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Abstract
Iron and its homeostasis are intimately tied to the inflammatory response. The adaptation to iron
deficiency, which confers resistance to infection and improves the inflammatory condition,
underlies what is probably the most obvious link: the anemia of inflammation or chronic disease.
A large number of stimulatory inputs must be integrated to tightly control iron homeostasis during
the inflammatory response. In order to understand the pathways of iron trafficking and how they
are regulated, this chapter will present a brief overview of iron homeostasis. A major focus will be
on the regulation of the peptide hormone hepcidin during the inflammatory response and how its
function contributes to the process of iron withdrawal. The review will also summarize new and
emerging information about other iron metabolic regulators and effectors that contribute to the
inflammatory response. Potential benefits of treatment to ameliorate the hypoferremic condition
promoted by inflammation will also be considered.
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I. Links between iron and inflammation
The rapid evolution of molecular information about iron transport and homeostasis has
uncovered a comprehensive understanding of the complex mechanisms involved in this
process. It has long been recognized that iron levels must be tightly regulated to provide an
essential nutrient that is involved in oxygen delivery, metabolism and redox regulation while
guarding against excessive levels of a primary toxicant that can generate reactive oxygen
species (ROS) to produce cellular damage and death. Unlike other essential minerals, the
delicate balance between iron nutrition and toxicity is maintained by systemic control
mechanisms that drive iron conservation and limit uptake until needs are presented – in
contrast, homeostasis of many other metals is more simply controlled by eliminating excess.
Ultimately, these features of iron and its homeostasis are intimately tied to the response to
inflammation and infection and therefore provide major survival mechanisms that are unique
in human physiology.

A large body of clinical evidence demonstrates disease susceptibility and the response to
infection and inflammation worsen with elevated iron stores. The relationships between iron
overload and infectious diseases are particularly well documented. For tuberculosis, it has
been demonstrated that parental or oral iron increase mycobacterial growth (66, 80) and that
morbidity and mortality increase in patients receiving iron supplementation (91, 120). In
fact, dietary iron is associated with occurrence and death from tuberculosis (44). Malaria is a
second example of an infectious disease that is strongly influenced by host iron status (62,
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68), and the wisdom of iron supplementation and how its judicious use might best be applied
in endemic regions is currently debated (118). Iron overload associated with hereditary
hemochromatosis has been reported to confer susceptibility to other infectious pathogens,
such as Yersinia enterocolitica and Vibrio vulnificus (10, 28, 50). Infections are more
frequent in thalassemic patients with iron overload induced by frequent blood transfusions
(49, 105). Iron status also appears to strongly influence the course of viral infections (30). In
general, iron deficiency confers relative resistance to infection with high iron status
promoting the disease state (88). An interesting evolutionary perspective is that iron
deficiency may be a protective adaptive response in areas of the world with a higher burden
of infectious disease (26).

Inflammatory chronic diseases are also profoundly influenced by iron status. Increased iron
stores are correlated with markers of chronic inflammation and other well-established risk
factors of diabetes, obesity, and metabolic syndrome (26, 40, 43, 60, 119, 152).
Atherosclerosis (171), neurodegeneration (54) and chronic liver disease (158) are frequently
associated with iron loading. This growing body of evidence is significant not only due to
the prevalence of chronic diseases in modern society, but also because modified dietary iron
or manipulation of iron status could represent simple preventive or therapeutic avenues (59,
74). For example, improvement has been found upon reduction of iron stores in diabetics by
phlebotomy or iron chelation suggesting new approaches to disease management (8, 35). It
is worth noting that iron chelation and deprivation also has been applied in cancer therapy as
well (121, 147).

The adaptation to iron deficiency, which confers resistance to infection and improves the
inflammatory condition, underlies what is probably the most obvious link between iron and
the inflammatory response: the anemia of inflammation (AI), also called the anemia of
chronic disease (ACD). Characteristics of the hypoferremic response to inflammation were
documented in the 1940s by Cartwright and colleagues (13–15). Today we recognize that
the iron regulatory hormone hepcidin is a central player in the coordinated response to
reduce systemic iron levels. It is increasingly clear that a large number of stimulatory inputs
must be integrated to tightly control hepcidin gene expression during the inflammatory
response to modulate AI and make appropriate adjustments to iron homeostasis. In order to
understand the pathways of iron trafficking and how they are regulated, this chapter will
present a brief overview of iron homeostasis. Its major focus will be on the regulation of
hepcidin during the inflammatory response and how its function contributes to the process of
iron withdrawal. The review will also summarize new and emerging information about other
iron metabolic regulators and effectors that contribute to the inflammatory response. Finally,
potential benefits of treatment to ameliorate the hypoferremic condition promoted by
inflammation will be considered.

II. Iron homeostasis: a brief overview
The majority of iron necessary to fulfill primary needs of the body is recycled from
senescent red blood cells by the reticuloendothelial system (RES). The conservation of iron
is offset by additional nutritional and/or environmental demands (e.g., pregnancy, blood
loss, hypoxia, etc.) to ultimately dictate the body’s total iron burden. This fine-tuning is
primarily adjusted through iron absorption by duodenal enterocytes. In some disease states,
e.g. hereditary hemochromatosis, homeostatic regulation is miscued such that excess iron
enters the system and balance is shifted towards overload status. Conversely, iron deficiency
evolves during the anemia of inflammation or chronic disease by limiting iron absorption
and retaining the metal in the RES.
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In general, the flux of iron through duodenal enterocytes and macrophages of the RES
involves a similar cohort of proteins and functions. The major intestinal iron importer is
divalent metal transporter DMT1 (38, 55) which is thought to require an associated
ferrireductase activity to reduce Fe(III) to Fe(II). DcytB has been proposed to fulfill this
function (84). Transfer of iron across the intestinal mucosa involves basolateral export by
ferroportin (29, 85, 170) along with its oxidation by membrane-bound hephaestin (157) or
circulating ceruloplasmin (24). Ultimately, absorbed iron is bound by serum transferrin (Tf)
for delivery to peripheral tissues by receptor-mediated endocytosis of transferrin receptor-1
(TfR1). Release of iron from the endosome also requires membrane translocation by DMT1
(37) or other transporters (48), along with the action of a ferrireductase called STEAP3
(133). For RES macrophages, iron can be delivered not only by Tf-TfR1, but also through
erythrophagocytosis. Despite differences in iron acquisition, macrophages export iron in a
manner that is similar to duodenal enterocytes in that ferroportin mediates this transport
activity in conjunction with ceruloplasmin.

The regulation of the elements involved in the movement of iron through various
compartments is critical to iron homeostasis. A central role is played by ferroportin
expression since this transporter mediates entry of iron into circulating pools from both
enterocytes (dietary absorption) and macrophages (RES recycling of heme iron obtained
from destruction of red blood cells). Flux from the latter mechanism (~ 20 mg/day) is much
greater than across the intestine (~ 2 mg/day), and this internal checkpoint provides a means
for immediate control over available and circulating serum iron with more modest
adjustments made to entry of iron from the diet to match longer term needs. Ferroportin
expression is regulated at several levels, including transcriptional and post-transcriptional
events (29, 65, 85, 170), but a primary source of regulatory control is exerted by the peptide
hormone hepcidin. Hepcidin binds to ferroportin thereby inducing its internalization and
degradation (97). The hepcidin-ferroportin axis of control presents a simple and elegant on-
off switch for export of iron across the intestinal mucosa and from RES macrophages
containing phagocytosed iron from senescent red blood cells. Thus far, the only known
consequence of hepcidin’s action is the post-translational down-regulation of ferroportin.
Circulating hepcidin levels are generally regulated by total body iron status and respond to
physiological demands. Iron deficiency and hypoxia – conditions that place iron demand –
are reflected in low hepcidin while iron loading increases its synthesis (41, 99, 101).
Importantly, infection and inflammation are also associated with increased hepdicin
production and these events ultimately link iron homeostasis to the inflammatory response
through the acquired anemia of inflammation or chronic disease.

III. Anemia of inflammation or chronic disease
The upregulation of hepcidin by inflammatory stress response pathways is a major critical
event triggering systemic iron withdrawal and sequestration due to its down-regulation of
ferroportin. Reduced ferroportin levels limit dietary iron absorption and promote iron
retention by the RES (45, 125). Characteristics of AI or ACD include hypoferremia, low
serum iron-binding capacity, and normal-to-elevated ferritin levels. Reduced iron
availability results in iron-restricted erythropoiesis. Mice that over-express hepcidin
recapitulate this response by developing iron deficiency anemia (100, 127). Patients with
glycogen storage disease type 1a (GSD1a) who have hepatic adenomas are thought to suffer
from anemia due to over-expressed hepcidin. The fact that anemia resolves when tumors are
removed supports the physiological importance of hepcidin (164). Despite the large
contribution of hepcidin, it should be recognized that other stress response pathways also
participate in the inflammatory response, including cytokine-mediated affects elicited by
tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) (165). Uncovering the molecular

Wessling-Resnick Page 3

Annu Rev Nutr. Author manuscript; available in PMC 2011 August 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



networks involved is critical to understanding the integration of different pathways into the
global response of iron status to inflammation (58).

IV. Hepcidin
Hepcidin was initially identified as liver-derived antimicrobial peptide (LEAP-1) (69, 109,
116) and immediately uncovered as a major product released in response to inflammatory
cytokines, in particular interleukin-6 (IL-6) (32, 96, 98, 101). The peptide is also produced
by cells of the immune system (e.g., macrophages and neutrophils) during the innate
immune response through a toll-like receptor-4 (TLR-4) dependent pathway (112, 140, 144).
In vitro studies have shown that other cytokines, including IL-1β, stimulate hepcidin
production (75–76, 83), and its up-regulation by activation of TLR-2 has been demonstrated
(67). Hepcidin circulates bound to α2-macroglobulin (110) and assays for serum levels of
the peptide are available (46). While hepcidin expression responds to inflammatory stimuli,
appropriate adjustments in levels of the iron-regulatory hormone must also reflect the
regulation of body iron status to direct the correct level of ferroportin iron export activity.
The importance of hepcidin in iron homeostasis is underscored by the fact that common
genetic defects leading to hereditary hemochromatosis involve disruption of its expression
and/or function (77). Thus, the inflammatory response must be coordinated with many other
cues that regulate iron balance. The major mechanistic elements integrating the response to
inflammation are summarized below.

a. STAT3 regulation
Inflammatory regulation of hepcidin gene expression involves transcriptional control
through a signal transducer and activator of transcription (STAT) site on the hepcidin
promoter (154, 167). This binding motif appears to be regulated by STAT3. IL-6 is a major
hepatic regulator of the acute phase response to inflammatory stimuli. Ligand binding to the
IL-6 receptor in turn leads to activation of Janus kinases that phosphorylate STAT3.
Translocation of STAT3 to the nucleus results in upregulation of hepcidin gene expression,
effectively promoting hypoferremia through down-regulation of ferroportin iron export
activity from duodenal enterocytes and RES macrophages. It has been further proposed that
STAT3 activation itself, without inflammation, can regulate hepcidin levels. Wrighting and
Andrews (167) have suggested GSD1a patient adenomas may alter STAT3 activity to
induce hepcidin expression since inflammatory cytokines do not fully explain the associated
anemia (164). This concept is supported by RNAi knockdown of STAT3 in hepatoma cells,
which alone is sufficient to reduce basal levels of hepcidin expression (154). STAT1 also
has been implicated in control of hepcidin synthesis (139, 148).

b. Hemojuvelin (HJV) regulation
An inherited juvenile form of hemochromatosis is produced by mutations in HJV (73, 107,
115). HJV is a coreceptor for bone morphogenic proteins (BMPs) and it has been
demonstrated that the HJV/BMP complex regulates hepcidin expression (3). Stimulation of
hepcidin by BMPS 2, 4 and 9 has been reported in vitro (149). BMPs are members of the
transforming growth factor-β (TGF-β) family and signal through receptor phosphorylation
of Smad proteins. Smads translocate to the nucleus and activate gene transcription. The
importance of this pathway in iron homeostasis was revealed through studies of liver-
specific Smad4 deficient mice, which display iron overload and impaired hepcidin
expression (161). Interestingly, IL-6 induction of hepcidin gene expression appears inactive
when signaling of hepatic Smad4 is impaired (161), and LPS-induced hepcidin up-
regulation is attenuated by deficiency in BMP6 (87), indicating that Smad signaling plays a
key role in staging the appropriate response to inflammation. In contrast, experiments using
IL-6−/− mice suggest that cytokine signaling is not required for BMP regulation of hepcidin
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transcription (149). Recent studies of the hepcidin promoter have further established a
theoretical framework for transcriptional activation involving crosstalk between the STAT
binding site and two BMP-responsive elements (BMP-REs) in proximal (BMP-RE1) and
distal (BMP-RE2) regions of the murine promoter (16). Truska et al. (148) propose that
physical interactions between these proximal and distal elements in the murine promoter’s
organizing structure lead to hierarchical regulation. BMP-RE1 is close to the STAT-binding
site and appears to be the critical element defining cross-talk between the HJV/BMP
pathway and the inflammatory response (16, 148). One of the conundrums remaining to be
resolved is the observation that HJV itself is a target of inflammatory regulation (70); in
particular, HJV levels appear to be regulated by the pro-inflammatory cytokine TNF-α (20).
Reduced HJV should counteract its signaling influence as a BMP co-receptor during
inflammation and thus a complete explanation for the observed response to TNF-α remains
to be developed. The recent discovery of matriptase-2/TMRSS6 and its suppressive effects
on hepcidin synthesis through HJV cleavage creates additional complexity for understanding
how the HJV/BMP signaling mechanism integrates with inflammatory control (31, 36, 137);
moreover, how signals from the erythrokines GDF15 and TWSG1 modulate BMP signaling
in response to ineffective erythropoiesis must also be integrated to gain a comprehensive
understanding of the anemia of inflammation (142–143). Both are members of the TGF-β
family and are released under conditions of iron-restricted erythropoiesis.

c. Transferrin (Tf) and HFE
The major form of hereditary hemochromatosis, called Type I hemochromatosis, results
from variations in HFE (34). HFE associates with both TfR1 and TfR2, but it is thought that
the HFE/TfR2 complex senses Tf saturation to modulate hepcidin transcription (47). Further
studies have suggested that BMP signaling is independent of HFE and TfR2, but the precise
mechanism of regulation of gene expression for HFE/TfR2 signaling remains unknown
(149). Loss of HFE function results in reduced hepcidin levels and increased ferroportin
levels, lowering iron levels in monocytes and macrophages (12, 90). In terms of the effects
of HFE on the hepcidin inflammatory response, results from studies of Hfe−/− mice have
been mixed: one report indicated these mice fail to induce appropriate levels of hepcidin in
response to inflammatory stimuli (126), while other groups noted that isolated Hfe−/−mouse
hepatocytes did respond to IL-6 in vitro (75) and that knockout mice do develop
hypoferremia during acute phase response (42). Recent mechanistic studies of Hfe knockout
mice have demonstrated impaired inflammatory responses due to the lower levels of
macrophage iron in these animals (160). In response to infection, Hfe−/−mouse macrophages
produce less TNF-α and IL-6, important pro-inflammatory cytokines. A similar effect is
reported for human patients with HFE-associated hemochromatosis since their monocytes
produce less TNF-α in vitro (52). This general defect can be recapitulated in a macrophage
model system over-expressing ferroportin, and in wild-type macrophages treated with iron
chelators (160). Under these reduced iron conditions, translation of the cytokine mRNAs
was blocked, an effect that involves TLR4 signaling (159). In vivo, reduced cytokine
production is associated with attenuated inflammatory response to Salmonella infection
(160), revealing an underlying cause for susceptibility of patients with Type I
hemochromatosis to infections like Salmonella, Vibrio, and Yersinia (10, 28).

d. Hypoxia-inducible factors (HIFs)
HIFs are multi-subunit transcription factors regulated by hydroxylation of an unstable α
subunit controlling its degradation. This modification involves prolylhydroxylases requiring
both oxygen and iron, thus under hypoxic or low iron conditions, HIFα subunits are
stabilized. HIF2α has emerged as an important regulator of dietary iron absorption through
the transcriptional control of intestinal DMT1 expression (82, 134). Since hepcidin levels
decrease in response to hypoxia (101), HIF regulation is an attractive control mechanism for
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its function under low oxygen conditions, however, it does not appear to be directly
responsible for this effect (156). An alternate hypothesis for indirect effects is HIF induction
of the protease furin with subsequent release of a soluble circulating form of HJV predicted
to down-regulate hepcidin during hypoxia or exercise (136), but the physiological relevance
of this speculative pathway remains unknown. It has been established that HIF1α plays an
important role in immunity, and myeloid-specific disruption of its function results in
increased susceptibility to infection and impaired cell-mediated inflammation (22, 111).
Liver-specific disruption of HIF1α also interferes with hepcidin regulation, further
implicating a role for this transcription factor family in the regulation of hepdicin through
the inflammatory response (113). HIF1α itself is transcriptionally controlled by the master
immunoregulator NF-κB (122). In turn, the HIFs are major regulators of a number of genes
involved in iron homeostasis and inflammation, including TfR1, heme oxygenase-1,
Nramp1, DMT1, erythropoietin, Dcytb, and ferroportin. Many of these factors directly
contribute to mechanisms mediating the iron withdrawal response to inflammation as
discussed later in this chapter. Nonetheless, the precise mechanism of HIF regulation of
hepcidin levels remains controversial and needs further investigation.

e. Endoplasmic reticulum (ER) stress response
Stress pathways signaling through the cellular ER unfolding protein response (UPR) have
also been found to induce hepcidin expression. The UPR has been implicated in the hepatic
acute phase response to lipopolysaccharide (LPS), IL-6, and IL-1β (86, 172) suggesting that
hepcidin gene expression might be regulated through an additional layer of endogenous
control. Two transcription factors have been implicated: cAMP-responsive element binding
protein H (CREBH) (153) and CCAAT/enhancer-binding protein (C/EBP)
homologousprotein (CHOP), which is a negative regulator of C/EBPα (103). The ER
stressors homocysteine and dithiothreitol induce the UPR response, and have been shown to
modulate hepcidin expression in a biphasic pattern through changes in the level of CHOP.
Ultimately, down-regulation of CHOP relieves inhibition of C/EBPα to increase hepcidin
transcription (103). This effect is supported by the independent evidence suggesting that C/
EBPα is a transcriptional regulator of hepcidin (21, 56, 83) and that it may serve as a
modulator of hepcidin synthesis via erythropoietin signaling of enhanced erythropoiesis
(117)

CREBH appears to act in a different pathway induced by ER stress. Activation of CREBH
by UPR stress promotes expression of acute phase response genes. Recent studies
demonstrate this transcription factor also influences hepcidin expression possibly along with
a second ER stress-activated transcription factor, XBP-1 (153). Treatment of CREBH
knockout mice with ER stressors fails to induce hepcidin expression to the same level as
wild-type mice and although LPS can elicit a hepcidin response in the knockout animals, it
is lower than controls (153). The response to ER stress may also reflect the regulation of
hepcidin transcription through the STAT pathway, suggesting once again that multiple
stimuli coordinate promoter activity.

f. Heme Regulated Inhibitor (HRI)
A generalized response to stress is inhibition of translation initiation through
phosphorylation of eukaryotic initiation factor 2a (eIF2a). For example, pathways of ER
stress response include the activation of pancreatic ER kinase (PERK) via the UPR. PERK
not only causes inhibition of translation, but also promotes expression of genes with
upstream open reading frames like activating transcription factor 4 (ATF4), which in turn
regulates factors like CHOP (145). Stress associated with heme deficiency activates a
similar eIF2a kinase called HRI (heme regulated inhibitor), which is known to block globin
synthesis in certain anemias (17). Although HRI is expressed mainly in erythroid precursors,
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studies of Hri knockout mice reveal that it plays a role in macrophage iron recycling and
iron homeostasis (79). Interestingly, loss of HRI activity is associated with reduced
inflammatory response and lower levels of hepcidin upon LPS challenge (79). Although the
precise molecular mechanism responsible for this effect remains to be fully elucidated,
perhaps the loss of HRI may interfere with eIF2a stress regulation to alter CHOP regulation
of hepcidin.

g. Summary
Figure 1 depicts the various inputs hypothesized to regulate transcription of hepcidin and
their activation by inflammatory signals. Much of the work to date has focused on the
murine promoter and reporter analysis has been extensively carried out using liver-derived
cell lines or exogenous expression systems (149). There are caveats to such studies since
although commonly used liver cell lines like HepG2 cells are IL-6 and BMP-responsive
(149), they do not effectively respond to Tf/HFE signaling (47), and may not fully
recapitulate features of systemic iron regulation. How metabolic stress response signals are
integrated to control hepcidin synthesis must be understood to elucidate the hierarchy
regulating its activity.

V. Tumor necrosis factor-α (TNF-α)
TNF–α is a pro-inflammatory cytokine that promotes hypoferremia through mechanisms
that are independent of the induction of hepcidin (135). It is clear from studies of human
TNF-α polymorphisms that increased levels of the cytokine are associated with systemic
iron deficiency (2). Mice treated with TNF-α down-regulate mucosal transfer of iron (71), a
response that would be expected to coordinate with iron homeostasis to reduce body iron
levels (1). Duodenal ferritin levels are induced in these animals, providing for iron storage
during the acute phase response (146). This mechanism would prevent dietary iron
exsorption across the mucosa to circulation. However, the profile of TNF-α induced changes
in the expression of iron transport proteins is more complicated, and does not completely
correlate with the expected iron withdrawal response and retention by macrophages (71, 81,
95, 162). One explanation for the observed effects on macrophage iron levels is that
erythrophagocytosis is enhanced by TNF-α (64, 89). It has also been shown that treatment of
bronchial epithelial cells with TNF-α promotes up-regulation of DMT1 (162); this effect has
been related to a detoxification pathway that would remove iron from the environment to
inhibit growth of pathogens in the lungs.

Paradoxically, treatment of macrophages with TNF-α is associated with a transient rise in
intracellular free or labile iron that is required for activation of the transcription factor NF-
κB (169). Such iron transients have been observed to play an important role in other stress
signaling responses (25). NF-κB is an important regulator of inflammatory responses,
including the production of TNF-α itself (106). Reduction of intracellular iron by chelation
has an inhibitory effect on NF-κB induction of TNF-α and other cytokines (131, 150).
Further studies on the mechanism of TNF-α action are needed to more fully understand its
reciprocal relationship with iron and control of the NF-κB inflammatory response.

VI. Interferon-γ (IFN-γ)
IFN-γ is a key modulator of macrophage iron status and immune functions. A major
mechanism of macrophage-mediated innate immune response is the synthesis of nitric oxide
(NO), which is stimulated by IFN-γ. A complex iron-regulated network controls inducible
NO synthase (iNOS), the key enzyme in NO production. Through the use of iron chelators
and exogenous addition of iron, Weiss and co-workers (166) have demonstrated an inverse
relationship between host cell iron status and iNOS expression. Increased iron results in

Wessling-Resnick Page 7

Annu Rev Nutr. Author manuscript; available in PMC 2011 August 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



decreased iNOS activity while iron depletion enhances iNOS activity. This inverse effect of
iron reflects altered iNOS mRNA levels (166). Iron can also exert inhibitory effects on other
IFN-γ responses as well (102). In a reciprocal fashion, IFN-γ can modulate iron status, and
has been shown to reduce the availability of iron to S. typhimurium within the macrophage
(92). In vivo studies have shown that a high iron diet will reduce IFN-γ (104), implicating its
role in the deleterious effects that iron-loading can have on the immune response. Recent in
vitro studies further suggest that IFN-γ may modulate hepcidin induction by M. tuberculosis
infected macrophages, further confirming the link between iron metabolism and host
response to pathogens (139).

VII. Effectors of iron withdrawal
While the focus of recent research has been on the regulation of iron metabolism during the
inflammatory response by hepcidin, cytokines and other acute phase reactants, the effector
molecules that are ultimately responsible for limiting circulating iron or sequestering it from
micro-organisms and rapidly growing cancer cells have long been studied. Some of the
major mechanistic elements responsible for iron withdrawal during the inflammatory
response are highlighted below.

a. Ferroportin
As discussed above, ferroportin is the major target of hepcidin’s control during infection and
inflammation. However, inflammatory stimuli can also directly regulate expression of
ferroportin to promote macrophage iron retention (81, 170). A central role for this
ferroportin response to infection is supported by in vitro studies (18, 93, 108). Mechanisms
regulating ferroportin expression include both transcriptional and post-transcriptional events,
since ferroportin mRNA harbors a 5′ iron-responsive element (IRE) (85). The presence of
the IRE confers regulation of ferroportin translation to iron regulatory proteins (IRPs) (33,
57). IRPs are master regulators of iron metabolism including other factors such asDMT1,
ferritin and TfR1. Control of NO synthesis by IFN-γ is thought to modulate IRP2 activity,
and thus may contribute to the action of effectors like ferroportin.

b. Ferritin
Ferritin serves as the depot site for iron storage during sequestration responses elicited by
inflammatory response. In addition to control by IRP action triggered by iron accrual in liver
and other tissues, inflammatory cytokines regulate ferritin translation through an “acute
phase box” in the 5′ region of its transcript (124, 146). Transcriptional control mechanisms
serve to further up-regulate ferritin expression, and increased serum ferritin levels are well-
recognized as part of the acute phase response (146). Combined, cell-mediated down-
regulation of ferroportin and up-regulation of ferritin act in concert to induce iron retention
and sequestration. Although how TNF-α down-regulates intestinal iron absorption remains
to be fully elucidated, it is clear that its induction of ferritin synthesis provides a necessary
block on dietary iron entry across the mucosa.

c. Tf/Tf receptor/DMT1
As outlined above, cellular delivery of iron via endocytosis of Tf is a major pathway for iron
clearance. In addition, stimulation of non-Tf bound iron uptake by DMT1 by monocytes has
been reported in response to cytokines (81). Although inflammation down-regulates Tf
receptor levels, possibly through IRP control mechanisms (11, 81), an early transcriptional
response to stimuli promoting iron accumulation has been suggested (141). This activation
of iron uptake via TfR1 is thought to precede the induction of hepcidin and subsequent
down-regulation of ferroportin in macrophage cell lines, however, the temporal nature of
changes in iron trafficking remain to be fully elucidated in vivo. In general, iron status is
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“sensed” through changes in Tf saturation (61, 123) and reflected in HFE functional
interactions with Tf receptor-1 and -2 (47, 130). Tight coordination of this network is
necessary to maintain the appropriate immune response without impairing iron metabolism.
It is clear that Tf and its receptor are key limiting factors in immune cell growth due to their
requirement for iron (132) such that iron-deficient mice have reduced T cell proliferation
and impaired immunity (104).

d. Nramp1
The phagosomal transporter called natural resistance associated macrophage protein-1
(Nramp1) is thought to play a major role in the inflammatory response since its mutation in
mice confers susceptibility to a number of intracellular pathogens (155). Human mutations
in the homologous gene are also known to influence tuberculosis infection and rheumatic
disease (7). Nramp 1 expression is up-regulated by inflammatory cytokines (53), and it is
thought to function by limiting the availability of phagosomal iron needed for growth of
invading organisms. It also contributes to production of nitric oxide (NO) and other pro-
inflammatory macrophage responses (7, 168). Loss of Nramp1 function in mice impairs iron
recycling by macrophages after erythrophagocytosis (138) and reduces the inflammatory
response to infection (151). How these functions are regulated by Nramp1 cation transport
activity is less clear. It has been proposed that mechanistic effects are exerted through ROS-
regulated signaling pathways (72). Recent biochemical studies have suggested that Nramp1
regulates protein tyrosine phosphatase activity, suggesting that the transporter may modulate
signal transduction pathways involved in the macrophage inflammatory response (51).

e. Lactoferrin
Lactoferrin is often considered to be another important factor for host inflammatory defense
due to its iron-binding ability. Lactoferrin is structurally related to Tf, but unlike its
homologue, lactoferrin does not release ferric iron at low pH (5). The mammary gland and
epithelial cells produce lactoferrin and it is present in milk and mucosal secretions.
Lactoferrin is also produced by neutrophils and is released during inflammation. It is
considered to be an iron scavenger at sites of infection and at mucosal surfaces. Although its
bacteriocidal actions have been confirmed in many different studies (78), lactoferrin’s true
function in immunity and inflammation is less clear. Lactoferrin knockout mice do not show
impaired immune response or altered iron homeostasis (163), with only a slight response to
staphylococcal infections and no difference to S. aureus or P. aeruoginosa. Lactoferrin may
overlap in the function of other iron-binding proteins, or perhaps may even be specific for
certain micro-organisms.

f. Lipocalin-2
Lipocalin-2 is an acute phase response protein also referred to as siderocalin or
neutrophilgelatinase-associated lipocalin (NGAL). Lipocalin-2 binds siderophores, chelators
produced by micro-organisms in the battle to acquire iron from the host (19). Lipocalin-2
knockout mice have decreased survival when infected with E. coli or M. tuberculosis,
supporting its importance in the inflammatory defense against invading micro-organisms (6,
39, 128). Importantly, lipocalin-2 production appears to be up-regulated by deficiency in
HFE (94). Although a receptor for lipocalin-2 has been identified (27), whether this potential
iron transport system has an endogenous “siderophore-like” ligand remains unknown.

VIII. Hypoferremia of inflammation: benefit or liability of treatment?
The anemia acquired in response to inflammation represents a unique facet of human iron
metabolism. The evidence that supplemental iron can promote both infectious and chronic
inflammatory diseases is clear, but what is the correct balance and should iron treatment or
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chelation be approached therapeutically? The recent Pemba trial, which led to adverse
events in children receiving iron in a malaria-endemic region (129), underscores the need for
caution. Nonetheless, it has been argued that negative effects from supplementation of iron-
replete individuals may be offset by positive measures in iron-deficient groups such that a
rationalized approach would screen iron status and other genetic predispositions when
considering various therapies (2, 118). For example, disorders like ferroportin disease,
which predisposes individuals to macrophage iron retention (114), may impart particular
susceptibility to obligate intracellular pathogens like M. tuberculosis. Ferroportin disease
arises from gene variants that lead to loss of iron export function or loss of cell surface
expression of ferroportin. The result is an iron-loaded state in macrophages that can promote
the growth of bacteria (18, 93). Paradkar et al. (108) have used macrophages from flatiron
mice, a model of this form of hemochromatosis, to show that oral iron chelators can limit
bacterial growth. This study supports the idea that iron chelation therapy may be useful in
certain situations.

Castleman’s disease is an example where interfering with hepcidin production offers an
attractive therapeutic avenue for treatment. This inflammatory disorder is associated with
increased IL-6 (9), which induces upregulation of hepcidin expression. Treatment with
antibodies against the IL-6 receptor has been shown to reduce hepcidin levels in several
patients, suggesting an approach to handling the anemia associated with disorder (63). Other
new tools that target hepcidin regulation include suppression of BMP signaling. Two
compounds, dorsomorphin (4) and LDN-193189 (23) have been shown to decrease to
Salmonella-induced inflammation in mice and to reduce intestinal inflammation in a murine
model of chronic colitis, respectively (159). Both small molecules reduce BMP signaling
and hepcidin production. In addition, hepcidin levels and inflammation were also reduced in
the colitis model in response to HJV.Fc, a soluble form of the HJV domain that acts as a co-
receptor for BMP signaling (159). Such novel strategies could be future therapeutic options
in treating both inflammatory diseases and infection.
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Acronyms

AI/ACD anemia of inflammation/anemia of chronic disease

ATF4 activating transcription factor 4

BMP bone morphogenic protein

BMP-RE bone morphogenic protein responsive element

C/EPBα CCAAT/enhancer-binding protein-α

CHOP CCAAT/enhancer-binding protein homologous protein

CREBH cAMP-responsive element binding protein H

DcytB duodenal cytochrome B

DMT1 divalent metal transporter-1

eIF2α eukaryotic initiation factor 2α

ER endoplasmic reticulum
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GDF15 growth differentiation factor-15

GSD1a glycogen storage disease type 1a

HIF hypoxia-inducible factor

HJV hemojuvelin

HRI heme regulated inhibitor

IL-6 interleukin-6

INF-γ interferon-γ

iNOS inducible nitric oxide synthase

IRE iron-responsive element

IRP iron regulatory proteins

LEAP-1 liver-derived antimicrobial peptide

LPS lipopolysaccharide

NGAL neutrophilgelatinase-associated lipocalin

NO nitric oxide

Nramp1 natural resistance associated macrophage protein-1

PERK pancreatic endoplasmic reticulum kinase

RES reticuloendothelial system

ROS reactive oxygen species

STAT signal transducer and activator of transcription

Tf/TfR transferrin/transferrin receptor

TLR Toll-like receptor

TNF-α tumor necrosis factor-α

TWSG1 twisted gastrulation

UPR unfolded protein response
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Figure 1. Regulators of hepcidin synthesis during inflammation
Activation of STAT1/3 by cytokine signaling promotes transcription through a STAT
element. IL-6 plays a predominant role in this inflammatory response. This element appears
to be regulated through the nearby BMP-RE1 via SMAD activation, which is required for
full promoter activity. A distal BMP-RE2 site is thought interact with the SMAD/STAT
complex that brings distal and proximal regions of the hepcidin promoter into physical
contact. SMAD signaling is activated through the HJV/BMP pathway. HJV is negatively
regulated by matripase-2 cleavage; BMP signaling is negatively regulated by GDF15 and
TWSG1. HFE interacts with TfR1 and may be released upon binding of diferric Tf. While
binding of both diferric Tf and HFE to the TfR2 are known to stimulate hepcidin synthesis,
the molecular aspects of this pathway remain unknown. In addition, ER stress response
pathways involved in inflammation are known to induce hepcidin through at least two
mechanisms: 1) negative regulation of C/EBPα by CHOP and 2) activation of CREBH,
possibly in conjunction with activated (spliced) XBP-1.
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