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The expressed human genome is being sequenced and analyzed by disparate groups producing disparate data.
The majority of the identified coding portion is in the form of expressed sequence tags (ESTs). The need to
discover exonic representation and expression forms of full-length cDNAs for each human gene is frustrated by
the partial and variable quality nature of this data delivery. A highly redundant human EST data set has been
processed into integrated and unified expressed transcript indices that consist of hierarchically organized human
transcript consensi reflecting gene expression forms and genetic polymorphism within an index class. The
expression index and its intermediate outputs include cleaned transcript sequence, expression, and alignment
information and a higher fidelity subset, SANIGENE. The STACK_PACK clustering system has been applied to
dbEST release 121598 (GenBank version 110). Sixty-four percent of 1,313,103 Homo sapiens ESTs are condensed into
143,885 tissue level multiple sequence clusters; linking through clone-ID annotations produces 68,701 total
assemblies, such that 81% of the original input set is captured in a STACK multiple sequence or linked cluster.
Indexing of alignments by substituent EST accession allows browsing of the data structure and its cross-links to
UniGene. STACK metaclusters consolidate a greater number of ESTs by a factor of 1.86 with respect to the
corresponding UniGene build. Fidelity comparison with genome reference sequence AC004106 demonstrates
consensus expression clusters that reflect significantly lower spurious repeat sequence content and capture
alternate splicing within a whole body index cluster and three STACK v.2.3 tissue-level clusters. Statistics of a
staggered release whole body index build of STACK v.2.0 are presented.

ESTs simultaneously tantalize and frustrate. They offer
a rapid and inexpensive route to gene discovery (Ad-
ams et al. 1991, 1992; Okubo et al. 1991; Matsubara
and Okubo 1993; Vasmatzis et al. 1998), reveal expres-
sion and regulation data (Vasmatzis et al. 1998), high-
light transcript sequence diversity and splicing (Wolf-
berg and Landsman 1997), and may identify more
than half of known human genes (Hillier et al. 1996).
The price of the high-volume and high-throughput na-
ture of the data is that ESTs contain high error rates
(Aaronson et al. 1996), do not have a defined protein
product, are not curated in a highly annotated form,
and present only a raw substrate for sequence match-
ing.

Several systems are being developed to organize
and thereby enrich publicly available ESTs, and each
has used a novel approach successful in terms of its
own goals. Current indices such as TIGR Human Gene
Index (http://www.tigr.org) and EST cluster databases
such as UniGene (Boguski et al. 1995; Schuler et al.
1996) discard noisy information during their produc-
tion and rely on longest informative ESTs, significant

transcript matches, or joined genomic exons to seed
index classes. TIGR Human Gene Index (HGI; http://
www.tigr.org) uses the strict assembly method of
TIGR_ASSEMBLER (Sutton et al. 1995), tightly group-
ing highly related sequences and, consequently, pro-
ducing accurate consensus sequences with a minimum
of chimerism or other contamination. The method
strictly discards under-represented and divergent or
noisy sequences in favor of confidence based on tran-
script redundancy, but in doing so it generates “short”
consensi and may eliminate related sequences that
might provide examples of alternative splicing or other
valuable forms of sequence diversity (Bouck et al.
1999). A complementary approach, as taken by Uni-
Gene (Boguski et al. 1995; Schuler et al. 1996), the
Genexpress Index (Houlgatte et al. 1995), and the
Merck Gene Index (Williamson et al. 1995), groups se-
quences into clusters based on sequence overlap above
a given alignment threshold, accepting only the long-
est representative of an index class as its consensus.

The STACK resource is based on extensive devel-
opment of exhaustive loose clustering, defining index
classes by the total number and multiplicity of (possi-
bly discontiguous) matching 6-base words rather than
by alignment to previously identified class members.
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In recognition of the diversity of expression and the
possibility of artifactual inclusion and interpretation of
ESTs within a cluster, the related but loose clusters are
subsequently processed by strict assembly and analysis
tools to identify, characterize, view, and isolate se-
quence divergence. This approach leverages the diver-
sity of the resulting clusters to identify and highlight
variation. Given such a tree of relationships within a
sequence cluster, primary and subsidiary consensus se-
quences are generated to maximize detection of related
genes, exons, possible paralogs, and expression forms.
Elucidation of these relationships is simplified by sub-
consensus display and also formatting of entries so
that they can be assayed in databases via BLAST
(Altschul et al. 1990) or other search algorithms. Pair-
wise comparisons of ESTs in a preclustering step using
cross match (http://www.genome.washington.edu/
uwgc/analysistools/phrap.htm) reduces redundancy
and provides increased fidelity.

Clustering approaches tend to minimize compari-
sons to achieve speed. A significant difference between
STACK_PACK, the system used to produce STACK, and
systems preceding it is that clustering has been per-
formed so as to maximize comparisons. Thus, all avail-
able ESTs have been compared to each other, and as a
result, it has been necessary to use high performance
hardware and/or distributed processes. The benefit is
that as few sequences as possible have been dropped
from each cluster, contributing to the value of each
consensus. A degree of security is also obtained in
terms of the likelihood that clusters have been care-
fully assigned.

The exponential growth rate of the experimentally
determined sequence databases requires that any effort
to cluster related sequences acknowledges the unavoid-
ably dynamic status of the results. Newly determined
sequences will join previously unrelated clusters,
whereas old sequences may be recognized as contami-
nated and necessitate the disaggregation and recluster-
ing of an index class. The STACK schema implements
both repair and add facilities. Current development is
focused on continued dynamic addition of sequences
to existing processed data.

To date, EST assemblies have not been joined at
the sequence comparison step according to genome
hybridization or available full-length mRNA sequence
data. However, with the recent increase in production
of genome and mRNA information, addition of new
ESTs to already clustered data will include genomic and
mRNA sequence to anchor clusters.

Development of a Clustering Procedure and Methods

Subpartitioning
Step 1 of the STACK_PACK schema is selection of hu-
man ESTs followed by the breakdown of GenBank for-
mat sequence data files into “manageable bins” (Table
1). Individual tissue sets are organized according to or-
gan system relationships, then partitioned to maxi-
mize sequence groupings while approaching an arbi-
trary 260,000 input sequence bin target and retaining
logical distinctions between groupings. All sequences
annotated as derived from a disease-related tissue are
duplicated and placed in a single set to facilitate explo-

Table 1. Tissue Divisions Used for STACK

dbEST 101598 Homo sapiens tissue partitioning

Arbitrary tissue partitions Substituent tissues types Total ESTs

Adipose brown, white 2,376
Brain frontal lobe, cerebrum, cerebellum, cortex 177,719
Cochlea fetal cochlea 4,304
Connective bone, skin, synovial membrane 40,753
Digestive stomach, colon, gall bladder 51,032
Disease duplicates of ESTs annotated as tumors 114,496
Eye retina, cornea, ocular 28,514
Genomic specified chromosomes 101,986
Glands breat, endocrine 112,346
Heart fetal heart, aorta 69,830
Hemato-lymphatic blood, kidney, liver–spleen 255,565
Lung trachea, larynx, lung 70,259
Muscle leg, pectoral 16,237
Olfactory olfactory epithelium 2,600
Other monocytes, mononuclear cells 25,925
Reproductive ovary, testis, uterus 239,161

Sequences were partitioned over an arbitrarily defined tissue hierarchy designed to group physically related
tissues and remain within constraints of computational resources. Genomic tissue is a set of ESTs labeled only
as having a genomic region of hybridization without a tissue source. The set of duplicate copies of all
disease-related sequences is loosely referred to as a tissue for this work.
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ration of cross-tissue similarities between these ESTs.
Partitioning at an arbitrary tissue level, given available
sequence annotations, presents the opportunity to rap-
idly explore transcript expression in specific “tissues”
(Vasmatzis et al. 1998) or subsets such as the disease-
related sequences (Burke et al. 1998) while retaining
the ability to drill down through whole-body expres-
sion by searching and viewing individual tissue-
specific consensus sequences against the entire data-
base of indexed STACK consensi (http://www.sanbi.ac.
za/webview/). Although identification of source organ-
isms is a trivial task based on the “ORGANISM” key in
the GenBank format definition, the “tissue_type” sub-
key of the “FEATURES” key is only sometimes provided
with nonstandardized terms in the data field. As a
result, the assignment of an output file name for
each sequence is based on (in order of preference) (1)
FEATURES/tissue_type, (2) FEATURES/cell_type, (3)
FEATURES/clone_lib or SOURCE/library, (4) FEATURES/
chromosome, or (5) FEATURES/map. The resulting
groups of sequences can be placed directly in the tissue
hierarchy of Table 1 by assigned filename alone.

Masking
The clustering procedure is intended to group together
those sequences that share identical regions. It is there-
fore necessary to ensure that ESTs submitted for clus-
tering are free of artifactual sequence identical to the
expressed transcripts under study. All input sequences
are subjected to masking against human repeat se-
quences using RepBase (Jurka 1995) common vector
sequences (ftp://ncbi.nlm.nih.gov/repository/vector/),
potentially contaminant species such as rodent, mito-
chondrial and ribosomal DNA. Contamination discov-
ered after database production is complete is removed
with a repair facility that extracts data related to a
specified cluster; the extracted sequences are then re-
processed after updating the relevant mask data. The
initial STACK implementation utilized BLASTN and
XBLAST (Altschul et al. 1990) for masking, but the
somewhat more sensitive crossmatch (Green 1996) is
now implemented.

Clustering
d2_cluster (Hide et al. 1994; Burke et al., this issue) is a
word-based, greedy clustering algorithm based origi-
nally on work by David Torney and others (Torney et
al. 1990a,b), written by John Burke, Dan Davison, and
Win Hide (this issue) for the MasPar computer and
ported by John Carpenter of SGI to the Origin2000.
d2_cluster implements a “loose” approach to sequence
clustering by identifying and counting matching n-
length words (n = 6 for this work), in contrast with
the “strict” approach implemented by tools such as
TIGR_ASSEMBLER (Sutton et al. 1995) in which clus-
ters are built up based on matching entire sequence

fragments. Whereas the strict methodology yields clus-
ter members that are highly related, the loose approach
presents the opportunity to detect clusters that are re-
lated by rearrangement or alternative splicing. Al-
though the resulting clusters are likely to be more
“noisy,” the combination with a verification tool for
multiple sequence alignments such as CRAW (Burke et
al. 1998) reduces noise and produces networks of
highly related sequences for further analysis. Two se-
quences or their reverse complement fall into the same
cluster if they share a 150-base window that has at least
96% identity. Sequences <50 bases in length are ex-
cluded from clustering. The output of d2_cluster is a
list of sequences.

Assembly
For all releases subsequent to STACK v.1.0, PHRAP
(Green 1996) has been used. PHRAP is effective but is
not immune to alignment problems when presented
with low-quality ESTs. An advantage of PHRAP is that
it can use sequence quality values derived from se-
quence chromatograms. Use of chromatograms nor-
mally supports the derivation of “longer,” more accu-
rate consensi, but in the STACK schema loose cluster-
ing, and thus larger numbers of ESTs in each cluster,
provide the basis for longer consensus generation. The
hugely redundant nature of ESTs obviates much of the
advantages of trace information at this stage in the
process, but it is clear that trace information can be
effective in provision of significant data in subsequent
analyses such as SNP detection, quality assessment,
and paralog detection.

The Washington University Human EST Project
(http://genome.wustl.edu/est/esthmpg.html) supplies
ABI chromatogram data in their own effort to measure
sequence confidence, but unfortunately, this is not
available for all human sequences in dbEST. Trace in-
formation is therefore not used in STACK assemblies.

Alignment Analysis
The quality of neither the annotation of read direction
nor the cluster assembly and alignment can be guar-
anteed. PHRAP invokes a sequence alignment step but
provides no subclusters to distinguish alternative splice
or other scientifically interesting data from alignment
problems induced by low sequence quality or experi-
mental artifacts. To take advantage of the benefits of
looser clustering, it is necessary to use significant fur-
ther processing of the alignment. Two tools, CRAW
and CONTIGPROC, have been developed to address
postclustering and assembly artifacts and isoforms.
CRAW is used to maximize consensus length, partition
subassemblies, and provide a simple means to view
clusters (Burke et al. 1998; Chou and Burke 1999).
CRAW checks the agreement along the columns of a
multiple sequence alignment and uses this informa-
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tion to sort related sequences within each cluster, gen-
erating IUPAC conformant consensus sequences for
each subcluster. A subcluster is generated if 50% or
more of a 100-base window differs from the remaining
sequences of a cluster, excluding the initial 100 bases
of any read. The approach depends fundamentally on
the alignment quality of each assembly. A poor align-
ment will yield erroneous subclusters, and too low a
gap penalty may yield too many columns in agreement
and thus not create subclusters where they would be
appropriate. PHRAP improves alignment quality by re-
moving particularly distinct sequences altogether. Re-
moved sequences are annotated as “PHRAP singletons”
related to their d2_cluster assigned grouping and be-
come reattached to that cluster in a clone linking
phase.

Consensus Partitioning
A dedicated alignment partitioning procedure is used
to further qualify resulting alignments. CONTIGPROC
independently partitions the aligned sequences gener-
ated from the CRAW consensi, then ranks the consensi
according to number of assigned sequences and num-
ber of called bases. The best ranking consensus is taken
as the primary representative of the cluster, whereas
the remaining consensi are logged with the best con-
sensus in GIO (Genome Sequence Database, National
Center for Genome Resources) and GDE (Smith et al.
1994) file formats that support representation of se-
quence alignment data. The 58 or 38 orientation of each
cluster is determined by a vote of the individual EST
annotations, and all output consensi are arranged to
read 58 to 38. Low-quality consensus regions, defined as
2 N’s followed by at least thirteen IUPAC codes with
four or less clear A, T, C, or G calls, are replaced by a
single run of 10 N’s. A high-confidence subset called
SANIGENE, consisting of only those consensus regions
representing at least two reads, is also generated from
the multisequence clusters.

Linking
All ESTs generated from the same cDNA clone corre-
spond to a single gene. Each EST obtained from Gen-
Bank is searched for clone identification to trace the
transcripts corresponding to the same gene. The clone
information is used to extend the length of the cluster
consensi by joining clusters containing ESTs with
shared clone IDs.

For a gene that is not yet fully sequenced, achieve-
ment of a representative consensus sequence from
clustered EST data thus requires the joining of available
58 and 38 read consensi. Unless a specific 58 → 38 pair
can be identified as a seed for each gene transcript con-
sensus, the procedure is transitive in nature and may
lead to extensive clone-linked networks with biological
significance that remains to be explored. The top con-

sensi and d2_cluster singletons (clusters containing
only a single EST) with clone-ID annotations are sub-
jected to a clone-linking step. Clone links in STACK are
associated via a flag that allocates either one (STACK)
or two (SANIGENE) clones linking the same two clus-
ters before a link is accepted. The basic algorithm for
clone linking is as follows: Form a queue consisting of
an initial cluster do {for each EST with a clone ID, add
any cluster containing an EST with a matching clone
ID to the queue} until no new clusters are added.

When a closed set of clone-linked consensi has
been identified, they may be ordered 58-unassigned-38

based on a majority rule from the EST annotations in
each cluster. Work is in progress to order fragments
based on available clone insert-size information.

Updating
STACK ADD phase is a schema (Fig. 1) for database
cluster addition that incorporates the following strat-
egy: For each tissue bin, new ESTs are searched against
a pool of tissue-cluster consensi and singletons using
cross match, resulting in reduction in the number of
ESTs submitted for clustering by 20%-55%. Cluster
consensi and/or singletons that cross match to new
ESTs are combined to form expanded clusters, whereas
ESTs that do not find matching STACK sequences are
processed by d2_cluster. The d2_cluster-generated clus-
ters are renamed so that there are no conflicts with
existing cluster IDs and are assembled using PHRAP.
The PHRAP assemblies together with the alignments of
clusters unaffected by the addition of new ESTs are
submitted to the STACK_PACK code for analysis and
consensus generation. The automation of this process
is nearing completion, at which time dynamic updat-
ing of STACK will be implemented.

STACK Index Generation
For hierarchical indexing, all cluster consensi and
singletons are submitted as a single set to d2_cluster
(Fig. 1). The magnitude of the whole-body index ne-
cessitates the use of high-performance parallel archi-
tecture to complete the clustering phase. The resulting
clusters are expanded by replacing each consensus
with the sequences that contribute to it. These sets of
sequences are entered into the STACK_PACK process-
ing pipeline at the cluster assembly step.

Comparison with UniGene
For each cluster in UniGene, the STACK clusters
(singletons or multisequence) with overlapping EST
membership are found. For overlapping clusters, the
number of common ESTs is determined, and the ratio
of commonly held ESTs to total cluster size is calcu-
lated. Finally, a STACK “metacluster” is created by tak-
ing the union of all STACK clusters that overlap with a
single UniGene cluster. The ratio of the STACK meta-
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cluster size to the UniGene cluster size is then deter-
mined.

Genomic Comparison
DDS and EXT, which are part of Analysis and Annota-
tion Tools (Huang et al. 1997) (ftp://ftp.tigr.org/pub/
software/AAT/), are used as database search and extrac-
tion tools to determine the coverage of STACK expres-
sion clusters for the genomic fragment AC004106.
Individual exons are extracted from the genomic frag-
ment as defined by the feature table and then searched
against STACK and UniGene data sets. STACK expres-
sion clusters that show significant coverage are exam-
ined for sequence variation.

RESULTS
Clustering
The STACK clustering process is asymptotically stable
in the presence of biological artifact and imperfections
in the sequencing process. The rate of joining is nearly
constant at all database sizes and is largely unaffected
by alternative sequencing chemistries and error rates
from differing EST sources.

A total of 1,198,607 sequences are partitioned into
334,822 unique sequences and 143,885 clusters, the
latter capturing 837,766 sequences. Based on clone-ID
annotations, 68,701 linked sets are created, represent-
ing 50% of the total cluster consensi and 30% of the
total singletons. Complete results are given in Tables 2
(clustering), 3 (linking), and 5 (errors). The average
length (not including amino-linker regions) of a

STACK linked consensus is 1003 bases (68,701 con-
sensi), whereas that of the higher confidence SANIGENE
set is 847.4 bases (12,635 consensi). The remaining
nonlinked STACK cluster consensi have an average
length of 508.4 bases (71,189 consensi), whereas those
of SANIGENE are 373.1 bases on average (115,641 con-
sensi).

d2_cluster imposes its own characteristics on clus-
ters produced. At least 4000 ESTs are needed to produce
sets containing at least as many multisequence clusters
as singletons (clusters containing only a single se-
quence), with more efficient (percentage of sequences
in multiple-sequence clusters) clustering obtained us-
ing input sets of at least 60,000 ESTs (Table 2). Twenty-
six percent of the total input sequences are found to be
unique at the tissue level, whereas 64% are grouped
into multiple-sequence clusters; the remaining 10% of
the starting set are eliminated because of problems at
the assembly step or failure to meet the 50-base mini-
mum length criteria. The reproductive set is seen to
cluster more efficiently than the slightly larger hema-
tolymphatic set, but 20% of the hematolymphatic set
was not clustered because of hardware failure

Although clustering stability will always be a func-
tion of the sequences present in any set, one quarter of
the overall data are found to be singleton sequences,
whereas the remainder group at an average rate of five
ESTs per cluster. This linear representation of cluster
joining demonstrates overall stability for large-scale
clustering, indicating that no failure occurs as a result
of clone reversal, chimerism, and misannotated clones

Table 2. STACK Clustering and Alignment Results

Tissue Singletons

Total
sequences

(%)
Multisequence

clusters
Sequence
in MSC

Percent total
sequences
(clustering
efficiency)

Small
sequences

Total
sequences

(%)
Total

sequences

Adipose 1,693 71 181 572 24 111 5 2,376
Brain 42,245 24 22,848 130,573 73 4,458 3 177,719
Cochlea 1,973 46 710 2,213 51 118 3 4,304
Connective 12,652 31 4,646 26,210 64 876 2 40,753
Digestive 17,398 34 6,734 32,124 63 1,481 3 51,032
Disease 29,139 25 12,513 79,433 69 4,056 4 114,496
Eye 13,867 49 3,448 12,933 45 1,388 5 28,514
Genomic 38,481 38 16,314 72,066 71 4,457 4 101,986
Gland 25,836 23 12,307 62,176 55 1,672 1 112,346
Heart 20,782 30 8,341 45,795 66 217 0.3 69,830
Hematolymph 51,654 20 17,378 113,147 44 2,582 1 255,565
Lung 20,129 29 8,554 47,151 67 2,726 4 70,259
Muscle 4,534 28 1,183 8,792 54 1,037 6 16,237
Olfactory 1,478 56 248 830 32 283 11 2,600
Other 9,392 36 4,315 15,663 60 575 2 25,925
Reproductive 43,569 18 24,165 188,088 79 6,321 3 239,161

Totals 334,822 26 143,885 837,766 64 32,240 2 1,198,607

The total sequences in each tissue set are partitioned by D2_CLUSTER into unique sequences (singletons) and clusters containing
multiple related sequences [multi-seq clusters, (MSC)], whereas sequences of <50 bases are excluded from clustering (small se-
quences).
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(Aaronson et al. 1996). These results extend the find-
ings on the algorithmic correctness of d2_cluster de-
scribed by Burke et al. (this issue), demonstrating
STACK_PACK’s effectiveness in processing real-world
sequence data.

Clone Linking
Cluster linking based on clone annotation is a wide-
spread problem in the public databases. The linked sets
created by the STACK_PACK process are only as accu-
rate as the annotations that are used to generate them,
and the system for STACK generation does not yet in-
clude an internal consistency check for clone annota-
tion. Criteria include the requirement for at least two
ESTs in a cluster to share clone annotation with two
ESTs in another cluster within the SANIGENE dataset.
Clone-ID annotations are obtained for 88% of ESTs
and are used to generate clone linked entries for 50% of
all STACK consensi and 30% of STACK singletons
(Table 3). Brain sequences provide the most complete
with 81% clone linked multiple sequence clusters
(Table 3). This is supported by the efficient clustering
(73%; Table 2) of the brain data set.

Experimental STACK Index v.2.0 Clustering
Clustering of previous release STACK v.2.0 (GenBank
103) was performed on a 126 CPU SGI Origin2000. A
total of 330,000 cluster consensi and singletons were
partitioned into 122,018 singletons and 68,846 mul-

tisequence clusters within 36 hr. STACK v.2.0 data
sampled 35,117 tissue-specific clusters (Table 4). Se-
quences (72,659; 38%) of STACK index represents 38

data that approximate unique human gene transcripts
represented by the STACK data set. STACK v.2.3 index
clustering (production level) has recently been com-
pleted and will be available on the internet (http://
www.sanbi.ac.za/Dbases.html).

Comparison with UniGene
The easy availability (http://www.ncbi.nlm.nih.gov)
and frequent updating of the UniGene (Boguski et al.
1995; Schuler et al. 1996) sequence cluster database
make it a rough standard for evaluation of STACK’s
clustering efficiency. Although the starting materials
and goals of the two databases are distinct (UniGene is
a rapid implementation that has differing error rates
and does not attempt to generate and provide assem-
blies or consensus sequences), both attempt to mini-
mize redundancy in their starting sets by clustering
similar sequences. UniGene clusters over the entire set
of available Homo sapiens sequences, rather than on the
per tissue basis used by STACK. As a result, a single
UniGene cluster may be expected to overlap with sev-
eral STACK tissue clusters. STACK and UniGene com-
parison is based on equivalent UniGene build
#61(GenBank December 1998 release for this compari-
son). We have isolated the non-mRNA-containing an-
chored UniGene clusters (44,367 entries) and used

Table 3. Clone Linking Results

Tissue

STACK Sanigene

Total
linked
sets

Linked
consensus

clusters
and singles

Nonlinked
consensus

clusters

Total
consensus

clusters
(%)

Nonlinked
singles

Total
singles

(%)

Total
linked
sets

Linked
consensus

Nonlinked
consensus

clusters

Total
consensus

clusters
(%)

Adipose 0 0 181 100 1,693 100 0 0 181 100
Brain 13,157 35,123 4,282 19 25,688 61 52,909 11,490 11,358 50
Connective 1,561 3,433 3,266 71 10,599 84 10 20 690 97
Cochlea 323 666 601 85 1,416 72 86 183 4,462 96
Digestive 2,165 4,915 4,761 71 14,456 83 188 384 6,350 94
Disease 6,106 14,103 6,623 53 20,926 72 725 1,477 11,036 89
Eye 3,988 8,616 1,027 30 7,672 55 699 1,424 2,024 59
Genomic 4,168 9,131 9,997 74 29,221 84 665 1,358 10,949 89
Gland 5,056 11,275 7,242 59 19,624 76 323 655 14,070 96
Heart 3,630 7,937 5,462 65 15,724 76 295 594 7,747 93
Hematolymph 10,952 25,388 9,648 56 33,996 66 1,432 2,958 14,419 83
Lung 4,222 9,640 5,142 60 13,901 69 339 694 7,860 92
Muscle 1,164 2,694 622 53 2,400 53 52 112 1,071 91
Olfactory 458 944 138 56 644 44 21 42 206 83
Other 3,700 8,901 929 22 3,877 41 656 1,346 2,969 69
Reproductive 8,051 26,475 11,268 47 29,991 69 1,854 3,916 20,249 84

Totals 68,701 169,241 71,189 50 231,828 70 12,635 26,653 115,641 81

Clone-ID annotations are grouped for all ESTs in a cluster, after which clusters or singletons containing matching clone IDs are added
to a linked set. The process is continued until no additional clone ID partners can be found. Each linked set may therefore contain
singleton sequences and a cluster consensus; hence, the linking success rate is expressed in terms of the fractions of consensus and
singletons that remain nonlinked.
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these in the comparison with the STACK v.2.3 release.
In 94% of cases the STACK metaclusters group at least
as many ESTs from the same release of dbEST as the
intersecting UniGene clusters. The remaining 6% of
cases represent sequences that are unique to UniGene.
Conversely, 28% of STACK sequences are not present
in UniGene, which reflects the more stringent criteria
used by UniGene for inclusion of data (raw data avail-
able on request). Sixteen percent of UniGene clusters
contributed to fragmentation of 3813 STACK metaclus-
ters, in comparison to a study by Burke et al. (this issue)
in which fragmentation of 13% is reported for a sub-
set of UniGene. The fragmented UniGene clusters
contain examples in which sequences should have
been grouped in the same index class. For exam-
ple, Hs.145328 (EST AI253034) and Hs.125352 (EST
AA877071) are present in STACK cluster 11332-0-
hemat-001-1999-2.3. These two ESTs show 99.16%
(119 out of 120) similarity over 120 bases and should
be present in the same cluster as indicated by the cor-
responding STACK cluster.

STACK metaclusters are on average 1.86 times
larger than their intersecting UniGene clusters, indi-
cating that STACK/d2_cluster implements a looser
clustering algorithm than UniGene overall. These find-
ings differ somewhat from those reported in Burke et
al. (this issue) because of differences in methodology;
specifically, this work uses the incrementally updated
UniGene, keeps more low-quality sequences, and in-
cludes a clone-linking step.

Output Data Formats and Access
STACK is available in three data formats that include
FASTA format of a single nonredundant primary con-
sensus sequence, GIO format that captures both indi-
vidual clusters and subcluster assemblies, and GDE
alignments for each STACK cluster. Intermediate pro-
cessing outputs, statistics of processing, and CRAW log
files are also provided.

FASTA Output
A FASTA format version of STACK contains a single,
nonredundant primary consensus from each cluster. It
is partitioned as the following:

Clone-Linked Sets
Link sets contain consensus sequences linked by
58 → 38 clone annotated ESTs. This set is the most eas-
ily searched using standard software to extend a newly
determined EST probe. Once a linked-set consensus se-
quence is located, the FASTA header lines may be ex-
amined directly to determine the constituent ESTs
and/or clusters.

Multisequence Cluster Sets
Clusters that contribute to clone-linked sequences are
separated from those clusters that do not contribute to
clone linking. These two sets of sequences are pre-
sented in FASTA format in which the header line cap-
tures the ESTs used in the generation of the consensus
sequence.

Singleton Sets
Singletons that do not contribute to the clone-linked
data are partitioned from the file of singletons that are
included in the clone-linked sets. These two data sets
are presented in FASTA format in which the header line
captures the STACK accession number and GenBank
accession number.

Alignments

Genetic Data Environment Format
GDE files, derived from each PHRAP assembly file, rep-
resent the overall alignment of each cluster with its
unprocessed subconsensi and allow study of polymor-
phisms using widely available sequence assembly visu-
alization tools (Karlak and Hide 1998).

CRAW Format
CRAW processed output of each GDE format align-
ment allows for direct assessment of sequence varia-
tion and subconsensus generation (Fig. 2).

Viewing
VIZ, a freely available, standalone Java-based viewer, is
provided for STACK joined and single cluster data.
Source code and an online Web-based viewing and ex-
traction system linking with corresponding UniGene
clusters are also available at www.sanbi.ac.za/stack and
ftp.sanbi.ac.za/STACK/. Both VIZ and the online Web-

Table 4. Cluster and Alignment Analysis for STACK Index v. 2.0

Orientation of
index data Singletons

Tissue-specific
clusters

Tissue-specific
clusters (%)

Multitissue
clusters

Multitissue
clusters (%)

Total
multitissue

clusters
Total

clusters

38 36,184 13,962 19 22,513 31 36,475 72,659
58 56,583 15,672 19 10,566 13 26,238 82,821
End not specified 29,251 5,483 16 640 2 6,123 35,364

Totals 122,018 35,117 18 33,719 18 68,846 190,854
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Figure 2 CRAW analysis of a STACK whole-body index cluster that shows similarity to a genomic clone, AC004106. Sequences are
displayed on consecutive lines with one position in the line representing 20 bases. Identical numerical values correspond to regions of
sequence identity. Difference in numerical value indicate sequence variarion. Tissue origins are shown in brackets, and tissue libraries are
underlined. Subconsensi are highlighted in bold corresponding to the splice variants within fragment AC004106. Primary consensus
(11111) shows significant similarity to clathrin coat adaptor complex sigma1B protein (AB015320.1). The secondary consensi (2222,
333333, 666666) show significant similarity to two exons 34000...36000 and 54100...54200 (putative alternate splice regions in
genomic clone AC004101).
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based viewer display linked and standard sequence
alignments, CRAW outputs, and consensus sequences.
CRAWview (Chou and Burke 1999) displays CRAW re-
ports, SeqLab (GCG), and GDE display STACK align-
ments. Visualization of CRAW files and clustered EST
outputs from STACK_PACK is also under development
in collaboration with the CORBA-based JESAM/
Genome Builder project (Muilu et al. 1999).

Comparison with Genomic Fragment AC004106
Bouck et al. (1999) reported a comparison of EST
databases in which they showed the coverage of
STACK clusters for a genomic clone, AC004106. In par-
ticular, three ESTs, namely AA128258, AA205280, and
AA743074, were reported to partially represent known
alternate splice exons within the genomic fragment
with a matching STACK cluster shown for that region.
We have performed an independent assessment to de-
termine the fidelity of STACK expression clusters. We
have assessed the expression clusters that have >96%

contiguous similarity in each of the exons correspond-
ing to the two genes encoded in the genomic clone
AAC004106 (Fig. 3).

STACK clusters and UniGene (build #61) non-
mRNA-anchored clusters show 99% coverage for 50%
of exons within gene 1 (Fig. 3). Two additional exons
are covered completely by a UniGene mRNA-anchored
cluster. Exon 7 provides significant similarity to 199
UniGene mRNA-anchored clusters, 1907 non-mRNA-
anchored UniGene clusters, and 200 STACK clusters.
However, comparison against the nonredundant data-
base determines that exon 7 is Alu rich. STACK clusters,
therefore, can contain significantly reduced repeat se-
quence contamination.

Four of six exons for gene 2 are represented by
multiple STACK clusters and a single non-mRNA-
anchored UniGene cluster. STACK clusters 30598-0-
brain-1999-2.3, 133132-0-hemat-1999-2.3, and 46836-
0-repro-1999-2.3 sample alternate splice variants, spe-
cifically in exons 1 and 4. The subconsensi generated

Figure 3 Schematic representation of the coverage (percent of exon length matched above 96% contiguous similarity) of STACK and
UniGene clusters across the exonic regions of gene 1 (U2 small nuclear ribonucleoprotein auxilary factor U2AF1-RS2) and gene 2
(Clathrin-coated assembly protein AP19 AC004876) contained in genomic clone AC004106. UniGene mRNA: UniGene cluster containing
mRNA; UniGene non-mRNA: UniGene cluster containing no mRNA. Description of tissues as outlined in Fig. 2. STACK clusters (open
reactangles), UniGene mRNA-containing clusters (solid rectangles) and UniGene non-mRNA-containing clusters (shaded rectangles) that
show similarity to the various exons of gene 1 and 2 (horizontal axis) are displayed graphically. Number of nucleotides in each exon gene
1: 1(84), 2(109), 3(57), 4(39), 5(119), 6(214), 7(1730), and 8(475), respectively. Exons were extracted from the feature table of the
GenBank entry AC004106 as 8601..8684, 12419..12527, 12842..12898, 16964..17002, 17931..18049, 24408..24621, 27318..29047,
and 31462..31988. Gene 2: 1(464), 2(253), 3(81), 4(136), 5(111), and 6(157), respectively. Exons were extracted from the feature table
of the GenBank entry AC004106 as 35640..36103, 40047..40299, 42175..42255, 54110..54245, 54632..54742, and 61077..61233.
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for these three STACK clusters (Fig. 2) correspond to
regions of exon 1 and exon 4 that have been docu-
mented as putative alternate splice regions (Bouck et
al. 1999). We assembled the three alternate splice clus-
ter ESTs and examined the assembly using CRAW (Fig.
2). The primary consensus sequence shows significant
similarity to Clathrin-coated complex sigma1B protein
(AB015320.1). The secondary consensi match regions
within the alternate splice exons (1 and 4) represented
on genomic clone AC004106.

Detection of Single Nucleotide Polymorphisms
A thorough analysis of observed classes of genetic di-
versity and their assessment is beyond the scope of this
paper, but an initial assessment has yielded novel de-
tectable candidate SNPs in P53 representations of
STACK data (Karlak and Hide 1998).

Problems
One percent of total sequences involved in clusters fail
the assembly step because of insufficient available vir-
tual memory (1.5 gigabytes; see Table 2) and problems
of obtaining clone-ID annotations. Table 5 quantifies
the nonideal clusters as well as the fractions of clusters
presenting disagreements in 58 and 38 annotations. The
ideal result of a single consensus is realized in 86% of
all clusters. Eight percent of all clusters present mul-
tiple consensi, that is, contain at least two sequences
matching each other but not matching the cluster’s

primary consensus according to the CRAW parameters.
These consensi represent potential errors, chimeras,
and some alternate splice data. Further alternate splice
data is captured by index assembly with tissue-cluster
consensi (STACK-INDEX v.2.0, STACK-INDEX v.2.3, in
prep.). Two percent of alignments analyzed by CRAW
are so poor that no satisfactory consensus can be gen-
erated (“only singletons” in Table 5), whereas the re-
maining 4% of clusters are found to have a primary
consensus and at least one differing EST (not matching
any other EST in the index class). Many of the consen-
sus problems are errors in multiple sequence align-
ment. Further analysis is required to extract a subset of
true alternative splices and other polymorphisms from
these “non-ideal” clusters. CONTIGPROC evaluates re-
sults in combination with each EST’s database annota-
tion and detects disagreements in annotated read di-
rection in 13% of clusters overall (in agreement with
Hillier et al. 1996).

After completion of the STACK v.2.0 release, some
2000 clusters and singletons were found to contain
contamination by mitochondrial DNA fragments. This
led to the inclusion of mitochondrial and ribosomal
sequences in the mask data set (see Methods), and
highlighted useful features of the STACK schema for
working with dynamic sequence database information.
Specifically, this contamination was itself clustered, fa-
cilitating the conversion of the identified problem
clusters back to EST sequence data with the repair

Table 5. Error Analysis

Tissue

Single
consensus

clusters

Total
clusters

(%)

Multi-
consensus

clusters

Total
clusters

(%)

Total
only

singletons

Total
clusters

(%)

Single
consensus

+ 1 or more
singletons

Total
clusters

(%)
3*/5*

disagreement
Total

clusters

Adipose 173 96 5 3 3 2 0 0 23 13
Brain 19,933 87 1,850 8 296 1 769 4 2,552 11
Cochlea 689 97 13 2 4 0.5 4 0.5 18 3
Connective 4,098 88 316 7 93 2 140 3 358 8
Digestive 6,089 90 370 6 82 1 193 3 493 7
Disease 10,845 87 989 8 198 1 481 4 2,589 21
Eye 2,799 81 288 8 229 7 132 4 303 9
Genomic 14,924 91 792 5 177 1 421 3 2,550 16
Gland 10,843 88 820 7 237 0.2 408 4.8 1,096 9
Heart 7,341 88 622 7 104 1 274 4 699 8
Hematolymph 14,639 84 1,774 10 271 2 694 4 2,731 16
Lung 7,483 87 667 8 137 2 267 3 1,828 21
Muscle 1,084 92 64 5 12 1 23 2 67 6
Olfactory 238 96 7 2.8 2 0.8 1 0.4 4 2
Other 2,675 85 285 7 184 4 171 4 172 4
Reproductive 19,178 79 3,196 13 533 2 1,258 6 3,373 14

Totals 124,031 86 12,058 8 2,562 2 5,236 4 18,856 13

CRAW analyzes cluster alignments generated by PHRAP or MSA_CONTIG and partitions consistent ESTs into subclusters based on
agreement with other sequences. The ideal result is a single consensus cluster, accounting for 86% of the STACK output, while the
remaining clusters may contain multiple sequence subclusters (resulting in a multiconsensus cluster), a primary consensus with one
or more singleton sequences (data not shown), singleton ESTs according to the CRAW parameters. STACK clusters are generated by
word identity counts and their read direction determined by majority vote of the annotations of constituent ESTs; clusters for which
this vote is not unanimous (excluding abstentions) are noted in the right-most two columns.
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tools. The mask data set was expanded, such that only
affected ESTs needed to be reprocessed. Furthermore,
the corresponding SANIGENE consensi were largely
immune from the contamination because of the re-
dundancy requirement in their generation.

DISCUSSION
STACK thoroughly and efficiently clusters the error-
laden and redundant dbEST database into looser clus-
ters than other approaches and refines these groupings
with CRAW and CONTIGPROC to elucidate the
contributions of sequence polymorphism, alternate
sequence expression, error, and artifact. Organiza-
tion of EST data is driven by the need to detect and
understand the gene sequences that underlie their
generation. Once organized, these more “gene-
representative” sequences still need to be intensively
processed. Protein coding regions, mRNA expression
levels, unique 38-untranslated regions, constituent ge-
nomic exons, and residue quality all need to be ad-
dressed before a partial gene transcript sequence can be
accepted and analyzed with confidence. Clustering
and initial processing as presented here only provide
an initial basis on which further work can be per-
formed.

The STACK methodology and database demon-
strate a consolidation of over two-thirds in the total
number of sequences representing the EST input sets.
Input sequences (1,198,607) are reduced to 68,701
linked sets, 71,189 nonlinked consensi, and 231,828
nonlinked singletons. The set of 371,718 clusters cov-
ering 15 nonredundant tissue sets has been condensed
in a subsequent clustering procedure to generate an
overall index (STACK-INDEX v.2.0; STACK-INDEX
v.2.3, in prep.). The accuracy of any index estimate will
be limited by the lack of clone-ID annotations in the
original input sequences, and the failure of submitters
to include this information has reduced the potential
value of the public EST database.

STACK has demonstrated that less systematic
problems, such as read direction assignment errors due
to lane tracking errors and internal priming, can be
compensated for by the sheer number of available
ESTs. Aaronson et al. (1996) have noted that overlap-
ping genes with opposite orientation will also appear
to yield problems in clone read direction and express
the concern that this will result in merging distinct
genes into an index class. The STACK system has not
attempted to address this issue and, indeed, presents
the linking of such related sequences as an overall en-
hancement of the data for the researcher intending to
annotate a newly sequenced EST.

Production and partitioning of sequence cluster
consensi have made it possible to derive direct value
from the link between expression (arbitrary tissue bin
and EST source library) cluster consensus and chromo-

somal location. Tissue-specific EST clusters have been
used successfully in the mapping of retina-specific ESTs
to chromosomal regions that coincide with inherited
retinal disease gene locations (Malone et al. 1999). The
STACK system has aided the characterization of a novel
retinitis pigmentosa gene (Sullivan et al. 1999). These
applications demonstrate the value of tissue-specific
data sets, which are made available as part of the
STACK index generation, as a resource for gene discov-
ery.

Further work on STACK will focus on its applica-
tion to the distribution of expression and detection
and analysis of genetic polymorphisms, as well as con-
tinuous updates to incorporate newly submitted ESTs.
Current sequence analysis and visualization tools rely
on sequence accession IDs remaining unchanged
through database updates, as certainly an accurate, ex-
perimentally determined sequence would not be ex-
pected to change with time. STACK cluster consensi are
highly dynamic, and only the underlying accessions of
ESTs currently provide a means of consistency. This
problem is yet to be adequately addressed by clustering
systems.

Availability

STACK
BLAST searching and retrieval of current STACK se-
quence data is available via http://www.sanbi.ac.za/
Dbases.html, and STACK consensi matched to Dro-
sophila sequences are searchable on the Drosophila Re-
lated Expressed Sequences (DRES) home page at the
Telethon Institute of Genetics and Medicine (http://
www.tigem.it). STACK is freely available to academica
and is distributed via Web site at http://www.sanbi.ac.
za/STACK_REQUEST.

STACK_PACK
The STACK_PACK tool set can be used for the manu-
facture of databases as well as incorporation of STACK
data. It performs clustering, clustering management,
alignment processing, and analysis and is freely avail-
able to academia and is distributed from www.sanbi-
.ac.za/CODES.
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