subtracted for cycle 2, 4 s for cycle
3, etc. The result is to fold all instantaneous frequency values into a single
stimulus cycle. This procedure provides no averaging, as all spike occur-
rences are represented in time.

The overlaid single cycle responses were fit with the sum of two sinu-
soids (first and second harmonics of the stimulus frequency) plus a con-
stant DC term. Translation response gain was calculated as response
amplitude (half of the peak-to-trough modulation) divided by the peak
acceleration of the stimulus (as measured using a linear accelerometer)
and was expressed in units of spikes/s per G (with G � 9.81 m/s 2).
Rotation response gain was calculated as response amplitude over peak
angular velocity of the stimulus, in units of spikes per second per degree
per second. Phase was expressed as the difference between peak response
and peak stimulus acceleration (for translation) or velocity (for rota-
tion). The ratio of the gains of the second harmonic and fundamental

components (“f2/f1 ratio”) was computed from the sum-of-sinusoids fit
to indicate the dominant frequency modulation in the response. If the
ratio was less than one, the response was considered dominated by the
fundamental component. Note, however, that the significance of each
harmonic modulation (f1 and f2) was evaluated separately using permu-
tation tests on the two Fourier ratios described above.

From these sinusoidal responses (lateral, up– down, and fore–aft or
yaw, pitch and roll), 3D direction preferences (azimuth, elevation) for
translation and rotation were computed using a spatiotemporal conver-
gence (STC) model (Angelaki, 1991, 1992). The spatiotemporal model is
more general than the traditional cosine-tuning model; whereas the lat-
ter assumes zero response for directions perpendicular to the direction of
maximal response, the spatiotemporal model allows for nonzero re-
sponse along the perpendicular axis. In general, the STC model allows
temporal dynamics and spatial properties to be intermingled, such that
more than one temporal parameter (e.g., velocity and acceleration) can
be simultaneously coded along different spatial directions. The spatio-
temporal model was used here because it characterizes best the transla-
tion tuning of brainstem and cerebellar vestibular neurons (Bush et al.,
1993; Angelaki and Dickman, 2000; Shaikh et al., 2005; Chen-Huang and
Peterson, 2006).

By fitting this model, four parameters were computed for each cell:
maximum response gain and phase, the preferred (maximum response)
direction, and the response gain along the direction perpendicular to the
preferred direction. The larger the magnitude of this perpendicular re-
sponse relative to the preferred response, the larger the departure from
traditional cosine tuning. We first computed the preferred direction in
the horizontal plane by considering the response gain and phase along
the lateral and fore–aft (for translation) or pitch and roll (for rotation)
axes. The polar angle of this vector defined the azimuth angle of the 3D
direction preference. Then we computed its elevation by fitting the STC
model in the plane defined by the preferred azimuth vector and the
vertical axis. This procedure, which was applied to the f1 gain and phase
for all cells with significant first harmonic modulation along at least one
motion direction, allows computation of the azimuth and elevation of
the 3D direction preference in spherical coordinates, along with the cor-
responding gain and phase of the neuronal response along this preferred
direction.

Temporal response analysis. To analyze neural responses to transient
motion stimuli, we first constructed peristimulus time histograms
(PSTHs) for each direction of translation and/or rotation. PSTHs were
computed using 25 ms time bins and were smoothed with a 400 ms
boxcar filter. The following procedure was used to identify and classify
PSTHs with significant temporal modulation. First, we computed the
distribution of spike counts (across stimulus repetitions) for each possi-
ble 400 ms time window (in 25 ms steps) between 500 and 2000 ms after
stimulus onset. We then identified the 400 ms time windows containing
the spike count distributions having the maximum and minimum aver-
age values. Each of these distributions was then compared with a baseline
response distribution, obtained from the 400 ms time window from
�100 to 300 ms poststimulus onset. Note that stimulus velocity has only
reached 0.04% of its peak value (0.26% of peak acceleration) at 300 ms;
thus, this interval effectively constitutes a baseline response. To avoid
false positives, we required at least 4 overlapping time windows (spaced
25 ms apart and including the maximum or minimum time window
defined above) to have spike count distributions that differed signif-
icantly from the baseline distribution (Wilcoxon rank test, p � 0.01).
This statistical test identified a significant peak and/or trough in the
PSTH for each stimulus condition and direction of movement (if they
existed), and these criteria were found to agree well with classification
of responses by eye.

Based on this procedure for identifying peaks and troughs, we divided
temporal responses into two groups: monophasic and biphasic. For a
monophasic response, there is only one significant peak or trough in the
PSTH (but not both). For a biphasic response, both a significant peak and
trough are identified. This classification was made independently for
each motion direction with a significant peak and/or trough; otherwise
the cell was considered unresponsive to stimulation in that direction. For
a neuron to be considered to have significant temporal modulation in
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response to the set of transient stimuli, and to be considered further in
quantitative analyses, it had to show a significant monophasic or biphasic
response to at least two nearby directions (45° apart in azimuth or eleva-
tion). Neurons not meeting this criterion were considered unresponsive
and were not considered further in subsequent analyses.

For neurons with significant temporal modulation as defined above,
we investigated how direction tuning for translation and rotation de-
pends on time and whether there are multiple times when a neuron
shows distinct directional tuning. First, we calculated the maximum re-
sponse across stimulus directions at each moment in time during the
response. Specifically, for each 400 ms time window (in steps of 25 ms),
we computed a direction tuning function and we extracted the peak
response. This yields a peak response vector, R(t), which contains the
maximal response across directions (regardless of direction preference)
for each time bin. This vector summarizes response strength as a function
of time. Similarly, for each 400 ms time window, we performed ANOVA
to assess the statistical significance of directional selectivity at each time
point. This yields a vector, p(t), that summarizes the significance of di-
rection tuning as a function of time.

Next, we identified the local maxima of R(t) with the following criteria:
(1) a local maximum is the largest value within a given neighborhood
(i.e., R(t) 	 R(t � 1) and R(t) 	 R(t � 1), where t represents time), and
(2) the ANOVA values from p(t) must be significant ( p � 0.01) for 5
consecutive time bins centered on the putative local maximum. The set
of local maxima so defined were thus ranked according to peak response
value, thus generating a sequence f(n).

Starting from these local maxima, we identified time periods with
distinct direction selectivity as follows. Beginning at the time point of the
largest local maximum, f(1), we computed the correlation coefficient
between the 3D direction tuning at this time bin and the 3D tuning of
each other time bin. A contiguous temporal sequence of time bins that
are significantly positively correlated with the tuning at f(1) defines a
distinct temporal period of direction selectivity. If other local maxima,
e.g., f(3), are included in the tuning peak centered on f(1), they are not
considered further. This process is repeated for each of the putative local
maxima, and the end result defines whether there are one, two, or more
distinct time windows within which the neuron shows distinct direc-
tional selectivity. The times of local maxima at which distinct directional
tunings are observed are referred to as “peak times.” Note that peak times
and all temporal response profiles have been adjusted for the time delay
(115 ms) intrinsic to the dynamics of the motion platform; that is, the
delay between the motion command signal and the actual movement of
the motion platform (see also Fetsch et al., 2007).

From this analysis of the time course of directional selectivity, we
divided cells into four groups as follows: (1) cells with three distinct
temporal peaks of directional selectivity (“triple peaked”), (2) cells with
two temporal peaks of direction tuning (“double peaked”), (3) cells with
a single time period of directional selectivity (“single peaked”), and (4)
cells that were not significantly direction selective in any time period
(“not tuned”). Each of these groups were characterized by 3, 2, 1, or 0
peak times, respectively. To visualize spatial tuning in 3D and to plot
spherical data on Cartesian axes, mean firing rates at each peak time were
transformed using the Lambert cylindrical equal-area projection (Sny-
der, 1987) and then plotted in a color contour plot as a function of
azimuth and elevation to create a 3D tuning function. This produces a
flattened representation in which the abscissa represents azimuth angle,
and the ordinate corresponds to a sinusoidally transformed version of
elevation angle. Note that the range of values represented by the color
scale in each contour plot was chosen based on the minimum and max-
imum responses, rounded to the nearest 10 spikes/s.

The strength of directional tuning at each peak time was quantified
using a direction discrimination index (DDI), given by Takahashi et al.
(2007), as follows:

DDI �
Rmax � Rmin

Rmax � Rmin � 2�SSE/
N � M�
,

where Rmax and Rmin are the maximum and minimum responses from
the 3D tuning function, respectively. SSE is the sum squared error

around the mean responses, N is the total number of observations (tri-
als), and M is the number of stimulus directions (M � 26). The DDI
compares the difference in firing between the preferred and null direc-
tions against response variability and quantifies a neuron’s reliability for
distinguishing between preferred and null motion directions. Neurons
with large response modulations relative to the noise level will have DDI
values closer to 1, whereas neurons with weak response modulation will
have DDI values closer to 0.

The preferred direction of a neuron for each stimulus condition was
described by the azimuth and elevation of the vector sum of the individ-
ual responses (after subtracting spontaneous activity). In such a repre-
sentation, the mean firing rate in each trial was considered to represent
the magnitude of a 3D vector whose direction was defined by the azimuth
and elevation angles of the particular stimulus (Gu et al., 2006). To plot
the difference in 3D direction preferences (�� Preferred direction�) be-
tween two stimulus conditions on Cartesian axes (see Fig. 11 B), the data
were again sinusoidally transformed such that random combinations of
directions on a sphere would result in a flat distribution of �� Preferred
direction�.

Note that the vector sum can reliably reflect the cell’s tuning prefer-
ence only when the directional tuning profile is unimodal at the respec-
tive peak time. However, we found that this was not always the case for
vestibular neurons in the lateral sulcus. Thus, we first classified the direc-
tional tuning at each peak time as “unimodal” versus “bimodal” (the later
group also potentially includes “multimodal” cells) as follows: First, we
interpolated the 3D tuning data to 5° resolution in both azimuth and
elevation, and then we adapted a multimodality test based on the kernel
density estimate method (Silverman, 1981; Fisher and Marron, 2001;
Anzai et al., 2007). This test generates two p values, with the first one
( p_uni) for the test of unimodality and the second one ( p_bi) for the test
of bimodality. For example, if p_uni � 0.05 and p_bi 	 0.05, unimodality
is rejected and the distribution is classified as bimodal. If p_bi � 0.05 also,
this could indicate the existence of more than two modes in the distribu-
tion (which here were lumped into the “bimodal” category, as multimo-
dal tuning was rarely observed). Accordingly, direction tuning was
classified as either unimodal or bimodal for each peak time. Note, how-
ever, that distributions of 3D direction preferences (and �� Preferred
direction� between conditions) only contain data from peak times for
which directional tuning is characterized as unimodal.

Results
We recorded from 566 well isolated cells in both hemispheres of
two macaques (monkey J: 235 neurons; monkey U: 331 neurons).
We recorded from all cells encountered in the upper bank, lower
bank or tip of the lateral sulcus within a large area extending 15
mm anterior to posterior. Although some recordings were
made from both hemispheres in each animal, only the right
hemisphere of monkey J (202 cells) and the left hemisphere of
monkey U (273 cells) were systematically explored. Because of
some differences in the placement of the recording grids, the
most anterior extent of the lateral sulcus was only investigated
in monkey J, whereas the most posterior extent of the area was
only explored in monkey U.

As the electrode was lowered into the lateral sulcus, a search
stimulus consisting of sinusoidal translation (left-right, fore–aft,
or up– down; 0.5 Hz, �10 cm) or rotation (yaw, roll, or pitch; 0.5
Hz, �7°) was presented. More than half (68%) of well isolated
cells had audible response modulation to one of these stimuli in
complete darkness. For those cells with audible modulation, we
further tested their tuning properties in response to transient 3D
displacements (see Materials and Methods). We begin by quan-
tifying sinusoidal responses. Next, we analyze the spatiotemporal
response characteristics to 3D transient motion. Finally, we de-
scribe neuronal responses to optic flow stimulation.
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Sinusoidal responses
Sinusoidal responses from an example neuron during 0.5 Hz
translation and rotation are illustrated in Figure 2, A and B, re-
spectively. We determined whether each sinusoidal response was
modulated significantly at the first (f1) or second (f2) harmonic
of the stimulus frequency, and then computed the gain ratio of
these response harmonics (f2/f1, see Materials and Methods).
The cell of Figure 2 shows strong first harmonic modulation in
response to lateral (708.1 spikes/s/G, p_f1 � 0.01) and fore–aft
(546.8 spikes/s/G, p_f1 � 0.01) translation, with modest modulation
in response to up– down translation (286.6 spikes/s/G, p_f1 �

0.01). In addition, the cell was also signif-
icantly modulated during roll (1.9 spikes/
s/°/s, p_f1 � 0.01) and pitch (1.2 spikes/s/
°/s, p_f1 � 0.01) rotation. In contrast, yaw
rotation did not produce significant tem-
poral response modulation ( p_f1 	 0.01).

Among 420 neurons for which sinu-
soidal translation responses were quanti-
fied off-line, 60% (252 cells) responded
significantly along at least one axis of mo-
tion (left-right, fore–aft, or up– down).
The majority (185/252, 73%) modulated
significantly at the fundamental fre-
quency of the stimulus ( p_f1 � 0.01; Table
1). An additional 67 cells (26% of re-
sponding cells and 16% of the total popu-
lation) modulated significantly only at the
second harmonic frequency ( p_f1 	 0.01
and p_f2 � 0.01; Table 1). Approximately
equal percentages of neurons show sig-
nificant response modulation during
left–right, fore–aft, and up– down tra-
nslation (Table 1). Considering each
axis of motion separately, �25% of re-
sponses showed significant f1 modula-
tion, �10% had only significant f2
modulation, and �65% of responses did
not modulate significantly (Table 1).

The distribution of neurons with sig-
nificant response modulations at f1 and f2
(along the motion axis that elicited maxi-
mum response) depended on cell location
within the lateral sulcus. As shown in Fig-
ure 3 (see also Table 1), first-harmonic cells
( p_f1 � 0.01) were most common in the up-
per bank and tip of the sulcus; second-
harmonic cells ( p_f1 	 0.01 and p_f2 �
0.01) were most common in the lower
bank of the lateral sulcus. Figure 3A shows
the distribution of the f2/f1 ratio, color-
coded separately for cells in the upper
bank (red bars), tip (green bars) and lower
bank (blue bars). Cells located in the up-
per bank of the lateral sulcus typically had
small f2/f1 ratios (0.42 � 0.21, geometric
mean � SE), whereas lower bank cells
generally had a large f2/f1 ratios (1.99 �
0.29); this difference was highly significant
( p � 0.001, Wilcoxon rank test). The cells
located at the tip of the sulcus had f2/f1 ra-
tios that were intermediate, with an average
of 0.69 � 0.28. There was no significant cor-

relation between the f2/f1 ratio and the location of recording sites
along the medial–lateral (r � �0.08, p � 0.23) (Fig. 3B) and anteri-
or–posterior (r � 0.01, p � 0.83) (Fig. 3C) dimensions.

Results were largely similar for responses to sinusoidal rota-
tion stimuli (Table 2), with a few notable differences. First, sig-
nificant response modulations were less frequently seen for
rotation than translation, and this was particularly true for first-
harmonic (f1) cells (31% for rotation versus 44% for translation).
Second, whereas responses to translation were equally common
for each axis of motion, significant rotation responses (f1 or f2)
were most common for the roll rotation axis (19%), and least

Figure 2. A, B, PSTHs (averaged over multiple cycles) from an example neuron during 0.5 Hz sinusoidal translation (A) and
rotation (B). Motion directions are indicated by the cartoon drawings. Stimulus traces shown represent linear acceleration (Hacc,
A) or angular velocity (Hvel, B) of the head. The cell’s response modulated significantly during all three translation directions,
namely, lateral (708.1 spikes/s/G, p_f1 � 0.01, f2/f1 � 0.029), fore–aft (546.8 spikes/s/G, p_f1 � 0.01, f2/f1 � 0.114), and
up– down (286.6 spikes/s/G, p_f1 � 0.01, f2/f1 � 0.159) motions. The cell also modulated significantly during roll (1.9 spikes/
s/°/s, p_f1 � 0.01, f2/f1 � 0.236) and pitch (1.2 spikes/s/°/s, p_f1 � 0.01, f2/f1 � 0.409) rotations, but not during yaw rotation
( p_f1 	 0.01 and p_f2 	 0.01).

Figure 3. Relationship between the f2/f1 ratio (second/first harmonic of response modulation along the preferred direction of
translation) and cell location within the lateral sulcus. A, Distribution of f2/f1 ratio (n � 420), plotted separately for cells recorded
in the upper bank (red, n � 153), tip (green, n � 150), and lower bank (blue, n � 117) of the lateral sulcus. B, C, Scatter plots of
the f2/f1 ratio as a function of medial–lateral and anterior–posterior stereotaxic coordinates. Only cells from the left hemisphere
of monkey U (n � 273) are shown. Results were qualitatively consistent for monkey J, but not included here because sinusoidal
responses were not saved for off-line analysis in many experiments (see Materials and Methods). Data are color-coded according
to their location within the upper bank (red triangles), tip (green circles), and lower bank (blue triangles).
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common for the yaw axis (8%). In fact,
the percentage of second-harmonic cells
that responded to yaw rotation (14%; p_f1 	
0.01 and p_f2 � 0.01) was larger than the
percentage of first-harmonic yaw-responsive
cells (8%; p_f1 � 0.01) (see Table 2).

As for translation, single harmonic re-
sponses to rotation were also more com-
mon in the upper than lower bank of the
lateral sulcus. The mean f2/f1 ratios (geo-
metric mean � SE) were 0.64 � 0.26 (n �
136) for the upper bank, 0.83 � 0.24 (n �
126) for the tip of the sulcus, and 1.58 �
0.31 (n � 102) for the lower bank. The dif-
ference in f2/f1 ratio between the upper and
lower banks was again highly significant
( p � 0.001, Wilcoxon rank test). There was
a weak correlation between the f2/f1 ratio
for rotation and cell location along the me-
dial–lateral dimension (r � �0.13; p �
0.05), such that the relative strength of sec-
ond harmonic responses increases mildly as
one moves laterally within the sulcus. No
such correlation was found for the anterior–
posterior dimension ( p � 0.62).

The percentage of cells responding to
both rotation and translation was high.
Among 364 cells tested with both sinu-
soidal translation and rotation, 255 had
significant responses ( p_f1 � 0.01 or p_f2

� 0.01) to either translation or rotation.
Of these 255 cells, approximately half (137/
255, 53%) were convergent, i.e., they
showed significant response modulation
( p_f1 � 0.01 or p_f2 � 0.01) during both
rotation and translation. By comparison,
30% of cells (75/255) showed response
modulation only during translation and
17% (43/255) modulated only during ro-
tation. Thus, unlike a previous report in-
volving measurements of responses to
static tilt (Akbarian et al., 1988), we found
strong evidence that many neurons in
PIVC carry information about both trans-
lation and rotation of the subject.

We used the f1 component of the response and an STC
model (see Materials and Methods) to compute the preferred
direction of translation or rotation in 3D for each neuron. The
corresponding azimuth and elevation angles of the 3D direc-
tion preferences for translation and rotation are plotted for each
cell in Figure 4, A and B, respectively. Each point in the scatter
plots represents the preferred direction [azimuth, elevation] of a
PIVC neuron, color-coded according to the location of the cell
in the upper bank, tip or lower bank of the lateral sulcus (red,
green and blue, respectively). The distributions of direction
preferences do not show any clear dependence on cell location
within the lateral sulcus. For translation (Fig. 4A), the marginal
distributions of azimuth and elevation preferences (combining
across cell locations) were not significantly different from uni-
form ( p 	 0.05, uniformity test). The flat marginal distributions
in Figure 4A suggest that the distribution of direction preferences
for translation is uniform on a sphere. For rotation (Fig. 4B),
neither marginal distribution was uniform ( p � 0.05, uniformity

test). Rather, both distributions were classified as unimodal
( p_uni 	 0.05, modality test), with preferred directions tending to
cluster around the roll axis (90° azimuth and 0° elevation). Be-
cause many cells in Figure 4B preferred ��90° azimuth and
73/114 were recorded from the left hemisphere, there was a pre-
dominance of neurons that preferred counter-clockwise (con-
tralateral ear-down) roll. Note that only neurons with significant
first harmonic responses were included in this analysis because of
the requirements of the STC model.

For each first-harmonic cell, we computed the gain and phase
of the response along the preferred motion axis in 3D. Distribu-
tions of gain and phase are shown in Figure 4, C and E, for trans-
lation, and Figure 4, D and F, for rotation. First-harmonic gains
averaged 497.5 � 22.1 (mean � SE) spikes/s/G (range: 63–1585
spikes/s/G) (Fig. 4C) for translation and 2.01 � 0.14 (mean � SE)
spikes/s/°/s (range: 0.20 – 8.38 spikes/s/°/s) (Fig. 4D) for rotation.
Response phase relative to linear acceleration (expressed in the
interval [�90, �90°]) was distributed approximately uniformly
( p 	 0.05, uniformity test) (Fig. 4E), with some neurons modu-

Figure 4. Summary of sinusoidal responses. A, B, Distributions of direction preferences for translation (n � 185) and rotation
(n � 114), in spherical coordinates (scatter plots of elevation versus azimuth preferences). Uniform azimuth and elevation
distributions reflect direction preferences that are uniformly distributed on a sphere. The data are plotted on Cartesian axes that
represent the Lambert cylindrical equal-area projection of the spherical stimulus space. Histograms along the top and right sides of each
scatter plot show the marginal distributions. Data are color-coded based on the location of cells in the upper bank (red), tip (green), and
lower bank (blue) of the lateral sulcus. C, D, Distributions of neural response gain along the 3D preferred direction for translation and
rotation, respectively. E, F, Distributions of neural response phase along the 3D preferred direction for translation and rotation, respectively.
Only neurons with significant single harmonic responses ( p_f1 � 0.01) along at least one motion direction are included.
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lating in phase with linear velocity and some in phase with linear
acceleration. A broad distribution of translation response phases
is also a property of neurons in the brainstem (Angelaki and
Dickman, 2000; Dickman and Angelaki, 2002; Chen-Huang and
Peterson, 2006), cerebellum (Shaikh et al., 2005; Yakusheva et al.,
2008) and thalamus (Meng et al., 2007; Meng and Angelaki,
2010).

Response phase relative to angular velocity also varied
among neurons, but had a unimodal distribution ( p � 0.05,
uniformity test; p_uni 	 0.05, modality test) (Fig. 4 F), with a
mean of 2.3 � 4.0° (mean � SE). Thus, the most common
responses to rotation were in phase with angular velocity, as is
commonly observed for neurons in the brainstem, cerebel-
lum, and thalamus (Dickman and Angelaki, 2002; Shaikh et
al., 2005; Meng et al., 2007; Marlinski and McCrea, 2008;
Brooks and Cullen, 2009; Meng and Angelaki, 2010).

Responses to 3D transient translation: temporal modulation
PIVC neurons with audible on-line response modulation during
sinusoidal translation or rotation were next tested with a 3D tran-
sient translation protocol, consisting of 26 movement trajectories
evenly spaced every 45° in 3D (Fig. 5A). Each 2 s motion trajec-
tory followed a smooth displacement, with a Gaussian velocity
profile and the corresponding biphasic acceleration profile (Fig.
5B). For each movement direction, a PSTH was computed with a
bin size of 50 ms. The response plotted for each bin was the
average firing rate within a 400 ms sliding window centered on

that bin (see Materials and Methods). We first describe the pat-
terns of temporal modulation observed in responses of PIVC
neurons to these transient translation stimuli.

The four most commonly observed temporal response pat-
terns are illustrated in Figure 5, C to F. The majority of responses
were monophasic, having either a single peak (Fig. 5C) or a single
trough (Fig. 5D) in the PSTH. Much less frequent were biphasic
responses, having a distinct peak and trough within the PSTH
(Fig. 5E,F, peak-trough and trough-peak patterns, respectively).
Among 288 cells tested with the transient translation protocol,
220 cells had significant monophasic or biphasic responses along
a minimum of 2 nearby directions. The remaining 68 neurons
were considered nonresponsive by the criteria imposed for estab-
lishing significant temporal modulation (Methods), and were not
considered further in the following analyses.

Considering all directions of translation with significant tem-
poral modulation for these 220 cells, the prevalence of different
temporal response patterns is summarized in Figure 6. Nearly
three quarters of all responsive directions (72.4%) were of the
positive monophasic type, compared with 18.3% that were neg-
ative monophasic, and 9.3% that were biphasic (Fig. 6A). Note
that monophasic responses resemble the stimulus velocity profile
and biphasic responses resemble the profile of linear acceleration
(Fig. 5, compare C to F with B). Such a correspondence may
indeed be expected for cells with high spontaneous firing rates,
such as those in the vestibular periphery (Goldberg and Fernan-
dez, 1971), as this allows responses to be driven above and below
the resting discharge. Spontaneous activity for PIVC responses,
however, is generally much lower than in the vestibular periphery
(Fig. 6B). Notably, biphasic and negative monophasic responses
(i.e., those with significant decreases in firing rate below baseline)
were characterized by higher spontaneous activity (median val-
ues of 32.5 spikes/s and 20.5 spikes/s, respectively) than positive
monophasic responses (median of 9.5 spikes/s). All pairwise dif-
ferences between these three groups were statistically significant
( p � 0.001, Wilcoxon signed-rank test).

Thus, it is possible that responses of acceleration-sensitive
neurons may appear to be positive monophasic because firing
rate cannot be driven below an already low spontaneous activity
level. Unlike in the vestibular periphery, many cortical neurons
cannot faithfully represent a biphasic stimulus due to a response
floor. In later sections, we show that spatiotemporal patterns of
directional response, not temporal dynamics alone, may be more
informative of the type of stimulus parameters encoded by these
neurons. Thus, the representation of linear acceleration in PIVC
may be more substantial than suggested by the 9% of biphasic
responses in Figure 6A (red).

Next, we examine the distributions of times at which firing
rates reached their peak/trough response. The average time to
peak/trough firing (relative to the start of the 2 s duration stim-
ulus) was 0.95 � 0.01 s (mean � SE) for positive monophasic
responses and 1.08 � 0.01 s for negative monophasic responses
(Fig. 6C, green and black bars, respectively). These average values
were significantly different from the time at which peak stimulus
velocity occurred, 1.0 s ( p � 0.001, Wilcoxon signed-rank test).
Indeed, the broad distributions in Figure 6C suggest that the
peak/trough of monophasic PSTHs could occur at the time of
peak acceleration (0.82 s) (Fig. 6C, arrow labeled “acc”), peak
velocity (1 s, “vel”), or peak deceleration (1.18 s, “dec”). Thus,
monophasic temporal profiles should not necessarily be consid-
ered as encoding only stimulus velocity.

The distributions of times of peaks (median � 0.98 s) and
troughs (median � 1.43 s) for biphasic PSTHs were also broad

Figure 5. Transient stimuli and examples of responses. A, Schematic of the 26 movement
trajectories evenly spaced in 3D, 45° apart in both azimuth and elevation. B, The 2 s translational
motion stimulus: velocity (gray curve), acceleration (black curve) and jerk (dashed-dot curve).
C, D, Example average PSTHs with monophasic-positive and monophasic-negative temporal
response profiles, respectively. E, F, Example average PSTHs with biphasic responses. Dashed
lines indicate the onset and offset of the stimulus.

Chen et al. • Responses of PIVC Neurons J. Neurosci., February 24, 2010 • 30(8):3022–3042 • 3029



(Fig. 6D, filled and hatched red bars, re-
spectively), illustrating that the peak
could occur either before or after the
trough, and both peaks and troughs could
be aligned to peak stimulus acceleration,
velocity, or deceleration (Fig. 6D, ar-
rows). The time difference between the
peak and trough of each biphasic response
had a much tighter distribution that was
significantly bimodal ( p_uni � 0.01, uni-
formity test; p_bi � 0.59, modality test),
with the two modes corresponding to av-
erage time differences of �0.62 � 0.01 s
(mean � SE) and 0.52 � 0.01 s (mean �
SE) (Fig. 6E). For most (210/291) bipha-
sic responses, the peak occurred before
the trough (as in the example of Fig. 5E).

Most PIVC cells showed significant
temporal response modulation along
multiple motion directions. This is illus-
trated in Figure 6F, which plots the distri-
bution of the number of stimulus
directions having significant response
modulation for each of the 220 responsive
cells. Some cells (24/220, 11%) had only a
small number (�5) of responsive direc-
tions. Others (54/220, 25%) showed sig-
nificant response modulation along most
stimulus directions (	20). In Figure 6, G
to I, the distribution of number of signif-
icant directions per cell is broken down by
the type of temporal modulation. Most cells
had many significant directions with posi-
tive monophasic responses (median � 9)
(Fig. 6G). In contrast, most cells had at most
a few (and typically zero) significant nega-
tive monophasic (Fig. 6H) or biphasic (Fig.
6I) response profiles. The low proportions
of negative-going responses per cell is likely
due to the relatively low spontaneous rates
of PIVC neurons (Fig. 6B). Overall, positive monophasic temporal re-
sponses to transient stimuli were predominant, with a range of peak
response times relative to stimulus velocity and acceleration.

Responses to 3D transient translation: dynamics of 3D
direction tuning
We now consider the pattern of temporal responses across all
stimulus directions, to characterize how directional tuning
changes with time during the response. We start with a few
examples that illustrate the range of spatiotemporal response
patterns observed across the population. Figure 7, A and B,
shows the average PSTHs of two example cells for all 26 direc-
tions of translation, where each PSTH corresponds to a particular
stimulus direction [azimuth, elevation] in spherical coordinates.
The cell of Figure 7A responds significantly to only 8 motion
directions, 7 of which are monophasic-positive and 1 monophasic-
negative. Red dashed lines show the peak response time for this
neuron (see Materials and Methods), which is defined as the
25 ms time bin at the center of the 400 ms time window that
produces the largest departure in firing rate from the baseline
response (peak time � 0.94 s for the cell of Fig. 7A).

The 3D directional tuning of this neuron, computed at the
peak time, is shown as a color contour map in Figure 7C. In this

map, mean firing rate (represented by color) is plotted as a
function of azimuth and elevation. This cell was significantly
tuned for direction of translation (ANOVA, p � 0.01) and
exhibited broad tuning with a preferred direction (computed from
the vector sum) at 39° azimuth and 23° elevation, corresponding to a
rightward and slightly downward motion trajectory. We refer to
neurons with this type of spatiotemporal tuning as “single-peaked”
cells.

Figure 7B shows PSTHs for a PIVC cell with responses that
were consistently suppressed for most (20/26, p � 0.01) direc-
tions of translation. This cell did not show significant directional
tuning (Fig. 7D), either at peak time (in this case, the time of
minimum firing rate) or at any other time during the 2 s motion
profile. We refer to this type of neuron as “inhibitory, not tuned.”

Additional examples of cells with significant 3D directional
tuning at peak time (ANOVA, p � 0.01) are shown in Figure 8. As
illustrated by the examples in Figure 8, A to C, many cells showed
unimodal directional tuning; i.e., their direction tuning profile
had a single peak, which could be quantified by the vector sum of
responses. However, other cells with significant tuning had bi-
modal direction tuning profiles (Fig. 8D–F). Overall, we encoun-
tered 40/220 of these single-peaked cells with bimodal direction
tuning. These cells respond maximally to two motion directions,

Figure 6. Summary of temporal response modulation during 3D transient translational motion. A, Prevalence of monophasic
positive (green), monophasic negative (black) and biphasic (red) temporal modulation profiles for all responsive motion directions
( p � 0.01) in 220 cells. B, Histograms of spontaneous firing rates for monophasic positive, monophasic negative and biphasic
responses; differences between groups were statistically significant ( p � 0.001, Wilcoxon signed-rank test). C, Distribution of
peak latency for monophasic responses. Vertical arrows mark the times of peak stimulus acceleration (“acc,” at 0.82 s), velocity
(“vel,” at 1 s), and deceleration (“dec,” at 1.18 s). D, Distributions of peak response latency for biphasic responses. Red filled bars
represent peaks; red hatched bars represent troughs. E, Distribution of the time difference between the peak and trough of biphasic
responses. Vertical arrows mark the corresponding timing differences between peak stimulus acceleration and deceleration.
F, Distribution of the number of stimulus directions that elicit significant responses for each responding cell (n � 220). G–I,
Distributions of the number of significant response directions, now separated for monophasic-positive (G), monophasic-negative
(H ), and biphasic (I ) response profiles, respectively.
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typically 180° apart. As such, we did not attempt to quantify their
directional preferences using the vector sum approach.

As described below, we frequently observed cells with two
opposite directional preferences at different times. A potential
concern is that spatially bimodal cells (Fig. 8D–F) might be an
artifact of computing direction tuning using a 400 ms time win-

dow. Thus, we also computed directional
tuning using smaller time windows (100
and 200 ms), but found that most single-
peaked bimodal cells (34/40) retained bi-
modal direction tuning using the smaller
time bins. Thus, we conclude that single-
peaked bimodal cells are a genuine class of
PIVC neurons having two direction pref-
erences that occur simultaneously in time.

As alluded to above, many PIVC neu-
rons showed different directional tuning
at different times during the response. Fig-
ure 9 illustrates an example of this type
of spatiotemporal tuning. This neuron
responded significantly to 22/26 motion
directions, including 20 monophasic-
positive responses and 2 biphasic re-
sponses. The peak time was 0.80 s (vertical
red dashed lines), corresponding to the
response maximum at [azimuth, eleva-
tion] � [0, 0°] (Fig. 9A, red box). The 3D
directional tuning of this cell at the peak
time of 0.80 s is nicely unimodal (Fig. 9B).
Closer inspection of the PSTHs in Figure
9A shows, however, that some of the
PSTHs have a clear response maximum
later in time (Fig. 9A, green box, peak at
1.34 s). This pattern is mainly seen for
motion directions around [azimuth, ele-
vation] � [180, 0°]. When the 3D direc-
tion tuning is computed from responses
centered on the time bin at 1.34 s, a com-
pletely different tuning profile emerges
(Fig. 9C). Whereas the early responses
(0.80 s bin) have a direction preference
(computed by vector sum) at an azimuth
of �2.8° and an elevation of 14.4° (Fig.
9B), the direction preference of the late
responses is shifted by �180° to an azi-
muth of �175.7° and an elevation of
�2.6° (Fig. 9C). The difference in 3D di-
rection preference between the two time
windows for this cell was 166.3°.

Note that the two peaks of directional
tuning in Figure 9 occur earlier (0.80 s)
and later (1.34 s) than the time at which
stimulus velocity peaks (1 s), and closer to
the times of peak and trough acceleration
(0.82 and 1.18 s, respectively) (Fig. 5B).
Thus, although the response PSTHs of
this neuron were mostly monophasic pos-
itive, rather than biphasic, this cell’s spa-
tiotemporal response profile appears
more consistent with coding of accelera-
tion/deceleration than stimulus velocity.
This conclusion is further reinforced by
the �180° spatial change in preferred di-

rection between the two peaks, as acceleration-related responses
would be expected to reverse sign on opposite sides of the peak
velocity. We call cells such as the one in Figure 9 “double peaked”
to distinguish them from the single-peaked cells in Figures 7A
and 8. Note that, unlike single-peaked bimodal cells, where the
two opposite directional preferences occur simultaneously in

Figure 7. Responses of two PIVC neurons to 26 directions of transient translational motion. Azimuth and elevation are
defined as in Figure 4. A, Average response PSTHs for a single-peaked neuron. Vertical dashed red lines indicate the peak
time (0.94 s) when the maximum response across directions occurred. B, Average response PSTHs for a neuron with
inhibitory responses. Vertical dashed red lines indicate the peak time (1.2 s) when the minimum response across directions
occurred. C, Color contour map showing 3D directional tuning (Lambert cylindrical projection) at peak time for the cell in A
(DDI � 0.77). Tuning curves along the margins of the color map illustrate mean firing rates plotted versus elevation or
azimuth (averaged across azimuth or elevation, respectively). D, Color contour map showing spatial tuning at peak time of
the inhibitory neuron in B; the cell was not significantly direction–selective at the peak time (shown) nor at any other time
during the 2 s duration of the motion stimulus.
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time (i.e., within �25 ms of each other),
the two directional peaks of double-
peaked cells are distinct in time, and thus
can be independently quantified.

A handful of cells were characterized
by three distinct temporal peaks of directional
selectivity. The PSTHs of one such triple-
peaked cell, which had 12 monophasic-
negative and 10 biphasic response directions,
are illustrated in Figure 10A. Three times
with distinct spatial tuning were identi-
fied, occurring at 0.64 s (vertical green
lines), 1.14 s (vertical red lines), and
1.51 s (vertical blue lines). The corre-
sponding 3D directional tuning profiles
for each of these times are shown in Figure
10B (direction preference at azimuth �
�50.7° and elevation � �67.1°), Figure
10C (preference at azimuth � 124.6° and
elevation � 60.1°), and Figure 10D (prefer-
ence at azimuth � �73.3° and elevation �
�58.7°), respectively. Note that the direc-
tional tuning for the second peak has a pref-
erence that is �180° away from the
direction preferences of first and last peak
times. The spatiotemporal profile of such
triple-peaked cells may be consistent with
coding the derivative of linear acceleration
(jerk; see below).

The frequency of occurrence of each
cell type is summarized in Figure 11A.
There were a total of 31 inhibitory cells
(31/220, 14.1%), 20 with directional tun-
ing (ANOVA, p � 0.01) and 11 cells that
were not tuned at any time during motion
(Fig. 11A, dark and light gray, respec-
tively). The remaining 189 cells had exci-
tatory responses along at least two nearby
directions and have been subdivided as
follows: 105 cells (48% of the 220 respon-
sive neurons) were single peaked, 69 cells
(31.4%) were double peaked, and 4 cells
(1.8%) were triple peaked (Fig. 11A). Fi-
nally, 11 of the excitatory cells were not
significantly tuned (ANOVA, p 	 0.01) at
any time during the motion profile (Fig.
11A, dark blue).

Cells with significant directional tun-
ing (ANOVA, p � 0.01) were further sub-
divided based on whether the spatial
tuning was unimodal (Figs. 7A, 8A–C, 9,
and 10) or bimodal (Fig. 8D–F) (see Ma-
terials and Methods). For single-peaked
cells, more than half (65/105, 62%) were
unimodal (Fig. 11A, green), whereas the
remainder (40/105, 38%) were bimodal.
Nearly all double-peaked cells (66/69)
showed unimodal spatial tuning during at least one peak of direc-
tional tuning,and84%(58/69)showedunimodaldirectional tuningfor
both peak times. With the exception of the first peak for one cell, all
triple-peaked cells showed unimodal direction tuning. Because of the
low incidence of bimodal directional tuning, double-peaked and triple-
peaked cells were not further subdivided in the chart of Figure 11A.

For double-peaked cells, we measured the change in preferred
direction as the difference between the two distinct peaks of 3D
spatial tuning. As for the example cell of Figure 9, the two peaks of
spatial tuning for all double-peaked cells were opposite in direc-
tion (Fig. 11B). On average, the change in direction was 159.5 �
1.5° (mean � SE), indicating that most cells show a complete

Figure 8. A–F, 3D translational direction tuning for six example neurons with unimodal (A–C) and bimodal (D–F ) spatial
tuning. Preferred directions (computed by vector sum) were [azimuth, elevation] � [�60.3, 36.0°], [�82.4, �43.4°] and
[�138.2, �63.2°] for the unimodal cells in A–C, respectively (DDI � 0.88, 0.86, and 0.88, respectively). The corresponding DDIs
for the bimodal cells in D–F were 0.64, 0.65, and 0.79.

Figure 9. Spatiotemporal responses for a double-peaked neuron. A, Average PSTHs for each of 26 directions of translation. The
PSTH in the red square illustrates the first response peak occurring at t � 0.80 s (vertical red lines); the PSTH in the green square
illustrates a second response peak occurring at t � 1.34 s (vertical green lines). B, C, Color contour maps showing the 3D tuning at
the two peak times indicated in A. The tuning for the first peak (red square in A) is shown in B, with a direction preference at
azimuth �2.8° and elevation 14.4° (DDI � 0.92). The tuning for the second peak (green square in A) is shown in C, with a direction
preference at azimuth �175.7° and elevation �2.6° (DDI � 0.86). The difference in direction preference between the two peaks
is 166°.
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direction reversal. These two peaks of directional tuning are gen-
erally not of equal strength, as illustrated by the fact that most
data points fall below the diagonal in the scatter plot of the re-
spective DDIs (Fig. 11C). The DDI of the early peak was signifi-
cantly greater (meaning stronger direction selectivity) than that
of the later peak (Wilcoxon rank test, p � 0.001), with DDI values
averaging 0.79 � 0.01 (mean � SE) and 0.75 � 0.01 (mean �
SE), respectively. Another measure of tuning strength, the mag-
nitude of the vector sum, gave similar results, with average values
of 299.8 � 24 (mean � SE) spikes/s/G for the early peak and
183.8 � 14 (mean � SE) spikes/s/G for the late peak ( p � 0.001,
Wilcoxon rank test; data not shown).

Figure 11, D to F, summarizes the times of peak directional
tuning for single-peaked, double-peaked, and triple-peaked cells
(see also Table 3). The peak time of single-peaked cells averaged
0.98 � 0.02 s (mean � SE) for unimodal cells (Fig. 11D, cyan)
(n � 65) and 0.99 � 0.02 s (mean � SE) for bimodal cells (Fig.
11D, green) (n � 40); this difference was not significant ( p �
0.81, Wilcoxon rank test). Moreover, the average peak time for
single-peaked cells does not differ significantly from the time of
peak stimulus velocity (1 s) ( p 	 0.05, Wilcoxon rank test) and
occurs significantly later than peak acceleration (0.82 s) ( p �
0.001, Wilcoxon rank test). The average durations of each period
of directional tuning were 0.62 � 0.03 s (mean � SE) and 0.52 �
0.03 s (mean � SE) for unimodal and bimodal cells, respectively
(Table 3).

Figure 11E shows the distribution of the two peak times for
double-peaked cells. Average values of the early and late peak
times were 0.79 � 0.01 s (mean � SE) (filled orange bars) and
1.27 � 0.01 s (mean � SE) (hatched orange bars), respectively.
These values are close to, but significantly different from ( p �

0.009 and p � 0.001, respectively; Wil-
coxon rank test), the times of peak accel-
eration and deceleration (0.82 and 1.18 s,
respectively) (Fig. 11E, black curve). For
double-peaked cells, the shift in direction
preference was rapid: the time difference
between the end of the first period of di-
rectional tuning and the beginning of the
second period averaged 54.0 � 5.3 ms
(mean � SE) (range: 25–300 ms).

For triple-peaked cells (Fig. 11F), the
peak times were on average 0.65 � 0.03 s
(mean � SE) (hatched red bars), 1.12 �
0.03 s (mean � SE) (filled red bars), and
1.50 � 0.03 s (mean � SE) (open red
bars). By comparison, the three peaks of
the derivative of linear acceleration (jerk)
occurred at 0.69, 1, and 1.31 s (Fig. 11F,
dash-dot line). The shifts between peaks
of directional tuning were also rapid for
triple-peaked cells, with the average times
for the two direction reversals being
58.3 � 8.3 ms (mean � SE) and 41.7 � 8.3
ms (mean � SE), respectively. Thus, the
pattern of reversals in direction prefer-
ence and the timing of the multiple peaks
of spatial tuning suggest that single-
peaked responses are most closely related
to velocity, whereas double-peaked cells
carry information about acceleration/de-
celeration, and triple-peaked cells likely
relate to the jerk of the movement. These

results suggest a coding scheme that differs substantially from
that seen in the vestibular periphery—acceleration and jerk may
be represented in the temporal sequence of periods of directional
selectivity rather than in the shape of the temporal response pro-
file (PSTH) itself.

Relationship between sinusoidal and transient
translation responses
The findings of second-harmonic cells during sinusoidal oscilla-
tions and cells with multiple periods of directional tuning during
transient displacements raise the question of whether the two
observations are related. More specifically, is it the double/triple-
peaked cells, the bimodal singled-peaked cells or the spatially
untuned cells that exhibit second harmonic modulation? Figure
12, A, B, and E and C, D, and F, shows two typical example cells,
comparing the sinusoidal and transient data. The example cell in
Figure 12, A, B, and E, is dominated by first harmonic modu-
lation during 0.5 Hz sinusoidal translation (Fig. 12 A) and was
classified as double peaked during transient translation (Fig.
12 B). This cell’s 3D translation tuning (shown for the second
peak time in Fig. 12 B, vertical red dashed lines) is unimodal,
with a preference for vertical translation (Fig. 12 E). Note that
the presence of multiple peaks of directional tuning does not
result in second harmonic sinusoidal modulation, as long as
the peaks are discrete in time (double-peaked cells). In con-
trast, the cell in Figure 12, C, D, and F, is dominated by second
harmonic modulation and is characterized by a single tempo-
ral peak of directional tuning with a bimodal spatial tuning
profile.

Figure 13 summarizes these relationships for all cells with
significant modulation under both conditions (see also Table 4).

Figure 10. Responses of a triple-peaked neuron. A, Average PSTHs for the 26 motion directions. Green, red, and blue vertical
lines mark three distinct peak times. B–D, Color contour maps showing 3D tuning at the three peak times in A. Preferred directions
were [azimuth, elevation]: [�50.7,�67.1°] (B), [124.6, 60.1°] (C), and [�73.3,�58.7°] (D). The corresponding DDI values were
0.83, 0.77, and 0.75, respectively.
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There is a robust negative correlation be-
tween tuning strength during transient
motion (measured with DDI) and the sec-
ond harmonic distortion (ratio f2/f1) (r �
�0.68, p � 0.001). In addition, there is a
clear tendency for double-peaked, triple-
peaked, and single-peaked unimodal cells
to be characterized by f2/f1 ratios that are
less than unity. In contrast, single-peaked
bimodal and untuned cells tend to be
characterized by f2/f1 	 1 (Fig. 13; see also
Table 4 for details).

Recall that the f2/f1 ratio depended on
cell location within the lateral sulcus: up-
per bank cells had smaller ratios than
lower bank cells, and there was a weak ten-
dency for medially located cells to have
smaller f2/f1 ratios (Fig. 3). Here we also
examine the relationship between tuning
strength and cell location, and this com-
parison is done for both the right hemi-
sphere of monkey J and the left
hemisphere of monkey U, both of which
were extensively explored (Fig. 14). In
agreement with the sinusoidal results,
cells in the upper bank had a larger aver-
age DDI value (0.73 � 0.01 SE, n � 104)
than those in the lower bank (0.62 � 0.01
SE, n � 111), and this difference was sig-
nificant ( p � 0.001, Wilcoxon rank test,
data pooled across animals). In addition,
there was a significant correlation between DDI and the medial–
lateral coordinates (monkey J: r � �0.46, p � 0.001) (Fig. 14A)
(monkey U: r � 0.16, p � 0.07) (Fig. 14C); medial cells were
more strongly tuned than lateral cells. No such relationship was
seen along the anterior–posterior dimension (monkey J: r �
�0.08, p � 0.39) (Fig. 14B) (monkey U: r � 0.04, p � 0.62) (Fig.
14D). Note that, because of differences in placement of the re-
cording grid, the anterior/posterior extent of the recordings was
different in animals J and U. The most anterior parts of the lateral
sulcus (coordinates 2–5 mm) were only explored in animal J,
whereas the most posterior parts of the lateral sulcus (coordinates
�4 to �8 mm) were only explored in monkey U. Nevertheless,
the majority of the data were collected more centrally in the lat-
eral sulcus within an area that overlapped in the two monkeys.

Responses to 3D transient rotation
Whenever cell isolation was maintained after the 3D transient
translation protocol was completed, neurons were further tested
with 3D transient rotations (see Materials and Methods). Results
are summarized in Figure 15. Among 151 cells tested with the
transient rotation protocol, 106 cells passed the criterion for sig-
nificant temporal modulation (see Materials and Methods). As
illustrated in Figure 15A, most cells (70/106, 66.0%) were single
peaked (unimodal or bimodal, in approximately equal numbers),
5 (4.7%) were double peaked, 14 (13.2%) were inhibited, and 17
(16.0%) were excitatory but not significantly tuned. The peak
times for unimodal and bimodal single-peaked cells averaged
1.09 � 0.03 s (mean � SE) and 1.08 � 0.04 s (mean � SE),
respectively (Fig. 15B), which were not significantly different
from the time of peak stimulus velocity (p 	 � 0.02, Wilcoxon
signed rank test). The distribution of peak times is not shown for
double-peaked cells due to the small number of neurons; but see

Table 3). Finally, similar to translation, unimodal single-peaked
and double-peaked cells were generally characterized by single
harmonic modulation, while the single-peaked bimodal and un-
tuned cells showed second harmonic modulation in response to
sinusoids (Fig. 15C, Table 4).

Similar to translation tuning, cells recorded from the upper
bank had higher DDI values for rotation (mean � SE: 0.64 �
0.02, n � 35) than cells recorded from the lower bank (0.60 �
0.02, n � 77) ( p � 0.001, Wilcoxon rank test). Cells recorded
from the tip of the lateral sulcus (n � 39) had a mean DDI value
0.60 � 0.02 SE. For the right hemisphere of monkey J, there was a
significant correlation between rotational DDI values and medial–

Figure 11. Population summary of the spatiotemporal tuning in response to transient 3D translation. A, Categories of tuning
among responsive cells (n � 220). B, Distribution of the 3D difference in preferred direction (�� Preferred direction�) between the
two distinct spatial tuning peaks of double-peaked cells; data are shown for 58/69 double-peaked cells with direction tuning that
was unimodal at both peak times. C, Scatter plot of the DDI characterizing the strength of directional tuning at the two peak times
of double-peaked cells. Filled symbols represent cells with unimodal spatial tuning for both peak times (n � 58). Open symbols
represent cells with bimodal spatial tuning for at least one of the peak times (n � 11). D, Distribution of peak times for single-
peaked cells. Green bars: cells with unimodal spatial tuning (n � 65); cyan bars: cells with bimodal spatial tuning (n � 40).
E, Distribution of peak times for double-peaked cells (n � 69). Solid and hatched bars indicate the first and second peak times,
respectively. F, Distribution of peak times for triple-peaked cells (n � 4). Stimulus velocity (gray), acceleration (black) and jerk
(dashed-dotted line) profiles are overlaid in D–F. Distributions of the second peak times for double-peaked and triple-peaked cells
have reversed polarity (negative ordinate values) for illustrative purposes.

Table 3. Summary of peak time and spatial peak duration

Peak time (s) Peak duration (s)

Mean � SE Range Mean � SE Range

Translation
Single peaked (n � 105)

Unimodal (n � 65) 0.98 � 0.02 0.63�1.41 0.62 � 0.03 0.18�1.45
Bimodal (n � 40) 0.99 � 0.02 0.66�1.31 0.52 � 0.03 0.25�0.85

Double peaked (n � 69)
First peak 0.79 � 0.01 0.66�1.31 0.63 � 0.01 0.35�0.92
Second peak 1.27 � 0.01 1.06�1.58 0.56 � 0.02 0.22�0.90

Triple peaked (n � 4)
First peak 0.65 � 0.02 0.61�0.69 0.50 � 0.02 0.45�0.55
Second peak 1.12 � 0.02 1.08�1.16 0.48 � 0.04 0.38�0.55
Third peak 1.50 � 0.03 1.46�1.58 0.41 � 0.06 0.32�0.60

Rotation
Single peaked, bimodal

(n � 36)
1.08 � 0.04 0.78�1.34 0.46 � 0.04 0.18�0.72

Single peaked, unimodal
(n � 34)

1.09 � 0.03 0.81�1.74 0.61 � 0.04 0.28�1.32
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lateral coordinates (r � �0.29, p � 0.01),
such that tuning strength was greater me-
dially. This relationship was not signifi-
cant for the left hemisphere of monkey U
and there was no correlation for either an-
imal along the anterior/posterior dimen-
sion ( p 	 0.05).

Relationship between rotation and
translation tuning
A subset of cells was tested with both the
rotation and translation protocols, thus
allowing a direct comparison between ro-
tation and translation selectivity. For 92
cells with significant single harmonic
modulation for both translation and rota-
tion using 0.5 Hz sinusoidal motion, there
was a clear tendency for translation and
rotation direction preferences to differ
by � 90°. This was true when considering
either the azimuth component of the pre-
ferred direction (Fig. 16A) or the differ-
ence in the corresponding 3D preferred
directions (Fig. 16B). Specifically, the dis-
tribution of azimuth difference between
rotation and translation was bimodal
( p � 0.001, uniformity test; p_uni � 0.006;
p_bi � 0.72, bimodality test) and clustered
around �90° (Fig. 16A, marginal distri-
bution along the diagonal). For example,
cells that prefer left-right translation (0°
or �180°) (Fig. 16A, abscissa) also prefer
roll rotation (�90°) (Fig. 16A, ordinate).
Similarly, cells that prefer forward/back-
ward translation (�90°) tend to prefer
pitch rotation (0° or �180°). These rela-
tionships persist in 3D, where the absolute
difference in 3D direction preference be-
tween rotation and translation (now ex-
pressed in the interval [0, 180°]) was not
uniformly distributed ( p � 0.001, uniformity
test), but was rather unimodal ( p_uni � 0.91,
modality test), with a mean of 86.2° � 2.9
(mean � SE) (Fig. 16B).

Qualitatively similar results were ob-
served using the 3D transient protocols.
For 35 cells with significant temporal
modulation and unimodal tuning under
both the transient translation and rota-
tion protocols, there was a tendency for
translation and rotation preferences to
differ by �90° (Fig. 16C), although the
distribution of differences in azimuth
preferences was not significantly different

Figure 12. A–F, Examples of cells with first harmonic (A, B, E) and second harmonic (C, D, F ) responses, as tested during both
sinusoidal and 3D transient translation protocols. A, Average response PSTHs of a double-peaked cell during sinusoidal translation
(0.5 Hz); the cell modulated during fore–aft (198.4 spikes/s/G, p_f1 � 0.01, p_f2 	 0.01, f2/f1 � 0.2, middle) and up– down (250
spikes/s/G, p_f1 � 0.01, p_f2 	 0.01, f2/f1 � 0.4, right) motion but not lateral motion ( p_f1 	 0.01, p_f2 	 0.01, left). Hacc,
Head acceleration. B, Average response PSTHs during transient translation of the same double-peaked cell; red lines indicate the
second peak time (1.2 s) when the maximum response across all directions occurred. C, Average PSTHs of a second harmonic cell,
responding to all directions of sinusoidal translation, namely, lateral ( p_f1 	 0.01, p_f2 � 0.01, f2/f1 � 4.9), fore–aft ( p_f1 	
0.01, p_f2 � 0.01, f2/f1 � 4.6), and up– down ( p_f1 	 0.01, p_f2 � 0.01, f2/f1 � 3.1). D, Average response PSTHs for transient
stimuli, showing significant temporal modulation along most (21/26) directions. Vertical red lines illustrate peak time (0.96 s).
E, Color contour map showing 3D tuning for the second peak time (DDI � 0.84) for the cell shown in A and B. The cell’s tuning was

4

unimodal ( p_uni 	 0.05, modality test), with a preferred di-
rection at azimuth �83.9° and elevation 76.9°.The spatial
tuning for the first peak time (data not shown) was also uni-
modal (DDI � 0.78), with a preferred direction at azimuth
11.6° and elevation �53.8°. F, Color contour map showing 3D
spatial tuning at peak time for the second harmonic cell shown
in C and D; tuning was spatially bimodal (DDI � 0.72).
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from uniform ( p � 0.25, uniformity test). The difference in 3D
direction preferences was, on average, 90.2° � 5.4 (mean � SE),
and the distribution was unimodal and significantly nonuniform
( p � 0.001, uniformity test; p_uni � 0.18, modality test). These
results suggest that rotation and translation preferences in PIVC
are spatially coordinated such that each cell preferring a given
translation direction also responds maximally to rotations about
an axis that is approximately perpendicular to the translation

preference. This relationship is not typically seen for thalamus
(Meng et al., 2007) and vestibular nuclei neurons in the macaque
(Dickman and Angelaki, 2002; Bryan and Angelaki, 2009), but
has been reported for vestibular nuclei neurons in the rat (An-
gelaki et al., 1993; Bush et al., 1993).

Comparison of responses during free viewing in darkness
versus fixation
To examine whether eye movement conditions modulate the ba-
sic response properties of PIVC neurons, a subpopulation of cells
(n � 41 for translation, n � 31 for rotation) were tested under
both a visual fixation condition in which animals suppressed
their vestibulo-ocular reflex (VOR) and a free viewing condition
in complete darkness during which animals generated VOR-
induced eye movements. Results are compared in Figure 17. Peak-
to-trough response modulation (Rmax � Rmin) in darkness was not
significantly different from that during fixation [p � 0.81 (Fig.
17A); p � 0.40 (Fig. 17B), Wilcoxon signed-rank test]. However,
tuning strength at peak time, as measured with DDI, was modestly
but significantly lower in darkness than during fixation ( p � 0.001,
Wilcoxon rank test) for both translation (Fig. 17C) and rotation
(Fig. 17D). This occurs because response variability is larger in dark-
ness than during fixation ( p � 0.001, Wilcoxon signed-rank test)
and the DDI measure incorporates variability.

Finally, differences in direction preference between the fix-
ation and darkness conditions were small for cells that were
significantly tuned under both conditions [median direction dif-
ference: 12.2° for translation (Fig. 17E); and 17.8° for rotation

Figure 13. Comparison between sinusoidal responses (f2/f1 ratio) and 3D tuning (DDI). Each
point in the scatter plot corresponds to one cell, and symbol shape/color reflects its classification
as inhibitory (tuned or not tuned, filled or open gray circles, respectively), excitatory but not
tuned (open blue circles), excitatory single peaked (bimodal/unimodal, cyan triangles/green
circles), double peaked (orange circles), or triple peaked (red circles). The top panels show the
distribution of f2/f1 ratios for inhibitory (tuned and not tuned; gray bars) and excitatory not
tuned cells (top histogram; blue bars), single-peaked cells (middle histogram; cyan and green
bars), and double-peaked and triple-peaked cells (bottom histograms; orange and red bars,
respectively).

Table 4. Summary of sinusoidal responses (f2/f1 ratio) and 3D tuning (DDI) of
different cell groups

DDI (mean � SE)
f2/f1 ratio
(geometric mean � SE)

Translation
Inhibitory

Not tuned (n � 7) 0.62 � 0.02 2.07 � 0.76
Tuned (n � 7) 0.65 � 0.02 0.48 � 0.47

Excitatory
Not tuned (n � 3) 0.53 � 0.03 2.63 � 0.66
Single peaked

Bimodal (n � 28) 0.69 � 0.03 1.60 � 1.14
Unimodal (n � 13) 0.76 � 0.02 0.48 � 0.47

Double peaked (n � 49) 0.81 � 0.01 0.25 � 0.30
Triple peaked (n � 4) 0.76 � 0.02 0.15 � 0.95

Rotation
Inhibitory

Not tuned (n � 5) 0.48 � 0.02 3.59 � 1.09
Tuned (n � 2) 0.58 � 0.03 0.11 � 0.47

Excitatory
Not tuned (n � 3) 0.57 � 0.01 2.81 � 0.67
Single peaked

Bimodal (n � 10) 0.65 � 0.03 2.49 � 1.09
Unimodal (n � 12) 0.69 � 0.02 0.48 � 0.47

Double peaked (n � 3) 0.76 � 0.04 0.17 � 0.98

Figure 14. Relationship between tuning strength, as measured by DDI, and cell location within
the lateral sulcus. A–D, Scatter plots of DDI (measured at the time when the maximum response
across directions occurred) as a function of medial–lateral (A, C) and anterior–posterior (B, D)
stereotaxic coordinates (shown in millimeters) for cells recorded in the right hemisphere (RH) of
monkey J (top, n �113) and the left hemisphere (LH) of monkey U (bottom, n �122). To make
the data more comparable between the two monkeys, the medial–lateral coordinates on the
x-axis for monkey U (C) were reversed to run from positive to negative. Because of differences in
placement of the recording grid, the anterior/posterior extent of the recordings was slightly
different in animals J and U. Red symbols: upper bank; green symbols: tip; blue symbols: lower
bank cells. Filled symbols indicate cells with significant spatial tuning during translation
(ANOVA, p � 0.01). Open symbols denote cells that were either not spatially tuned (ANOVA,
p 	 0.01) or did not pass the criterion for significant temporal modulation.
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(Fig. 17F)]. Thus, PIVC responses to ves-
tibular stimuli have similar response
modulation and directional preferences
between fixation and darkness, although
responses are more variable in darkness
leading to greater DDI values in the fixa-
tion condition. These results suggest that
rotation and translation responses mainly
arise from vestibular (and/or somatosen-
sory) cues rather than VOR suppression
or pursuit-like signals. It should be noted,
however, that the greater response vari-
ability during free viewing in darkness
might result from eye movement signals
in PIVC.

Responses to translational and
rotational optic flow
For a subpopulation of PIVC neurons
(n � 74 for translation, n � 79 for rota-
tion), we also measured responses to optic
flow using an experimental protocol in
which the same set of directions of trans-
lation or rotation were simulated using
optic flow (see Materials and Methods
and Gu et al., 2006; Takahashi et al.,
2007). Data from two example neurons
are shown in Figure 18. The cell in Figure
18, A and C, is one of only two neurons
that exhibited significant temporal mod-
ulation and direction tuning in response
to transient translations simulated by op-
tic flow, preferring downward and left-
ward movements (azimuth � �171.6°,
elevation � 54.6°). The cell in Figure 18, B
and D, was more characteristic of the pop-
ulation in that it did not show any signif-
icant response to optic flow simulating
translation, although it showed robust
vestibular modulation (same cell as in Fig.
12A,B,E).

As summarized in Figure 18, E and F,
the vast majority of PIVC cells were like
the cell in Figure 18, B and D. Of 96 cells
tested with visual translation and/or rota-
tion, only 13 cells (monkey J: n � 2; mon-
key U: n � 11) showed significant
temporal response modulation for some
direction of motion. Most of these neu-
rons showed weak inhibitory or excitatory
responses to all directions of motion.
Only 2/74 cells tested during translation
and 0/78 cells tested during rotation
showed significant directional tuning for
optic flow (Fig. 18A,C). Notably, the
larger number of visually modulated cells
in monkey U might be explained by the
fact that penetrations in this animal ex-
tended several mm more posterior than
those in monkey J (Fig. 14B,D). Indeed,
there was a significant correlation between
visual DDI and the anterior–posterior coor-
dinate of the electrode penetrations for both

Figure 15. Population summary of the spatiotemporal responses to 3D rotation. A, Classification of responsive cells (n �
106). B, Distribution of the peak times for single-peaked cells. Green bars: cells with unimodal spatial tuning (n � 34); cyan
bars: cells with bimodal spatial tuning (n � 36). C, Scatter plot of tuning strength (DDI at peak time) during transient
rotation versus the f2/f1 ratio from sinusoidal rotation responses. Each point in the scatter plot corresponds to a cell, and
symbol shape/color reflects its classification as inhibitory (tuned or not tuned, filled or open gray circles, respectively),
excitatory but not tuned (open blue circles), excitatory single peaked (bimodal/unimodal, cyan triangles/green circles), or
double peaked (orange circles).

Figure 16. Comparison of direction preferences between translation and rotation. A, C, Scatter plots comparing azimuth
preferences for rotation and translation, shown for sinusoidal (n � 92) and transient (n � 35) responses, respectively. Solid and
dashed lines illustrate 0 and �90° differences between the preferred directions, respectively. Marginal distributions along the
diagonal show the difference in preferred azimuth between translation and rotation. B, D, Histograms of the absolute differences
in 3D direction preference between rotation and translation for sinusoidal and transient responses, respectively. For double-
peaked or triple-peaked cells, preferred direction was calculated at the peak time that yielded the strongest spatial tuning. Data are
shown only for cells with significant single harmonic modulation (A, B) or significant unimodal spatial tuning (C, D) for both
translation and rotation.
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translation (r � �0.46, p � 0.003) and rotation (r � �0.28, p �
0.05) for monkey U (Fig. 18G). No significant correlation was
seen for monkey J. As elaborated in the Discussion, the most
posterior recording sites in monkey U may have extended into
VPS (visual posterior sylvian area), which is located just posterior
to PIVC and has been reported to have visual motion sensitivity.
In contrast, optic flow selectivity is conspicuously absent from
the anterior and middle portions of macaque PIVC (see
Discussion).

Reconstruction of recording locations
Figure 19 presents a summary of the recorded cells in the left
hemisphere of monkey U (Fig. 19A–D; also Fig. 1) and monkey J
(Fig. 19E,F), as projected onto a flattened brain map. Each dot
represents a cell, first identified according to the presence of au-
dible response modulation during 3D translational or rotational
sinusoidal motion (Fig. 19A,B,E; filled black symbols illustrate
responsive cells). Areas within and around the lateral sulcus are
color-coded according to the parcellation scheme of Lewis and
Van Essen (2000a,b), with the exception of the pink area, which is
taken from the atlas of Paxinos et al. (2000). This region corre-
sponds to what Pandya and Sanides (1973) and Grüsser et al.
(1990a,b) have described as “reipt” and reit,“ respectively (pari-
etal and temporal retroinsular areas). Vestibular modulation

during sinusoidal translation and/or rotation is found through-
out area Ri (dark red) and the adjacent portions of the secondary
somatosensory cortex (S2, purple). Only a handful of responsive
cells were found in the granular insular cortex (Ig, green).

Responsive neurons in monkey U have been further color-
coded based on the type of sinusoidal modulation they exhibited
(Fig. 19C): yellow dots illustrate cells that modulated at the first
harmonic of the stimulus, pink dots show cells that modulated at
the second harmonic and blue dots show cells with significant
first and second harmonic modulation. Most first-harmonic cells
were found at the border between Ri and S2 (upper bank of the
lateral sulcus), whereas most second-harmonic cells were located
in Ri (lower bank of lateral sulcus). Finally, Figure 19,D and F,
show cells recorded in the left hemisphere of monkey U and the
right hemisphere of monkey J during the transient translation
protocol. As expected, most single-peaked, unimodal (green) and
double-peaked (orange) cells are encountered at the border be-
tween Ri and S2 (upper bank of the lateral sulcus), with inhibitory
cells (gray) and both single-peaked bimodal cells and untuned
excitatory cells (blue) being more widely distributed within Ri.

Discussion
We have described robust vestibular responses to both transla-
tion and rotation in macaque PIVC. In contrast, the vast majority
of PIVC neurons did not respond to optic flow stimulation, sug-
gesting that PIVC does not play a major role in combining visual
and vestibular cues for self-motion perception. Note, however,
that combined visual-vestibular stimuli were not tested in this
study; thus, we cannot exclude the possibility that visual motion
modulates vestibular responses in PIVC.

Anatomical localization: where is macaque PIVC?
Using the parcellation scheme of Lewis and van Essen (LVE
scheme: Lewis and Van Essen, 2000a,b), most PIVC neurons were
recorded within area Ri and in the transition zones between S2, Ri
and Ig (insular granular field) (Figs. 1, 19). There are notable
differences in parcellation of these cortical areas between the LVE
scheme and the Paxinos atlas (Paxinos et al., 2000). Specifically,
the area denoted as ReI (also referred to as “reipt”) by Paxinos is
smaller than area Ri in the LVE scheme (Fig. 19, pink vs red
areas). LVE area Ri includes all of Paxinos ReI but extends ante-
riorly into part, but not all of Paxinos area S2. In the Java monkey,
Grüsser and colleagues used a nomenclature that is more consis-
tent with the Paxinos map (see also Jones and Burton, 1976;
Friedman et al., 1980; Akbarian et al., 1992): vestibular cells in
two of their animals (RV and OL) were found mostly anterior to
the fork where ReI ends and S2 begins in the Paxinos atlas. For
their third animal (FP), vestibular cells appear to be more poste-
rior, presumably in ReI (Grüsser et al., 1990b). The location of
vestibular-responsive cells in our rhesus macaques is similar to
that described by Grüsser et al. in the Java monkey: we find ves-
tibular cells largely within LVE area Ri, whereas they occupy both
areas S2 and ReI (mostly S2) of the Paxinos map.

Grüsser and colleagues concluded that “PIVC does not com-
prise a single anatomically defined area; although it covers most
of ReI, it also extends into the cervical (neck and shoulder) rep-
resentation of secondary somatosensory area of the parietal oper-
culum” (Grüsser et al., 1990b). Notably, vestibular neurons in
both our study and Grüsser’s studies are found largely within a
single area, Ri, as defined in the LVE scheme. Thus, it is possible
that functionally defined PIVC is coextensive with a single archi-
tectonically defined area (Ri). Yet, within this region, there is
some diversity of response properties. Cells located in the upper

Figure 17. A–F, Comparison of responses under conditions of complete darkness versus
visual fixation, plotted separately for translation (A, C, E) and rotation (B, D, F). All comparisons
were made at the peak time of fixation responses. A, B, Scatter plots of peak-trough response
amplitudes (Rmax � Rmin) during translation (n � 41) and rotation (n � 31), respectively. C, D,
Scatter plots of DDI for the same cells as in A and B. E, F, Distribution of the difference in
preferred direction under conditions of fixation and darkness, shown for translation (n � 16)
and rotation (n � 4), respectively. Only neurons with unimodal spatial tuning at peak time for
both fixation and darkness conditions are included in this comparison.
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bank and tip of the lateral sulcus (near the border of Ri and S2)
responded like typical vestibular neurons to sinusoidal stimuli,
modulating at the first harmonic frequency of the stimulus and
being spatially tuned to motion direction. Cells in the lower

bank often modulated at the second
harmonic frequency and either had bi-
modal directional tuning or none at all.

Otolith and canal inputs to PIVC
Our findings regarding rotation responses
in PIVC are largely consistent with previ-
ous studies in Java monkeys (Akbarian et
al., 1988; Grüsser et al., 1990b). Using
mostly yaw rotation at different frequen-
cies (0.1–1 Hz), they reported that ap-
proximately half of neurons recorded in
the upper bank of the lateral sulcus mod-
ulated during yaw rotation, with modest
response gains (mean of 0.11 spikes/s per
°/s at 0.2 Hz, Grüsser et al., 1990b). We
report that one-fifth of neurons modulate
significantly during 0.5 Hz yaw rotation.
We used a statistical criterion to define
significant response modulation, whereas
Grüsser and colleagues used a criterion of
response gain 	0.04 spikes/s/°/s. In addi-
tion, we searched for responsive cells us-
ing a single frequency (0.5 Hz) and half
the amplitude used by Grüsser and col-
leagues. Larger rotation amplitudes might
have increased our percentage of signifi-
cantly responsive neurons.

Whereas Grüsser and colleagues con-
cluded that PIVC neurons do not ex-
hibit otolith-driven responses to static
tilt (Akbarian et al., 1988; Grüsser et al.,
1990b), we show that PIVC neurons ex-
hibit robust modulation during 3D trans-
lation. We did not test whether PIVC
neurons in rhesus monkeys also lack static
tilt sensitivity. If so, PIVC neurons would
selectively signal dynamic motion rather
than head orientation relative to the grav-
ity. Future experiments using combined
tilt/translation stimuli (e.g., Angelaki et
al., 2004; Yakusheva et al., 2007) are nec-
essary to determine whether PIVC neu-
rons encode translation independent of
head orientation.

We observed greater variety in re-
sponse modulations to translation than
rotation. Responses of single-peaked neu-
rons were velocity-like, similar to rotation
responses. However, responses of double-
peaked neurons to translation had two di-
rectional preferences that were distinct in
time and opposite in direction. This rever-
sal in direction was fast (�50 ms) and the
timing of the two spatial peaks approxi-
mately followed the biphasic time course
of stimulus acceleration. We suggest that
double-peaked cells encode acceleration/
deceleration information. This coding

scheme differs markedly from that seen in the vestibular periph-
ery, where high spontaneous activity allows biphasic stimuli to be
reliably represented in neural activity. Vestibular afferents re-
spond to accelerations in one direction with an increase in dis-

Figure 18. PIVC neurons are generally unresponsive to optic flow. A–D, Example PSTHs and direction tuning profiles for two
cells, one that responded selectively to optic flow during the visual translation protocol (A, C; same cell as in Fig. 12A,B,E) and
another that did not show any response to optic flow (B, D; same cell as in Fig. 12C,D,F). Vertical red dashed lines indicate the
respective peak times (1.3 and 1.1 s, respectively). The cell in A and C had a preferred direction at azimuth �171.6° and elevation
54.6° (DDI � 0.74). The cell in B and D was not spatially tuned. E, F, Categorization of PIVC neurons by responses to optic flow
simulating translation (n � 74) and rotation (n � 78). G, Scatter plot of visual DDI plotted as a function of the anterior–posterior
coordinate of each electrode penetration (in millimeters). Data are shown for the left hemisphere of monkey U during translation
(circles, n � 38) and rotation (triangles, n � 49). Color coding of data points is as described for E and F.
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charge and to accelerations in the
opposite direction with a decrease in dis-
charge (Goldberg and Fernandez, 1971).
In contrast, a population of cortical neu-
rons with low spontaneous discharge may
rely on the spatiotemporal pattern of acti-
vation to encode acceleration and deceler-
ation components of the stimulus.

Absence of optic flow responses
in PIVC
Grüsser and colleagues reported robust
optokinetic responses in PIVC (Grüsser et
al., 1990a). They used a traditional opto-
kinetic stimulus by placing monkeys in-
side a rotating drum, thus eliciting a
pattern of tracking eye movements known
as “optokinetic nystagmus” (OKN). Op-
tokinetic responses in PIVC were typically
aligned with the vestibular rotation pref-
erence of each cell and were either syner-
gistic (firing rate increased during
leftward yaw rotation and rightward OKN
stimulation) or antagonistic (responses
opposed each other during real-world ro-
tation, Akbarian et al., 1988; Grüsser et
al., 1990b). The latter responses in PIVC
differ from those in the vestibular nuclei
(Henn et al., 1974; Waespe and Henn,
1977a,b), thalamus (Büttner and Henn,
1976) and area 2v (Büttner and Buett-
ner, 1978), where most interactions are
synergistic.

We examined optic flow responses in
PIVC using random-dot stimuli that were
viewed by fixating monkeys trained to
suppress reflexive eye movements. These
stimuli evoke robust responses in cortical
areas MSTd (Gu et al., 2006; Takahashi et
al., 2007; Gu et al., 2008) and VIP (Schlack
et al., 2002; Zhang et al., 2004; Chen et al.,
2007). Our optic flow stimuli differ sub-
stantially from traditional OKN stimuli in
their basic visual motion properties, and
also in their efficacy in driving reflexive eye movements. OKN
stimuli typically have low spatial frequencies (Schor and
Narayan, 1981; de Graaf et al., 1990), and, unlike the optic flow
used here, generate robust optokinetic nystagmus and after-
nystagmus (Cohen et al., 1977). Using random-dot stimuli, we find
that PIVC neurons do not exhibit sensitivity to optic flow, similar to
neurons in the vestibular nuclei (Sheng Liu, Ayanna Bryan and Dora
Angelaki, unpublished observations) and thalamus (Meng and An-
gelaki, 2010).

We encountered a few cells with modest optic flow responses
in the most posterior electrode penetrations in monkey U (Fig.
18G). We suspect that these penetrations extended into an area
known as the “parieto-temporal association area T3
” or VPS
(Jones and Burton, 1976; Guldin et al., 1992; Guldin and Grüsser,
1998; Dicke et al., 2008). Indeed, preliminary recordings in a
different animal that extend more posterior to Ri encounter sub-
stantially more cells that are tuned to both vestibular and visual
stimuli (Aihua Chen, unpublished observations). In squirrel
monkeys, area VPS receives projections from insular and retro-

insular cortex, parts of area 7, parieto-occipital and parieto-
temporal visual areas, the pulvinar, and a portion of the upper
bank of the temporal sulcus thought to be area MST (Akbarian et
al., 1992; Guldin et al., 1992). Although we cannot firmly exclude
the possibility that posterior portions of PIVC contain visually
responsive neurons, most (if not all) of PIVC does not.

Functions of PIVC
Grüsser and colleagues suggested that PIVC serves “to monitor
the movement of the head in space” (Akbarian et al., 1988) and is
“used for perception of head rotation” (Grüsser et al., 1990a).
This conclusion was based on convergence of vestibular, visual
(optokinetic), neck receptor, and somatosensory signals (Akbarian
et al., 1988; Grüsser et al., 1990a). Indeed, Penfield (1957) re-
ported vestibular sensations in patients by electrical stimulation
of a region deep in the lateral sulcus around the superior tempo-
ral gyrus, bordering on auditory cortex.

Macaque PIVC neurons project directly to the vestibular nu-
clei (Akbarian et al., 1994); thus, a functional role in gaze control

Figure 19. Anatomical localization of recording sites within and around the lateral sulcus. A, Lateral view of a 3D surface
reconstruction of the left hemisphere of monkey U, with cell locations mapped onto the surface and with the three major sulci (IPS,
LS, and STS) identified. Each dot corresponds to a cell, with black and white dots showing cells that were responsive and nonre-
sponsive to sinusoidal motion, respectively. B–F, show flat maps of the brain areas around the lateral sulcus for the left hemisphere
of monkey U (B–D) and the right hemisphere of monkey J (E, F). Different functional brain areas are color-coded as indicated in the
legend. The color scheme for the data points representing individual cells is as follows. A, B, E, Black dots: responsive cells; white
dots: nonresponsive cells (sinusoidal testing). C, Yellow dots: cells responding at the first harmonic to sinusoidal stimuli; pink dots:
second-harmonic cells; blue dots: cells responding at both the first and second harmonics (sinusoidal testing). D, F, Gray dots:
inhibitory cells; green dots: single-peaked unimodal cells; blue dots: single-peaked bimodal cells and untuned excitatory cells;
orange dots: double-peaked cells (transient translation testing).
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has also been suggested (Akbarian et al., 1994). Yet, neither we
nor Grüsser and colleagues noticed clear eye movement-related
responses. Finally, Brandt and coworkers have reported that pa-
tients with lesions in the presumed human homolog of PIVC
have significant impairments in perception of the visual vertical
(Brandt et al., 1994; Brandt and Dieterich, 1999). Which, if any,
of the above functions, is mediated by PIVC neurons remains to
be determined, but our results argue against a major role of PIVC
in visual-vestibular integration for self-motion perception.
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