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Clustering is one of the main mathematical challenges in large-scale gene expression analysis. We describe a
clustering procedure based on a sequential k-means algorithm with additional refinements that is able to handle
high-throughput data in the order of hundreds of thousands of data items measured on hundreds of variables.
The practical motivation for our algorithm is oligonucleotide fingerprinting—a method for simultaneous
determination of expression level for every active gene of a specific tissue—although the algorithm can be
applied as well to other large-scale projects like EST clustering and qualitative clustering of DNA-chip data. As a
pairwise similarity measure between two p-dimensional data points, x and y, we introduce mutual information
that can be interpreted as the amount of information about x in y, and vice versa. We show that for our
purposes this measure is superior to commonly used metric distances, for example, Euclidean distance. We also
introduce a modified version of mutual information as a novel method for validating clustering results when the
true clustering is known. The performance of our algorithm with respect to experimental noise is shown by
extensive simulation studies. The algorithm is tested on a subset of 2029 cDNA clones coming from 15 different
genes from a cDNA library derived from human dendritic cells. Furthermore, the clustering of these 2029
cDNA clones is demonstrated when the entire set of 76,032 cDNA clones is processed.

The method of hybridization of short synthetic oligo-
nucleotide probes to cloned cDNA sequences under
high stringency conditions to extract genetic informa-
tion has been demonstrated by a number of research
groups in recent years (Lehrach et al. 1990; Lennon
and Lehrach 1991; Meier-Ewert et al. 1993; Drmanac et
al. 1996; Milosavljevic et al. 1996). Oligonucleotide
fingerprinting is an efficient and fast approach to ex-
tract parallel gene expression information about all
genes that are represented in a cDNA library from a
specific tissue under analysis. To ensure that the cDNA
library is representative for gene expression, which
means that the number of genes active in the tissue
and their corresponding expression rates are reflected,
its size has to be in the order of 100,000–200,000
cloned sequences, because we expect the number of
active genes in most tissues at most stages of develop-
ment to be 10,000–30,000 with abundance varying
from 1 (singleton) to 1000. The cloned sequences
(clones) are amplified by PCR, immobilized on nylon
filter membranes (25,000 different clones per filter
membrane), and hybridized in parallel to a radioac-
tively labeled oligomer probe of known sequence. After
a scanning procedure, image analysis software devel-
oped in-house (unpublished) evaluates the hybridiza-
tion experiment by assigning each clone a numerical
value that is proportional to the amount of bound ra-
dioactively labeled probe. By repeating this experiment

with different probes (100–300), each clone is de-
scribed by a characteristic vector of numerical values—
subsequently called a fingerprint. Detailed protocols of
the procedure including possible quality checks have
been published (Maier et al. 1994; Schmitt et al. 1999;
Clark et al. 1999).

Because of the use of hundreds of different probes,
we can assume that the fingerprint is characteristic for
the individual clone sequence, although there is a cer-
tain loss in information by representing sequences by
fingerprints. An advantage of the fingerprinting proce-
dure, however, is that it takes into account the whole
clone sequence and is therefore more sensitive in gene
discrimination than, for example, EST approaches in
which only end sequences from one or both ends are
used for pairwise clone comparison (Adams et al. 1991,
1993).

The task of the clustering procedure is to classify
the clone fingerprints according to a well-defined pair-
wise similarity measure to group similar fingerprints
together and to separate dissimilar ones. The calculated
classification reflects the number of different genes ex-
pressed in the tissue (number of clusters) and their rela-
tive abundance (size of clusters). Clustering results
help normalize cDNA libraries and thus significantly
reduce sequencing effort in gene identification. When
processing tissues from different developmental stages,
clustering can detect differences in gene expression
and thus identify development-specific genes. A pilot
study has been published recently (Meier-Ewert et al.
1998). A practical clustering procedure has to consider
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several experimental requirements. The main demand
is the ability to handle data sets in the order of hun-
dreds of thousands of high-dimensional data points in
an acceptable amount of time. A further requirement
on the algorithm is the ability to work with partial
information in the form of missing values. In real ex-
periments this is necessary because common data sets
contain a certain amount of missing values (up to
25%), because, for example, the set of probes may vary
when comparing different cDNA libraries and the re-
producibility of hybridization signals can be poor (see
Methods). This problem is mainly addressed to the
pairwise similarity measure in use that must be able to
assign comparable similarity values even when part of
the data is missing. Finally, the algorithm should be
robust enough to cope with experimental noise be-
cause high-throughput data is usually generated
within a production pipeline that involves many dif-
ferent steps and is therefore somewhat error prone.

We focus here on a partitioning algorithm with
heuristic modifications that finds the number of clus-
ter centroids from the data itself and a “good” partition
according to these centroids. Additionally, we present
a suitable pairwise similarity measure based on mutual
information that fits the above-mentioned require-
ments. Our algorithm has been extensively tested on
simulated and experimental data sets. We describe
simulation studies based on real sequence data from
GenBank/EMBL database sequences to test the perfor-
mance on important error parameters (false-positive
rate, false-negative rate, length variation of cDNA
clones). To quantify the quality of the calculated par-
titions, we introduce a novel measure for cluster valid-
ity based on a modified version of mutual information:
the relative mutual information coefficient (RMIC).
Additionally, we run the algorithm on a data set of
2029 cDNA clones from 15 genes extracted from a hu-
man cDNA data set containing a total of 76,032 cDNA
clones. Furthermore, the clustering of these 15 gene
clusters is shown when the entire set of 76,032 cDNA
clones is processed. We are able to produce highly pure
gene clusters out of such large data sets even when
clusters are small (<15 copies). The results show that
our method is a robust, fast, and accurate way to pro-
cess large data sets and that it can be applied to major
problems of gene expression analysis like gene identi-
fication and comparative gene expression profiling.

RESULTS
All mathematical definitions and technical terms are
introduced in Methods. There, we describe a clustering
algorithm and a pairwise similarity measure based on
mutual information that is superior to commonly used
metric distances as is shown below. To validate clus-
tering results when the true clustering is known, we

introduce a novel measure for clustering validity: the
RMIC.

Advantages of Mutual Information
Similarity Measurement
Using mutual information as a pairwise similarity mea-
sure for fingerprinting data outperforms commonly
used metric distances like Euclidean distance (see
Methods). One major advantage is the fact that mutual
information takes into account the total number of
matched similarities, whereas distance metrics do not.
Consider for example the following fingerprints:
x1 = (1,0,0,0,0,0,0,0,0,0); x2 = (1,1,0,0,0,0,0,0,0,0);
x3 = (1,1,1,1,0,0,0,0,0,0); x4 = (1,1,1,1,1,0,0,0,0,0).

Here, the individual signals are binarized for sim-
plification; clearly, Euclidean distance of x1 and x2 as
well as of x3 and x4 is equal to 1, which means that a
rather nonspecific similarity (which is a dissimilarity in
the case of a metric) based on one match equals a far
more specific similarity based on four matches. In con-
trast, mutual information takes into account the num-
ber of matches so that the similarity of x1 and x2 is
lower than the similarity of x3 and x4. This is true be-
cause mutual information quantifies the global corre-
lation between signal vectors and not only the dissimi-
larities. A further disadvantage of Euclidean distance is
the fact that very uninformative fingerprints (those
that match only to a few probes) get a high pairwise
similarity (low pairwise distance) just because of the
absence of high signal values even if they are from
totally different DNA sequences. This seriously affects
clustering by grouping many uninformative finger-
prints around the zero vector. Mutual information of
pairs of uninformative and different fingerprints, on
the other hand, is very low as should be the case. Fur-
thermore, we do not have an easy and defined way to
handle missing data when using a metric distance.
Some methods have been suggested (Jain and Dubes
1988), but as they are all based on estimation of the
missing data by the existing data, this leads to unpre-
dictable influences. By taking into consideration only
those signals that are present in both vectors, mutual
information weights the data implicitly. In other
words, missing values are treated as they should be:
They are ignored.

Assessing Clustering Quality
RMIC is easy to interpret and has the same range (the
interval [11,1]) for all underlying true clusterings. This
makes calculations with different true clusterings more
transparent and comparable. Our simulation results
(Fig. 1) indicate that the tendency of RMIC compared
with the relative Minkowsky metric using a fixed
true clustering is fairly similar, that is, RMIC is high
where relative Minkowsky metric is low, and vice
versa. On the other hand, a concrete value of relative
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Minkowsky metric is not easy to interpret because the
range of the quality measure is extremely sensitive to
the complexity of the underlying true clustering. As-
sume a data structure of N data points and let the true
clustering be the trivial clustering in which each data
point is a singleton and let the calculated clustering be
the trivial clustering in which all N data points are
falsely clustered in one big cluster, then the relative
Minkowsky metric equals √N 1 1. If, on the other
hand, the true clustering is the trivial clustering in
which all data points belong to one cluster and if the
calculated clustering is the trivial clustering in which

each data point is falsely clustered as a singleton, we
get √1 1 1/N for relative Minkowsky metric. However
it is not quite clear why the latter situation should be
weighted so well compared with the former. RMIC, on
the other hand, values both situations equally; we have
0 in both cases.

Simulation Setup
To simulate the robustness of our clustering procedure
against experimental noise, we extract 698 different
genes from GenBank/EMBL databases. Only sequences
longer than 500 bp are considered; sequences longer
than 2000 bp are cut at that level so that the actual
length of the sequences is between 500 and 2000 bp.
This reflects our experimental observation in which we
find the average length of clone inserts to be ∼1400 bp
with moderate variations. From each gene we pro-
duced a specific number of copies ranging in size from
491 down to 1 so that we ended up with a total of 6309
sequences. Table 1 shows the distribution of gene copy
numbers.

A total of 147 octamer probes—a subset of those
probes used in our experiments—are chosen for deter-
mining theoretical fingerprints. Hybridization results
are computed as 1 or 0 for a match of the probe (or its
reverse complementary sequence) with the gene se-
quence or not, respectively. The matching rates of the
probes differ between 5% and 35% (20% on average).

We test the algorithm on three main error param-
eters, namely, false positive rate, rp; false negative rate,
rn; and cDNA length variation, D: If A is the event that
we observe a positive hybridization experimentally
and B is the event that there is a theoretical match by
sequence and A and B are the respective complemen-
tary events, then we straightforwardly define
rp = prob(A|B) and rn = prob(A|B) as false-positive rate
and false-negative rate, respectively. Error is intro-
duced independently for each probe, which fits our
experimental situation. Length variation, D, of the
cDNA clones is due to the fact that reverse transcriptase
stops at different end points when processing cDNA
from mRNA during transcription; therefore, cDNA
copies of the same gene will in principle have different

Table 1. Distribution of Gene Copies for Simulation

Cluster size

1 2–5 6–10 11–100 >100 total

No. of cluster 500 144 21 16 17 698
No. of clones 500 388 156 381 4884 6309
Percent of sample 7.93 6.15 2.47 6.03 77.41 100

A total of 665 out of 698 genes are assigned a copy rate <11 (including 500 singletons) corresponding to a
total number of 1044 clones; 17 genes get a copy rate >100 by a random number between 100 and 500. The
biggest of our simulated cluster has a copy rate of 491 clones.

Figure 1 Simulation studies. Clustering is tested on three error
parameters: (A) false-positive rate, (B) false-negative rate, and (C)
cDNA length variation. False-positive rate and false-negative rate
are measured in percents, and length variation is measured in
base pairs. Clustering quality is calculated according to two dif-
ferent quality measures: (Broken lines) The relative Minkowsky
metric, which is low if clustering quality is good and high if clus-
tering quality is bad; (solid lines) the RMIC, which is high if clus-
tering quality is good and low if clustering quality is bad. For each
parameter size, 20 independent clusterings are performed to de-
rive the mean (µ) and the S.D. (s). The bars indicate the interval
[µ 1 s, µ + s].
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lengths. If, due to high length variation, the sequences
do not share enough probe matches, clustering of the
respective copies of the same gene might fail. Length
variation is introduced in a uniform way: For each
gene, gi, with length, li, and for each length varia-
tion parameter, D, we choose the end points of the
copies of that gene uniformly within the interval
(max{0,li 1 D},li).

Figure 1 shows the performance of the algorithm
on these parameters. For each parameter value, 20 in-
dependent simulation runs were calculated to derive
the mean (µ) and the standard deviation (s). The bars
indicate the interval [µ 1 s,µ + s]. We measure cluster
quality in two alternative ways: The broken lines show
the Minkowsky metric and the solid line our RMIC. We
observe that the procedure is less sensitive to false-
negative than to false-positive error. This is due to the
high a priori probability of a negative sequence match.
High quality can be observed if the false-positive rate is
<30% and the false negative rate is <35%. False-
negative rates up to 20% and false-positive rates up to
15% have extremely low influence; cluster quality is
nearly perfect (0.98 for RMIC in both cases and 0.07
and 0.1 for Minkowsky metric). Quality is significantly
reduced if false-positive error is between 30% and 45%
and false negative error is within 35%–50%, although
the algorithm is clearly robust to such high noise: For
example, a false positive rate of 35% leads to a quality
index of 0.61, which indicates that the clustered par-
tition contains a large amount of information about
the true clustering and which is still sufficiently high
to observe good results in practice. This is remarkable
because a false-positive rate of 35% according to the
above definition means that a proportion of 28% (35%
of 80%) of all signals on average is falsely set to 1 (in
contrast to 20% of all signals on average that remain
correctly set to 1), so that more positive signals in the
data set are false than are true. This is due to the dis-
similar a priori probabilities of positive and negative
theoretical sequence match. Length variation is a seri-
ous problem; clustering quality remains stable if varia-
tion is below 500 bp (0.89 for RMIC and 0.38 for
Minkowsky metric) but decreases significantly if the
variation is larger than 700 bp. Experimental improve-
ments are ongoing to overcome this kind of error (see
Discussion).

Clustering Human cDNA Clone Fingerprints
The cDNA library under analysis is derived from hu-
man peripheral blood dendritic cells. Dendritic cells
have a key role in the immune system through their
ability to present antigen. From the clustering point of
view, the complexity of the library is interesting: As
these cells are specialized to certain biological pro-
cesses, we estimate the number of different genes to be
∼15,000, although there is no exact data available.

To test the algorithm on experimental data, 15 dif-
ferent cDNA clones are partially sequenced, identified,
and, afterwards, hybridized to the entire cDNA library,
and a total set of 2029 cDNA clones are extracted that
give strong positive signals with one of the genes. The
distribution of gene copies is shown in Table 2. Most of
the control genes are house-keeping genes that are
present with a moderate to high copy rate. Elongation
factor a, for example, is the most frequent gene with
669 copies, which is a proportion of 0.876% of the
entire library and 32.82% of the selected subset. Gene
copy sizes for three of the control genes are <15.

The library is hybridized with 200 octamer probes.
These probes are selected on the basis of ∼15,000 hu-
man sequences extracted from GenBank/EMBL data-
bases. Probes are chosen according to the following
iterative procedure (A.O. Schmitt, pers. comm.): Given
a set S of probes to select from, (1) start with the probe
in S that best partitions the database sequences into
two groups. (2) Given a selected set of k probes that
best partitions the test set into 2k partitions, add to the
list the probe that—together with the previously se-
lected ones—best partitions the test set into 2k+1 par-
titions using entropy of the partitions as quality crite-
rion. This leads to a set of probes that is highly infor-
mative for discriminating known genes; we assume
however that the database (and thus the computed
probe set) is representative for all human genes.

Clustering of the 2029 clones takes <2 min on a
Digital-Alpha 500-MHz computer. Twenty-three clus-
ters are found; 45 clones remain as singletons. The

Table 2. Distribution of Control Gene Clusters

NR. Gene ID Copies
Subset

(%)
Library

(%)

1 Ef1_a 669 32.82 0.876
2 Cytochrom_cox_I 274 13.55 0.362
3 clone_190B1 254 12.52 0.334
4 tubulin_b 207 10.20 0.272
5 40SRibo_protS6 183 9.02 0.241
6 40SRibo_protS4 100 4.93 0.132
7 60SRibo_protL4 85 4.24 0.113
8 GAPDH 82 4.04 0.108
9 Ef1_b 67 3.30 0.088

10 human_calmodulin 32 1.58 0.042
11 heat_shock_cogKD71 28 1.38 0.037
12 heat_shock_cogKD90 26 1.28 0.034
13 human_TNF_receptor 12 0.59 0.016
14 clone_244D14 8 0.44 0.012
15 clone_241F17 2 0.10 0.003

Total 2029 100 2.67

The entire human cNDA clone set contains 76,032 clones.
The subset of the control gene cDNA clones contains 2,029
clones. Most of the control genes are house-keeping genes
that have a moderate to high copy rate although three of the
genes have a copy rate <15. The copies of the subset sum to
a proportion of 2.67% of the entire library.
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quality values are 0.80 for RMIC and 0.37 for
Minkowsky metric. Table 3 shows the splitting of the
gene clusters. To evaluate the splitting of individual
gene clusters numerically, we calculate a diversity in-
dex using entropy. Given that gene, gi, is present in the
library with Ni copies and given that these copies are
split in K different clusters with frequencies n1, . . . ,nk

(n1+ . . . +nk = Ni), then the diversity of the clustering
with respect to this gene can be calculated as

d~gi! =

− (
j=1

K nj

Ni
log2

nj

Ni

log2 Ni

The diversity is maximal [d(gi) = 1] if all copies belong
to different cluster, it is minimal [d(gi) = 0] if all copies
belong to the same cluster.

For each gene we count the number of identified
clones, whereby only clones from its core clusters (clus-
ters that are pure with respect to that gene) within the
calculated partition are considered because only clones
from core clusters have a chance of being detected and
identified when extracting a small number of clones
for sequencing. The gene tubulin_b, for example, is
present in 207 copies, 203 of which are in a cluster of
size 205 (which is a pure cluster then with respect to
this gene); these 203 clustered copies correspond to a
total fraction of 98.07% of all copies of that specific
gene; 4 copies are split in other clusters. The diversity
for tubulin_b is 0.023, which is very small. Our parti-
tion leads to a fraction of 95.22% of clones that fall
into pure clusters. Twenty calculated clusters have a

purity above 85% (corresponding to 95.02% of all
clones), and 11 calculated clusters are totally pure; that
is, all clones within these clusters belong to the same
gene. Only two calculated clusters have a purity below
70%, they contain a mixture of clones from several
genes and do not contribute to gene identification.
False assignment to singletons happened in 45 cases
(2.2%). This is due rather to false hybridization and to
false evaluation of this hybridization than to clustering
error because the similarities of these clones to clones
from the core clusters are very low. However, all 15
genes could have been identified by sequencing a small
number of clones from each calculated cluster. Reduc-
tion in sequencing effort would have been 91%.

Table 4 shows a contingency table of the calcu-
lated and the true partitions. We observe an overesti-
mation of the total number of genes by a factor of 1.53
(see Discussion) due to stringently set algorithmic pa-
rameters. Here, rows correspond to calculated clusters;
columns correspond to true clusters.

The entire gridded human cDNA library contains
76,032 clones after the normalization procedure (see
Methods). Clustering takes ∼55 hr on a Digital-Alpha
500-MHz computer. This run time can rapidly be de-
creased by clustering buffers of 25,000 clones each on
multiple processors in parallel and then reclustering
the calculated centroids from the buffers. Using four of
the above-mentioned processors in parallel decreases
run time to 25 hr.

Table 5 shows the cluster splitting of the 15 con-
trol genes. We observe an increase in cluster splitting

Table 3. Cluster Splitting of Gene Clusters Within 2.029 cDNA Clones

Gene ID Copies Core clusters Total Percent of copies
Diversity

index

Ef1_a 669 636 (646), 3 (4) 639 95.52 0.049
Cytochrom_cox_I 274 229 (232), 24 (24), 12 (14),2 (2) 267 97.45 0.121
clone_190B1 254 237 (241), 2 (2) 239 94.09 0.068
tubulin_b 207 203 (205) 203 98.07 0.023
40SRibo_protS6 183 176 (176) 176 96.17 0.045
40SRibo_protS4 100 99 (99) 99 99.00 0.012
60SRibo_protL4 85 84 (86) 84 98.82 0.014
GAPDH 82 77 (77) 77 93.90 0.074
Ef1_b 67 66 (76) 66 98.51 0.018
human_calmodulin 32 22 (26), 4 (4) 26 81.25 0.324
heat_shock_cogKD71 28 22 (23) 22 78.57 0.271
heat_shock_cogKD90 26 20 (20) 20 76.92 0.276
human_TNF_receptor 12 8 (8) 8 66.67 0.442
clone_244D14 8 3 (3) 3 37.50 0.318
clone_241F17 2 2 (2) 2 100.00 0.000

Total 2029 1932 95.22 0.137

The diversity index for most gene clusters is low (< 0.2). E.g., GAPDH (human glyceraldehyde-3-phosphate
dehydrogenase) is present with 82 copies in the library. Clustering finds 77 copies in a calculated cluster of size
77 (the numbers in brackets denote the sizes of the calculated clusters). These 77 copies correspond to
93.90% of the copies of that gene. We consider only calculated clusters that are pure because only those
clusters contribute to gene identification.
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due to stringently set algorithmic parameters. This is
necessary because the distribution of cluster sizes in
the entire library differs fundamentally from that of
our subset. Most genes are expected to appear at low
copy rates (1–20) and only a few of them at copy rates
>100. To detect low-copy genes, the algorithmic pa-
rameters have to be set quite stringently to guarantee
high purity even in small clusters. Clustering finds a
total of 7391 clusters and 16,287 singletons. There is a
certain overestimation of the number of genes due to
cluster splitting and false assignment of clones to
singletons. On the other hand, as most of the genes are
low-copy genes, the splitting is less serious than it
seems when judged by our control genes because of
their high copy rates. Most core clusters are smaller (cf.
with Table 3) as 5%–15% fewer copies are identified.
Diversity increases moderately although one gene (hu-
man_TNF_receptor) is split to a high degree. False as-
signment to singletons happened in 53 cases (2.6%).
Again, all 15 genes could have been identified by se-
quencing a small number of clones from each cluster—
even those with small copy rates. It is also remarkable
that the two-copy gene clone_241F17 has been found
correctly out of a pool of 76,032 cDNA clones.

The robustness of our clustering procedure is also
demonstrated by visualizing clone fingerprints that are

clustered together. Figure 2 shows a calculated cluster
of size 69 in which 63 clones correspond to the gene
Elongation factor b. We see that a set of ∼15 probes
(7.5% of all probes) that are common for nearly all
clones is sufficient to cluster those clones correctly
from 76,032 other fingerprints. We also observe that
there are a lot of additional hybridizations not com-
mon to all clones in every clone fingerprint (due to
false positive hybridizations or length variation), but as
these signals are distributed arbitrarily among the
probes, clustering is not affected seriously.

Comparison of Similarity Measures
The subset of 2029 control clones is used to compare
the mutual information similarity measure with Eu-
clidean distance and Pearson correlation. Given two
vectors and x = (xl, . . . ,xN) and y = (yl, . . . ,yN), Euclid-
ean distance is defined in Methods, and Pearson cor-
relation is given by the formula

p~x, y! =
(
i=1

N

~xi − xm!~yi − ym!

Î(
i

~xi − xm!2 (
i

~yi − ym!2

in which xm and ym are the respective means of the

Table 4. Contingency Table of Calculated and True Partitions

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total

1 636 1 1 5 643
2 1 237 1 2 241
3 1 229 1 1 232
4 1 203 1 205
5 176 176
6 99 99
7 1 1 84 86
8 77 77
9 1 7 1 1 66 76

10 4 22 26
11 24 24
12 1 22 23
13 20 20
14 10 1 1 1 2 15
15 12 1 1 14
16 8 8
17 4 4
18 3 1 4
19 3 3
20 2 2
21 1 1 2
22 2 2
23 2 2
24(*) 10 6 5 1 4 3 4 5 4 3 45

Total 669 274 254 207 183 100 85 82 67 32 28 26 12 8 2 2029

Rows correspond to calculated clusters; columns correspond to true clusters. We observe a high proportion of
pure calculated clusters. Only two clusters (cluster 14 and cluster 21) have a purity below 70%. Cluster 24 is
marked (*). It contains singletons, i.e., clone fingerprints that have not been assigned to any of the clusters.
False assignment to singletons happened in 45 cases (2.2%).
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vectors. Using our clustering algorithm with Euclidean
distance as similarity measure (which is a dissimilarity
in this case), we obtain 30 clusters and 115 singletons,
which leads to an overall quality of 0.76 for RMIC and
0.43 for Minkowsky metric. Using the Pearson correla-
tion measure, clustering finds 29 clusters and 78 single-
tons corresponding to an RMIC of 0.81 and a
Minkowsky metric of 0.39. Figure 3 shows the com-

parison of diversity indices for Pearson correlation, Eu-
clidean distance, and mutual information. It is observ-
able that mutual information gives the best results for
most genes compared with the other two measures,
whereas Euclidean distance is the weakest of the three
measures; although for two genes (Cytochrom_cox_I
and Elongation factor b) it is considerably better than
the two others. Pearson correlation is nearly as good as

mutual information, but regarding
the number of singletons and the
number of calculated clusters, we
think that mutual information is
superior especially when taking
into consideration the size of com-
mon data sets.

DISCUSSION
Our assumptions are quite general.
Hybridization experiments can be
viewed as independent of each
other if the probes in use are dif-
ferent enough in their sequences.
In practice, probes differ in hybrid-
ization frequency, reproducibility,
and hybridization quality. From
theory it is clear that the most in-
formative set of probes would
have an average matching fre-
quency of 50%, but in practice
the matching frequency of oc-
tamer probes is much lower. We

Table 5. Cluster Splitting of Gene Clusters Within 76,032 cDNA Clones

Gene ID Copies Core clusters Total

Percent
of

copies
Diversity

index

Ef1_a 669 319 (396), 209 (225), 9 (13),
4 (4), 2 (3), 2 (2), 2 (2) 549 82.06 0.303

Cytochrom_cox_I 274 217 (225), 20 (23), 2 (2) 239 87.23 0.199
clone_190B1 254 218 (264), 5 (5) 223 87.80 0.159
tubulin_b 207 195 (199) 195 94.20 0.067
40SRibo_protS6 183 161 (161), 6 (7) 167 91.26 0.129
40SRibo_protS4 100 83 (83), 5 (6) 88 88.00 0.183
60SRibo_protL4 85 70 (103) 70 82.35 0.162
GAPDH 82 72 (78) 72 91.14 0.148
Ef1_b 67 63 (69) 63 94.03 0.073
human_calmodulin 32 14 (15), 3 (3) 17 53.13 0.637
heat_shock_cogKD71 28 15 (17) 15 53.57 0.565
heat_shock_cogKD90 26 18 (19) 18 69.23 0.386
human_TNF_receptor 12 2 (2), 2(2) 4 33.33 0.907
clone_244D14 8 4 (4) 4 50.00 0.469
clone_241F17 2 2 (2) 2 100.00 0.000

Total 2029 1720 84.77 0.292

The gene 40SRibo_protS6 (human ribosomal protein S6 gene) is split into two clusters. One hundred sixty-one
copies are clustered in a cluster of size 161 (numbers in brackets refer to the calculated cluster sizes), and 6
copies are clustered in a cluster of size 7. Together, 167 copies of that gene can be identified, which is a
proportion of 91.26% of all copies of that gene. The rest of the copies are split into other clusters; the diversity
index is 0.129, which is still low.

Figure 2 Visualization of calculated cluster. A calculated cluster of size 69 that contains 63
clones from the gene Elongation factor b. Rows (left and right) correspond to clone names
(internal abbreviations), and columns (top and bottom) refer to the hybridized probes. Dif-
ferent gray levels are introduced according to the strength of the individual hybridization
signal (black = strong signal).
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estimate (e.g., by evaluating control clones of known
sequences) the range of positive hybridizations of the
probes to be 5%–25%. Two different approaches could
lead to the design of probes with higher matching
rates: (1) The use of shorter probes than octamers in-
creases matching frequencies statistically; Milo-
savljevic et al. (1996) and Drmanac et al. (1996) have
shown that it is experimentally possible to hybridize
and to evaluate heptamer probes. (2) The pooling of
octamer probes is another way to increase matching
frequencies. Our probes are pools of 16 different
decamer probes with the same 8-mer core sequence
(Meier-Ewert et al. 1998). Pooling could be generalized
to use probes that differ to a greater degree. However,
the choice of pools is difficult and far from routine. It
is, on the other hand, desirable in some situations to
have low matching frequencies to derive very specific
hybridization matches, for example, when working
with motif probes that are specific for a small propor-
tion of cDNAs.

It has been shown that the use of mutual informa-
tion as a pairwise similarity measure for clone finger-
prints has several advantages compared with com-
monly used distance measures. To estimate the joint
distribution of a pair of data points by relative frequen-
cies it is necessary to define a finite number of intervals

that determine the joint events. The
number of intervals should be moder-
ate enough to allow good estimates.
We set the number to 5 (correspond-
ing to 25 joint classes), which has been
performed best by running several
data sets with different class sizes. The
number of intervals affects the data in
the same sense as the number of bins
affects the computation of a histo-
gram: If on the one hand the bin
width is too small, most values fall in
different bins so that no meaningful
compression of data is possible; if on
the other hand the bin width is too
big, essential differences of data distri-
bution disappear. There is no optimal
choice for each data set, it is, for ex-
ample, dependent on the way of nor-
malization of the data and on the in-
dividual biological application so that
the best number should be obtained
heuristically by running the algorithm
several times. For our application five
intervals are sufficient, but, for ex-
ample, for gene expression analysis
the number might be enlarged. Theo-
retically, it is straightforward to derive
a quantitative analog of mutual infor-
mation by extending entropies to dif-

ferential entropies, but for practical purposes this is less
appropriate. On the other hand when investigating
time-dependent differences of gene expression ratios,
questions are rather of qualitative nature, and mutual
information can be used to measure pairwise gene
regulation information described by qualitative levels
of gene expression like up-regulated, down-regulated,
or unchanged (compared with a reference level). An
interesting application of mutual information analysis
in the context of genetic networks is described by Li-
ang et al. (1998).

Further improvements on pairwise clone finger-
print similarity can be made. One shortcoming of the
measure is that all pairwise events are weighted equally
regardless of their information content. For example,
the event that both clones do not match with a given
probe gets the same weight as the event that both
clones do although the latter information is far more
important than the former one due to the dissimilar a
priori probabilities of a match and a nonmatch, respec-
tively. This can be taken into account by using a
weighted form of mutual information in which the
joint events are weighted, and these weights are di-
rectly proportional to the importance of the joint
events. The weights depend hereby on the specific set
of probes and the clones under analysis.

Figure 3 Comparison of similarity measures. Diversity indices describing the cluster
splitting of 15 control genes when using Euclidean distance (dotted line), Pearson
correlation (solid line), and mutual information (dot-dashed line) as pairwise similarity
measures. x-Axis shows the number of the respective gene; y-axis shows the diversity.
Diversity is 0 if all copies are clustered in the same cluster; it is 1 if all copies are split
into different clusters.
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Experimental observations show that in most
cDNA libraries there is a small number of big gene clus-
ters and a high number of singletons and small gene
clusters (Meier-Ewert et al. 1998; Poustka et al. 1999).
We observe that, in general, big clusters are easy to
identify by clustering procedures as centroids can be
moved in the right direction because variance in the
signals gets smaller, whereas small clusters are harder
to identify because of the high variance introduced by
experimental error. The identification of small clusters
needs the generation of highly pure clusters by strin-
gently set algorithmic parameters. This leads to an
overestimation of the total number of genes due to
cluster splitting and to the false assignment of clones
to singletons that should be clustered and thus to a
lower normalization rate of the cDNA library. The es-
timated proportion of false-positive assignments of
clones to singletons is 3%; that is, 3% of the clones that
should be clustered remain as singletons. However, by
extracting a clone from each cluster it is possible to get
a three- to fourfold normalization of the initial library
and to identify almost all active genes in the tissue.

There are several alternatively usable clustering
procedures. One usually distinguishes between two
main classes of clustering procedures; partitioning and
hierarchical methods. Partitioning methods try to find
the “best” partition given a fixed number of classes,
whereas hierarchical methods calculate a full series of
partitions starting from N clusters each of which con-
tains one single data point and ending with one cluster
that contains all points (or vice versa); in each step of
the procedure, two clusters are merged according to a
prespecified rule. In general, hierarchical methods suf-
fer from the fact that they do not “repair” false joining
of data points from previous steps; indeed, they follow
a fixed path for a given rule (Kaufman and Rousseeuw
1990). Furthermore, the display of hierarchical meth-
ods—commonly given in form of a dendrogram that
resembles a phylogenetic tree—is very hard to interpret
when data size is large. Hierarchical methods have re-
cently been applied mainly in the context of gene ex-
pression analysis: Eisen et al. (1998) use a hierarchical
clustering method based on pairwise average-linkage
analysis. Pairwise similarities are calculated according
to a measure of correlation that is an extension of the
Pearson correlation coefficient. Wen et al. (1998) use
the FITCH algorithm (Felsenstein 1993) to produce a
phylogenetic tree from a distance matrix derived from
pairwise Euclidean distances. Alon et al. (1999) use de-
terministic annealing to calculate a binary tree and re-
calculate clusters from this tree—a fast and efficient
algorithm that scales N log (N) and does not require the
calculation of all pairwise similarities. Many clustering
algorithms are based on graph theory approaches, in
which nodes of the graph correspond to data points
and edges are weighted according to pairwise similari-

ties. Interesting algorithms based on threshold graphs
are shown by Hartuv et al. (1999) and Ben-Dor and
Yakhini (1998). The latter approach is enriched by heu-
ristics that allow corrections of false joining of two data
points. Another interesting approach to clustering are
self-organizing maps. Recent studies have been pub-
lished in the context of gene expression analysis
(Tamayo et al. 1999; Törönen et al. 1999).

Common criticism of k-means algorithms centers
on the fact that the number of centroids has to be fixed
from beginning of the procedure; thus the results are
highly dependent on the initialized set of centroids.
This version of k-means was recently applied in a study
by Tavazoie et al. (1999) in which Euclidean distance as
pairwise distance measure is used. Here, we present a
sequential k-means approach that has been introduced
by MacQueen (1967) and further described by Mirkin
(1996) that finds the number of different clusters from
data itself and is independent of a prespecified number
of centroids. The simulation studies show that the vari-
ance of clustering quality for each parameter is fairly
small and indicate that the random initialization of
different centroids for each simulation run does not
change clustering results tremendously. Further appli-
cation of the algorithm to various cDNA libraries of
different organisms including human, mouse, ze-
brafish, sea urchin, and amphioxus shows that the pro-
cedure of determining algorithmic parameters can be
set quite generally independently of the cDNA library.

The sequential structure of our algorithm allows
the analysis of even larger data sets in a reasonable
amount of time by splitting the data in smaller data
sets, clustering these sets in parallel using multiple pro-
cessors, and then reclustering the calculated centroids.
This procedure reduces computation time to a high
degree because the time-consuming step of finding the
centroids in the data can be computed in parallel. This
procedure has been applied to 200,000 clones from two
human cDNA libraries where run time was <3 days (65
hr) using four processors in parallel with eight buffers
of 25,000 clones each. For further attempts we estimate
the run time for 400,000 clones to be <5 days (100 hr),
for 800,000 clones to be ∼1 week (175 hr), and for
1,600,000 clones to be <2 weeks (325 hr), correspond-
ing to 4, 8, and 16 representative cDNA libraries. Tak-
ing into account the rapid development in computer
hardware, these run times are upper bounds for the
future.

A significant reduction of cluster quality is observ-
able if length variation of cDNA clones is >700 bp.
Improvements have to be made to increase robustness
on this kind of error. A straightforward way to over-
come this problem is the use of more probes. Attempts
are ongoing to increase hybridization number per
clone by 50–100 more probes. This will also improve
separation and identification of partially overlapping
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genes such as splice variants and highly homologous
genes. These are experimental improvements that do
not involve changes within the algorithm.

An important aspect in future work will be the
establishment of clone fingerprint databases and their
statistical evaluation for gene identification. Depend-
ing on the reproducibility of hybridization signals and
depending on normalization procedures, it will be pos-
sible to compare cDNA fingerprints from different tis-
sues of an organism. The number of unknown and uni-
dentified genes will thereby be reduced significantly;
verified knowledge on known genes can be used to
identify unknown genes.

Although we focus here on cDNA fingerprint data,
the algorithm and the pairwise similarity measure are
in no way restricted to this kind of data and might be
applied to other genetic large-scale projects. Preselec-
tion of clones from shotgun libraries of genomic DNA
with oligonucleotide fingerprinting has been pub-
lished recently (Radelof et al. 1998). This can be done
by using the clustering algorithm to reduce redun-
dancy from highly overlapping clones. The sequential
structure of the algorithm offers the possibility to pro-
cess very large shotgun libraries, for example, covering
an entire chromosome. Another possible application is
sequence comparison by theoretically fingerprinting
EST sequences using our approach. Attempts in this
direction are ongoing (R. Herwig, unpubl.).

METHODS

Source of Biological Material
The cDNA library under analysis is derived from human pe-
ripheral blood dendritic cells. Dendritic cells have a key role
in the immune system through their ability to present anti-
gen. The cells were purified from healthy donors by density
gradient centrifugation followed by counter current elutria-
tion. The remaining contaminating cells were depleted after
incubation with a mixture of monoclonal antibodies (CD3,
CD11b, CD16, CD19, CD34, CD56) and reacted with anti-
mouse monoclonal antibodies attached to paramagnetic
beads using the MACS system. The purified dendritic cell
population was stimulated in culture for 30 hr with GM-CSF
and anti-CD40 antibody. For cDNA library construction, total
RNA was isolated using guanidinium thiocyanate–phenol–
chloroform reagent. Poly(A)+ RNA was selected using oli-
go(dT)–cellulose. cDNA was synthesized with Superscript RT
and then cloned directly into the NotI and SalI restriction sites
of the pSPORT1 vector.

Normalization of the Data
Due to experimental reasons there are a lot of influence fac-
tors that affect the individual clone-probe hybridization. Rep-
resentative cDNA libraries are usually too big to fit on one
filter membrane (at the moment, 25,000 different clones are
immobilized on one filter) so that hybridization of a probe to,
say, 100,000 clones requires four different filters in the labo-
ratory. To make the intensity values comparable, the raw data
has to be normalized carefully. Starting with an Nxp raw data

matrix (N = number of data points, p = dimension of data
points), normalization should be row-wise and columnwise.
Variations between columns arise as a result of specific behav-
ior of the probes when using the same hybridization condi-
tions, because of the filter material that can be of different
quality and because of differences in radioactive labeling of
the probes. Variations between rows arise as a result of the
specific amount of clone material derived from PCR amplifi-
cation, as a result of the specific amount of transferred clone
material introduced by the spotting procedure, and as a result
of specific position of the spots on the filter membranes (local
neighborhood, borders, local soilings). Raw data is therefore
normalized in two main steps: The first step is normalization
within each filter for all clones, and the second step is nor-
malization across all probes for each clone. One way to per-
form a quite robust normalization is by replacing all intensi-
ties by their ranks first across every filter and afterwards along
all probes for each clone (Milosavljevic et al. 1995). The main
disadvantage of this method is the high loss of information
resulting from the fact that every clone fingerprint has the
same complexity after normalization. However, the method is
stable and robust against all monotone transformation of the
data (including scaling and translation). There are known ex-
perimental shortcomings, for example, failure of PCR ampli-
fication, that necessitate a preselection of clones before cluster
analysis. By evaluating real data we observe that, depending
on the quality of the biological material, 20%–30% of the
original cDNA clones should be discarded. Selection is done
after the first ranking step. The average rank for each clone
across all hybridizations is computed, these average ranks are
sorted, and the clones with the 25% (default value) lowest
values are discarded. This selects poorly amplified clones as
well as clones that have only very few positive hybridizations
because of short insert lengths. Figure 4 shows a histogram of
intensity signals when evaluating a hybridization of the PCR-
primer sequence to a filter. Because this primer should be
present in all probes, the left-hand peak of the distribution
indicates the proportion of clones where PCR amplification
has failed.

Figure 4 Hybridization with the PCR-primer sequence. His-
togram of intensity signals when hybridizing the PCR-primer se-
quence to a filter. As this PCR primer should be amplified in all
clones, the left peak of the distribution indicates the proportion
of clones in which PCR amplification has failed.
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The spotting of clones in duplicate on the filter is an
additional check for the reliability of a clone-probe hybridiza-
tion. For each clone we compute the ratio zp = xmax/xmin, in
which xmax and xmin are the maximum and the minimum
value of the clone duplicate signal for the pth probe. If zp > T,
where T is a specified threshold same for all probes, we tag the
signal as a missing value. The threshold T is set in the order of
2–10 (default T = 5) that leads to a rate of 5%–30% of missing
values per probe. The whole normalization procedure reads as
follows: (1) Discard raw intensity signals with ratio zp > T; (2)
rank clone signals for each filter; (3) compute average rank for
each clone across all filters, sort the rank averages, and discard
the clones with the 25% lowest values; and (4) rerank signals
across all probes.

Similarity Measure
We assume the series of hybridization signals for each clone
to be independent of each other. To allow mutual informa-
tion measurement, we digitalize the signals by introducing a
finite number K of intervals. For two clone fingerprints,
x = (xl,. . .,xp) and y = (yl,. . .,yp), similarity can be measured by
mutual information;

H~x; y! = (
i=1

K

(
j=1

K nij
xy

nxy log2

nij
xynxy

ni
xnj

y . (1)

nxy
ij is the number of pairs where x falls into interval i and y

falls into interval j and nx
i and ny

j are the respective marginal
frequencies of x and y and nxy is the number of pairs where
signals are present in both vectors. Mutual information can be
interpreted as the amount of information that each of the
signals detects about the other. It tends to zero if x and y are
independent (no correlation) and is maximal if they are iden-
tical (perfect correlation). To avoid high pairwise similarity
due to anticorrelation, we only take into consideration pairs
that are sufficiently “near” to each other. For that reason we
calculate t(x, y) = SK

i=1 nxy
ii /nxy for each pair of data points [t(x,y)

is the proportion of pairs in the diagonal of the KxK contin-
gency table; it is low in the case of anticorrelation]. Because
mutual information increases with entropy, we normalize it
in a suitable way to allow comparison of different pairwise
clone similarities. We therefore propose

s~x, y! =
2H~x; y!

H~x! + H~y!
(2)

as a pairwise clone similarity measure, in which H(x) = 1SK
i=1

nx
i /n

xy log2 nx
i /n

xy is the entropy of x and H(y) is the entropy of
y. As the equation holds (Cover and Thomas 1991)

H~x; y! # min $H~x!, H~y!%, (3)

the range of s lies within the interval [0,1]. It is 1 if both
signal series are perfectly correlated and 0 if there is no cor-
relation.

Commonly used pairwise dissimilarity measures are the
Minkowsky metrics

dk(x, y) = S(
i=1

p

| xi − yi |kD1

k. (4)

For k = 2 we get the well-known Euclidean distance that has
initially been introduced by MacQueen (1967); Kaufman and
Rousseeuw (1990) focus on k = 1 for a more robust alternative.
These metrics are zero if the two signal vectors are identical
and tend towards high values when they differ. We observe

however by practical experiments as well as theoretical con-
siderations that mutual information fits better to the require-
ments of fingerprinting experiments (see Results).

Clustering Procedure
To allow the algorithm to find the clusters from data itself,
two threshold parameters (g and r,g $ r) are introduced; g is
the minimal admissible similarity for merging two cluster
centroids, and r corresponds to the maximal admissible simi-
larity of a data point to a cluster centroid. To adjust the algo-
rithmic thresholds to the data set, we select a random sample
of >10,000 data pairs to derive a distribution of pairwise simi-
larity under the hypothesis of not belonging to the same clus-
ter. The median, m, and the median deviation, s, of this dis-
tribution are then used to compute the algorithmic thresh-
olds, g and r, in absolute deviations apart from the median of
the distribution. A set of sufficiently different data points is
initialized as cluster centroids with weights equal to 1 and
pairwise similarities <g. The clustering sequentially assigns
each remaining data point to the set of currently available
centroids by the following procedure:

1. While there is a data point, x, left and given the set of
centroids, cn

1, . . . , cn
K, with weights, wn

1, . . . , wn
K, at the nth

step, for each i compute the pairwise similarity s(cn
i , x):

a) If s(cn
i , x) $ r then update the centroid and its weight by

the formula cn+1
i = (wi

nci
n + x)/(wi

n + 1) and wn+1
i = wn

i + 1,
otherwise let ci

n+1 = cn
i and wi

n+1 = wn
i . If the centroid has

been updated do the following:
(1) For each other centroid cn

j, j Þ i, compute the pair-
wise similarity s(cn

j , ci
n+1). Let cn

j0
be the centroid with

the highest similarity.
(2) If s(cn

j0
, ci

n+1) $ g merge the centroids and their
weights by the formula ci

n+1 = (wi
n+1ci

n+1 + wn
j0
cn
j0
)/

(wi
n+1 + wn

j0
) and wi

n+1 = wi
n+1 + wn

j0
, then go to i.).

b) If for all cn
i, s(cn

i, x) < r, then initialize a new cluster
centroid cK+1

n+1 = x with weight wn+1
K+1 = 1.

2. After all data points are processed, reclassify each point to
the centroid with the highest similarity.

The cluster centroids in each step correspond to the mean of
the respective data points assigned to this cluster. The above
procedure guarantees that in each step the pairwise similari-
ties of the available cluster centroids are <g, which means that
they are sufficiently separated. On the other hand, all cen-
troids that have a similarity $r with a data point x are up-
dated by this data point, not only the most similar centroid as
is described by MacQueen (1967) and Mirkin (1996). This is
realistic because a data point will usually contain valuable
information about more than one centroid. This way of par-
allel updating of centroids also enhances the chance of mov-
ing centroids together that are split at the beginning of the
procedure. Whenever a centroid is updated, we open the pos-
sibility of merging this centroid with any of the others. This is
a recursive procedure, which means the merged centroid is
then updated and again compared with all remaining cen-
troids, etc. On the other hand, if there is not enough similar-
ity of a data point to any of the currently available centroids,
we allow the introduction of a new centroid by this data
point.

Validation of Clustering
Assume a data structure of N data points, xl,. . .,xN, in which
the true clustering, T, is known. Let tij = 1 if xi and xj belong to
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the same cluster and tij = 0 otherwise (l # i, j, # N). For a cal-
culated clustering, C, define similarly cy = 1 if xi and xj belong
to the same cluster and cij = 0 otherwise, (1 # i, j # N). To
measure clustering quality, we evaluate the 2 2 2 contin-
gency table of the following form:

in which Nkl = #{(i, j); tij = l, cij = k, l # i, j # N}, 0 # k,
l # 1, and in which N.k and Nl. are the respective marginal
frequencies. Here, the columns correspond to the true clus-
tering, and the rows correspond to the calculated clustering.
Clearly, N. . = N2 sums to all pairs. The number of diagonal
pairs (Nd = N00 + N11) indicates the number of data pairs that
have been clustered correctly by the calculated clustering.

As a measure of quality for a given true clustering, T, and
a given calculated clustering, C, we introduce the RMIC

r~C, T! = sgn~Nd − N2/2!
H~C;T!

H~T!
(5)

in which sgn(y) = 1, if y $ 0, and sgn(y) = −1, if y < 0, and
H(C;T) and H(T) are defined as before with the number K of
intervals equal to 2.

RMIC can be interpreted as the amount of information
that the calculated clustering contains about the true cluster-
ing. Mutual information is normalized by the entropy of the
true clustering to allow general comparison between several
runs of clusterings in which the true clusterings differ. The
normalization is necessary because mutual information in-
creases with entropy of the entities. The multiplication factor
is necessary to filter out anticorrelation. RMIC is negative if
more pairs are clustered incorrectly than correctly. By equa-
tion 3 it is clear that the range of RMIC is within the interval
[11,1]. It is 1 in the case of perfect correlation of C and T and
tends to smaller values if the partitions are less similar. In the
case of anticorrelation it tends to negative values. Note that
perfect anticorrelation 11 is practically never fulfilled be-
cause Nll $ N in all cases by definition.

We compare our measure with the Relative Minkowsky
metric

m~C,T! = !(
i,j=1

N

~cij − tij!
2

(
i,j=1

N

tij
2

(6)

This distance clearly counts the number of falsely clustered
pairs and can be written with our above contingency table
notation as µ(C,T) = (N01 + N10)/N.1. This measure is 0 if the
partitions are identical and tends toward higher values if they
differ. In our simulation studies, we compare both measures.
We observe that the tendencies are fairly similar when com-
paring a special true clustering; however, we prefer RMIC be-
cause of the compact range (it has the same bounds for all true
clusterings) and the better interpretability (see Results).
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