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Several efforts are under way to condense single-read expressed sequence tags (ESTs) and full-length transcript
data on a large scale by means of clustering or assembly. One goal of these projects is the construction of gene
indices where transcripts are partitioned into index classes (or clusters) such that they are put into the same
index class if and only if they represent the same gene. Accurate gene indexing facilitates gene expression
studies and inexpensive and early partial gene sequence discovery through the assembly of ESTs that are derived
from genes that have yet to be positionally cloned or obtained directly through genomic sequencing. We
describe d2_cluster, an agglomerative algorithm for rapidly and accurately partitioning transcript databases into
index classes by clustering sequences according to minimal linkage or “transitive closure” rules. We then
evaluate the relative efficiency of d2_cluster with respect to other clustering tools. UniGene is chosen for
comparison because of its high quality and wide acceptance. It is shown that although d2_cluster and UniGene
produce results that are between 83% and 90% identical, the joining rate of d2_cluster is between 8% and
20% greater than UniGene. Finally, we present the first published rigorous evaluation of under and over
clustering (in other words, of type I and type II errors) of a sequence clustering algorithm, although the
existence of highly identical gene paralogs means that care must be taken in the interpretation of the type II
error. Upper bounds for these d2_cluster error rates are estimated at 0.4% and 0.8%, respectively. In other
words, the sensitivity and selectivity of d2_cluster are estimated to be >99.6% and 99.2%.

[Supplementary material to this paper may be found online at www.genome.org and at www.pangeasystems.
com.]

The rapid generation of single-read sequence from the
38 ends and 58 portions of sufficiently expressed mR-
NAs (popularly referred to as ESTs) (Adams et al. 1991;
Okubo et al. 1991; Wilcox et al. 1991) has resulted in
the discovery of many genes well before the projected
completion of the human genome project and before
the completion of sequencing efforts in other organ-
isms (Adams et al. 1992; Matsubara and Okubo 1993;
Venter 1993). Because the source information is avail-
able for every EST, the intracluster representation of
libraries from discrete disease and developmental
states can be contrasted and hence large-scale expres-
sion studies can be performed (Okubo et al. 1992,
1994; Adams et al. 1995; Vasmatzis et al. 1998). EST
sequence has enabled the construction of a physical
map of the human genome (Hudson et al. 1995) as well
a gene map that localizes many genes with respect to
the markers of the physical map (Schuler et al. 1996).
The utility of EST data has also been increased greatly
by the establishment of centralized databases (Boguski
et al. 1993).

The fragmented nature and vast quantity of EST

data pose an obstacle to harvesting the full potential
from this data source. Hence, several projects are in
progress to construct information frameworks, called
gene indices, where the fragmented, error-prone EST
data and the known gene sequence data can be con-
solidated and placed in a correct pathologic and map-
ping context indexed by gene such that all data con-
cerning a single gene is in a single index class and each
index class contains the information for only one
gene. Algorithmically, these projects all comprise some
type of cluster analysis in which sequence similarity
and possibly other criteria are used to form the clusters
or index classes. Below, we detail some of the cluster-
ing methods used in several gene index projects.

The Institute for Genome Research (TIGR) Gene
Index (TGI) (http://www.tigr.org/tdb/hgi/hgi.html;
Adams et al. 1995; Sutton et al. 1995; White and Ker-
lavage 1996) is constructed by assembling full-length
sequence [from the Expressed Gene and Anatomy
Database (EGAD); White and Kervalage 1996)] and
ESTs to form tentative human consensi (THCs). The
THC_BUILD program (G. Sutton, pers. comm.) con-
structs index groups according to the following sched-
ule: (1) BLAST and FASTA (Pearson 1990) are used to
identify all sequence overlaps, (2) all detected overlaps
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are stored in a relational database, (3) the CLUB pro-
gram forms transitive closure groups from the overlap
database, and (4) groups are subjected to assembly
using TIGR assembler (Sutton et al. 1995; http://
www.tigr.org/hgi/hgi_info.html). The assembler also
imposes matching constraints on the ends of se-
quences and a minimum sequence identity within an
index group. Most sequence assembly programs share
similar properties with TIGR assembler; however, it is
worth noting that some assemblers, such as the PHRAP
package, incorporate sequence quality data derived
from sequence traces into the assembly process (P.
Green, pers. comm.) allowing for the incorporation of
higher error data.

In UniGene (Boguski and Schuler 1995; Schuler at
al. 1996), genes are indexed by forming initial groups
with full-length sequences (mRNA and genomic). Then
groups are formed within the EST set and between the
ESTs and the initial groups. EST matches are not al-
lowed to join distinct initial groups and clusters with-
out a polyadenylation signal or unless at least two 38

ESTs are discarded. Finally, clone information was used
to further join clusters and singleton clusters, and un-
matched ESTs were added to nonsingleton clusters at
lower stringency levels (http://ncbi.nlm.nih.gov/
UniGene/TXT/build.html). To enhance the speed of
the clustering, a two-phase searching process was used
in which two sequences were compared with a con-
strained Smith–Waterman algorithm only if they
shared two common words of length 13 separated by
no more than 2 bases. The STACK gene indexing sys-
tem that uses d2_cluster is covered in the discussion
section of this paper and in a companion paper.

In this article we describe d2_cluster, an algorithm
for clustering sequences into index classes. First, we
describe the basic method (which we call D20 to dis-
tinguish it from future variants of the algorithm). We
then demonstrate the utility of d2_cluster by perform-
ing a data analysis of the results of clustering a mod-
erate sized data set (∼43,000 sequences). We character-
ize the relative performance of d2_cluster and UniGene
clustering showing that although the behavior of the
two algorithms is very similar, there are measurable
differences in the rate of merging sequences into clus-
ters. Finally, we derive estimates of the absolute type I
and type II error rates (the probability of under or over
clustering) for d2_cluster.

Description of the d2_cluster Method (D20)
d2_cluster is an agglomerative clustering method [ev-
ery sequence begins in its own cluster, and the final
clustering is constructed through a series of mergers
(Johnson and Witchern 1994)]. d2_cluster can be de-
scribed in terms of minimal linkage clustering (some-
times called single linkage or transitive closure in the

sequence analysis literature). The term transitive clo-
sure refers to the property that any two sequences with
a given level of similarity will be in the same cluster;
hence, A and B are in the same cluster even if they
share no similarity but there exists a sequence C with
enough similarity to both A and B. The criterion for
joining clusters is the detection of two sequences that
share a window of (Window_Size) bases that is
(Stringency) percent or more identical. The only cri-
terion for clustering is sequence overlap and source or
annotation information is not used. To detect the over-
lap criterion, we use the d2 algorithm and set param-
eters and threshold values as described in previous
work (Torney et al. 1990; Hide et al. 1994; Wu et al.
1997). The initial and final state of the algorithm is a
partition of the input sequences in which each se-
quence is in a cluster and no sequence appears in more
than one cluster.

For ease of notation, let the following conventions
hold:

1. We signify the d2 distance between two sequences,
say A and B, as d2(A,B).

2. Given two clusters, e.g., clusters i and j, the opera-
tion MERGE(cluster i, cluster j), also denoted
MERGE(cluster i ← cluster j), means that all se-
quences in cluster j are assigned to cluster i.

3. The database to be clustered contains N sequences
that are numbered 0 through (N 1 1). Let sequence
(i) be denoted Si or S(i).

4. The membership of sequence Si is denoted Ci.

The notation d2(A,B) is conveniently used, but, of
course, d2(,) is not a function of only A and B but also
of various parameters (specified in Torney et al. 1990;
Hide et al. 1994; Wu et al. 1997). The MERGE operation
can be expressed in terms of convention 4 above: For
all sequences, Sr, such that Cr = j, Cr is reset to be
Cr = i.

We describe the progression of d2_cluster induc-
tively in that we first detail what happens in the first
two iterations (I0 and I1) and then describe how one
performs iteration (i + 1) given that iteration (i) has
been completed. Technically speaking, it is sufficient
to state only the first step and then to give the step (i)
to step (i + 1) instructions, but we detail the first two
steps for clarity.

The clustering is finished when N iterations are
completed. Transitive closure is obtained because clus-
ters are joined if they contain any sequences with suf-
ficient identity. d2_cluster, as described above, can be
mapped to the minimal linkage algorithm commonly
seen in the statistics and engineering texts, and details
of this are given in the online supplement to this paper
(http://www.genome.org and www.pangeasystems.
com).
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Data and Error Analysis

Relative Performance of d2_cluster and UniGene
The first step in evaluating d2_cluster performance was
to compare it with other methods. The UniGene data
set was chosen for comparison due to its high quality
and wide acceptance. Because an implementation of
the UniGene clustering suite was not available, it was
not possible to actually run the UniGene clustering
algorithm. Hence, the base sequences from a version of
UniGene (Rat section, UniGene build 19, August 1998)
were processed with d2_cluster, and the d2_cluster/
UniGene groupings were compared. Unless explicitly
stated otherwise, all UniGene clusters referenced in
this paper come from build 19. Rat UniGene had
43,612 ESTs and full-length mRNA sequences. Because
the screening information for UniGene was unavail-
able, it was necessary to rescreen the data set against
repetitive elements and mitochondrial sequence. The
cross_match (P. Green, unpubl.) program was used for
this purpose, and an “x” screening marker was left
over sequence positions matching repetitive ele-
ments. Sequences with <100 bases of nonscreened
sequence remaining were dropped from the analy-
sis, and the remaining 42,441 sequences were clus-
tered with d2_cluster (at the parameter set-
tings Window_Size = 100, Stringency = 0.9,
Min_Seq = 100, and Rev_Comp = 1. At these settings
two sequences are placed into the same cluster if they
contained a window of size 100 bases with at least 90%
identity. Sequences with <100 bases are disregarded,
and the reverse strand is searched). Approximately 31
hr were required to complete the cluster analysis on a
SUN machine E450 with a 400-MHz processor. As
stated above, the clustering of sequence with
d2_cluster was made strictly on the basis of sequence
similarity, and annotation information was not used.
After this processing, every sequence was a member of
exactly one d2 cluster and one UniGene cluster.

Table 1 compares the cluster size distribution for
the UniGene and d2_cluster groupings. d2_cluster pro-

duced ∼20% fewer singleton sequences (6463 to 5198)
and reduced the overall number of clusters by 10%
(15,225–13,756). Generally, the numbers of smaller
clusters are reduced, whereas larger clusters appear
with slightly higher frequency.

To further quantify the higher join rate of
d2_cluster and to assess relative quality, a subsetting
analysis was executed and is summarized in Figure 1.
Among all UniGene clusters, a negligible number, 60
(or <0.5% of UniGene clusters), were merges of d2 clus-
ters. Conversely, 1078 d2_cluster groups (or ∼8% of
total) are merges of UniGene clusters, and this number
can serve as another measure of the more aggressive
joining of d2_cluster. The average of the three esti-
mates (8%, 10%, 20%) of increased joining is 13%. A
total of 12,389 clusters (or 83% of UniGene clusters
and 90% of d2 clusters) are identical between UniGene
and d2_cluster indicating that although there are mea-
surable differences in the clustering rate, the answers
produced by the two algorithms are consistent on a
large scale.

There are several situations that could cause se-
quence members of a single (d2_cluster/UniGene) gen-
erated cluster to appear in several different clusters
generated by the other method. Possibilities include
(1) the failure of one method to join a valid cluster that
was generated with the other method, (2) the introduc-
tion of a false join by one of the methods, or (3) the use
of different clustering criterion by the methods. For
example, UniGene uses clone information to augment
EST sequence clustering, whereas d2_cluster uses no
annotation or source information. An example of a
cluster formed by d2_cluster that was fragmented into
two UniGene clusters is given in Figure 2. The JAVA
program CRAWview (Chow and Burke 1999) generates
the color cluster representation (Fig. 2A). From the
CRAW report shown in Figure 2A and the sequence
alignment given in Figure 2B (online supplement to

Table 1. Cluster size distribution for UniGene
and d2_cluster

Histogram of cluster sizes

cluster size
UniGene

(Rat-build 19) d2_cluster

Singleton clusters 6463 5189
2 3496 3298

3–4 3002 2971
5–8 1635 1602
9–16 491 531

17–32 111 127
33–64 21 27
65–128 3 8

129–256 3 2
257–512 1 0

Total clusters 15,225 13,756

Initial state: Each sequence is in its own cluster. (i.e., Si is in
cluster i or Ci = i).

First iteration I1: The first sequence in the database, S0,
is selected as a query. For each sequence in Si (1 # i < N),
MERGE(cluster C0) ← (cluster Ci) if d2(S0,Si) < THRESHHOLD.

Second iteration I2: The second sequence in the database (S1)
is now selected as a query. Note that C1 = 1 unless sequence 1
was merged into cluster 0 during step I1. For all sequences, Si
(2 # i < N), MERGE(cluster C1 ← cluster Ci) if d2(S1,Si) <
THRESHHOLD.

(k)th iteration I(k): Suppose we have completed (k 1 1) it-
erations. We select sequence Sk as a query. For all seqs, Si (k + 1
# i < N), MERGE(cluster Ck ← cluster Ci) if d2(Sk,Si) <
THRESHHOLD.
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this article, www.genome.org and www.pangeasystems.
com), it can clearly be seen that the elements of two
distinct UniGene clusters (Rn.8 and Rn.3110) should
probably be together as they are >98% identical over
their entire lengths. Figure 3 gives another, more in-
teresting case of a d2 cluster that contains isozymes
of the rat cytochrome P-450 gene with membership
corresponding to seven separate UniGene clusters.
d2_cluster has put all of these sequences together be-
cause of regions of high identity (as seen in Fig. 3B
included in the online supplement to this article). Uni-
Gene has separated isozymes into distinct clusters, al-
though UniGene clusters Rn.18603, Rn.10842, and
Rn.9104 should probably form a single cluster accord-
ing to reasonable clustering rules due to their perfect
assembly into subgroup 2 and high overlap (full align-
ment is not shown but is available from the authors
upon request).

Estimating the Absolute Error Rate
Although a comparison of d2_clustering
with UniGene can compare the relative
efficiency of the two clustering methods
and can demonstrate the tendency of
d2_cluster to partition sets into fewer
classes than UniGene, no information
about the absolute correctness of either
clustering method can be inferred. To
gauge absolute upper bounds for the er-
ror rates of d2_cluster, we performed
two rigorous analyses of the groups
formed by d2_cluster to analyze sensitiv-
ity and selectivity (or, more precisely, to
estimate upper bounds for the actual
type I and type II errors).

In hypothesis testing the type II er-
ror rate is the probability of incorrectly
rejecting the null hypothesis when it is
true. We define the null hypothesis to be
that any two sequences do not belong in
the same cluster. In this case the type II
error, in the context of sequence cluster-
ing, is the probability of placing two se-
quences into the same cluster by mis-
take, or, in other words, the probability
of over clustering. We say that the pres-
ence of a type II error can be discounted
in cases in which a single, high-quality
assembly can represent the cluster in
which overlap satisfies the matching cri-
terion. At this point it must be noted
that there are caveats to this error analy-
sis. For example, there are biological rea-
sons, such as gene paralogs, that ESTs
that are actually from distinct genes
might be perfectly alignable. Some situ-
ations, such as alternative splicing, re-

quire that more than a single consensus represent the
entire cluster. In such cases, type II error can be ex-
cluded if the cluster consensi can be shown to contain
sufficiently large domains of identity with each other.
The Rat EST clusters formed by d2_cluster were aligned
and analyzed with CRAW (Burke et al. 1998), a pro-
gram that creates a minimal number of high-quality
consensus representatives for a cluster and discrimi-
nates and models alternative gene forms. Because
CRAW provides a control of the variability between a
consensus and its member sequences and enforces a
minimum overlap criterion, no type II errors should
occur in the clusters that are represented by a single
consensus. We set CRAW stringency such that the
alignment of a se-
quence with the subcluster consensus contained no
window of 50 bases with >10% mismatch.

Following the strategy outlined above, we empiri-

Figure 1 Subsetting comparison of UniGene and d2_cluster. Cluster equivalence
means that all elements in one cluster are also present in the other cluster, and vice
versa. Out of 14,989 (= 15,226 1 237) original UniGene clusters and 13,755 d2
clusters, 12,389 (or 83% of UniGene clusters and 90% of d2 clusters) are equivalent.
Two hundred thirty-seven UniGene clusters were not considered in the analysis be-
cause they were composed of sequences that were screened out in our vector and
repetitive elements screening stage.

Burke et al.

1138 Genome Research
www.genome.org



cally estimate an upper bound on this error by bound-
ing by above the number of clusters with type II errors.
After processing the 13,755 clusters formed by
d2_cluster, all but 1617 can be represented by a single
CRAW consensus sequence. Thus, an initial upper
bound for the type II error rate is 11.8% (=100 * 1617/
13,755). A more stringent upper bound was obtained
by inspection of the multiple alignments of the 1617

clusters with multiple CRAW consensi to identify cases
in which multiple alignments of the different consensi
still contained a window of 100 bases with at least 90%
identity. Fewer than 106 clusters could not easily be
confirmed to satisfy this constraint. Hence, the type II
error is bounded by above, for this data set, by 0.8%
(=100 * 106/13,755). These 106 cases are most likely
not all errors on the part of d2_cluster, and many are

Figure 3 (A) CRAW report for a d2 cluster containing isozymes of mouse cytochrome P-450. Seven UniGene clusters (Rn.10843,
Rn.3586, Rn.18603, Rn.10842, Rn.9104, Rn.11043, and Rn.15544) are merged. (B) (Online supplement available at www.genome.org
and www.pangeasystems.com) Interleaved multiple alignment showing a region of 240 bases with high identity alignment between all
four cluster assemblies. d2_cluster has put all of these sequences together because of regions of high identity (as seen in Fig. 3B). UniGene
has separated isozymes into distinct clusters, although UniGene clusters Rn.18603, Rn.10842, and Rn.9104 should probably form a single
cluster according to reasonable clustering rules due to their perfect assembly into subgroup 1 and high overlap.

Figure 2 (A) CRAW report (Burke et al. 1998) for a cluster formed by d2_cluster that contains two UniGene clusters: Rn.8 and Rn.3110.
(B) (Available as on online supplement to this paper at www.genome.org and at the authors web site at www.pangeasystems.com)
Interleaved sequence alignment shows a >300-bp region of near perfect match.

d2_cluster: An Algorithm for Sequence Clustering

Genome Research 1139
www.genome.org



surely examples of where the multiple alignment algo-
rithm and CRAW failed to identify existing sequence
identities. Therefore, improvements to the multiple
alignment would most likely result in an even lower
upper bound.

To formulate bounds for the type I error (or the
probability of not joining sequences that belong to-
gether), we perform an all versus all comparison of the
cluster members with a Smith–Waterman algorithm. If
one accepts that Smith–Waterman is an absolute
method of identifying pairwise sequence overlap
within defined constraints, then the true cases of type
I error would be a subset of all intercluster similarities
identified by Smith–Waterman. Fifty-one intercluster
matches exist for the rat data set. Because type I errors
are a subset of this, the type I error rate is <0.4%
(=100 * 51/13,755). As in the type II error analysis, this
bound could be sharpened if we were to inspect the 51
cases individually.

DISCUSSION
We have characterized d2_cluster and described the al-
gorithm in terms that should be familiar to statisti-
cians, computer scientists, and biologists alike. It has
been shown that d2_cluster performs quite favorably
to, and is consistent with, current EST clustering meth-
ods. In an empirical study based on >40,000 available

rat EST and mRNA sequences, d2_cluster produced re-
sults that were between 83% and 90% identical with
UniGene although d2_cluster created 10% fewer clus-
ters and 20% fewer singleton clusters than UniGene.
Three different measures of joining strength are used to
compare the overall sensitivity of d2_cluster and Uni-
Gene, and these numbers are averaged to provide an
estimate that d2_cluster joins sequences at a rate ∼13%
higher than UniGene. It remains undetermined, how-
ever, if this higher join rate results in more accurate
index classes or is simply due to the joining of paralo-
gous genes or other phenomena. Additionally, the ab-
solute correctness of groups formed by d2_cluster has
been quantified, and the sensitivity and selectivity are
shown to be >99% (i.e., type I and type II error rates are
bounded above by 1%).

d2_cluster has found application in the STACK
project (Hide et al. 1997) in which ESTs are hierarchi-
cally clustered within tissue and arbitrary source cat-
egories. d2_cluster is set to join ESTs that are >96%
identical over a window of 150 bases. More detail on
STACK is given elsewhere (R.T. Miller, A.G. Christof-
fels, C. Gopalakrishnan, J. Burke, A.A. Ptitsyn, T.R.
Broveak, and W.A. Hide, in prep.).

Unfortunately, space limitations prevent elabora-
tion of the many other tools for sequence clustering
that have been developed to cluster DNA sequence or
to remove redundancies from sequence sets (Houlgatte

Figure 4 Alternative splice forms of the RAD1/REC1 gene are placed in the same cluster by d2_cluster, and the splice variants are
separated into distinct subclusters by CRAW.
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et al. 1995; Parsons 1995; Grillo et al. 1996; Gill et al.
1997; Eckman et al. 1998; Yee and Conklin 1998; Pietu
et al. 1999). Significant research has also been put into
the grouping of protein sequence and the determina-
tion of domain boundaries (Sonnhammer and Kahn
1994; Worley et al. 1995; Sonnhammer et al. 1997;
Gracy and Argos 1998a,b).

Sequence clustering is of little consequence in and
of itself, and the prime motivation is to obtain biologi-
cal knowledge. Effective sequence clustering is an or-
ganizing principle that serves as a starting point for
discovery. For example, with all sequence information
corresponding to a single gene in a cluster, features
such as alternative exons and aberrant splicing, among
others, can be modeled with greater ease. It is difficult
to tune the parameters of primary sequence clustering
such that features like splicing differences and even
artifacts, such as chimerism, are accounted for while
simultaneously generating proper index classes. In-
stead, decoupling this feature detection and artifact
correction from the clustering step allows these prob-
lems to be handled in a more robust fashion. Hence,
postprocessing steps, such as CRAW, are used to con-
trast gene variants and correct for artifact. Figure 4
shows how ESTs and mRNAs from a cluster of human
sequences corresponding to human RAD1/REC1 cell-
cycle control checkpoint protein are placed in the
same cluster, whereas CRAW is used to separate dis-
tinct splice variants into separate subclusters. In a simi-
lar fashion, CRAW is also used to isolate and correct for
chimeric sequence and other artifacts. Full details and
additional examples are found in previous work (Burke
et al. 1998; Chow and Burke 1999). Work has also been
done to associate discovered multiple gene forms with
sequence source information to infer state specificity
or associate novel exon/UTR usage with disease (Burke
et al. 1998; Gautheret et al. 1998). The d20 algorithm
and others specified here are available at no cost for
university researchers, and commercial licenses are
available (details available from authors upon request).
The commercial versions of CRAW and CRAWview
(www.pangeasystems.com) were used in the prepara-
tion of this manuscript.
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