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SUMMARY
Understanding the genetic contributions to complex diseases will require consideration of
interaction across multiple genes and environmental factors. At the same time, capturing
information on allelic phase, that is, whether alleles within a gene are in cis (on the same
chromosome) or in trans (on different chromosomes), is critical when using haplotypic approaches
in disease association studies. This paper proposes a combination of mixed modeling and multiple
imputation for assessing high-order genotype–phenotype associations while accounting for the
uncertainty in phase inherent in population-based association studies. This method provides a
flexible statistical framework for controlling for potential confounders and assessing gene–
environment and gene–gene interactions in studies of unrelated individuals where the haplotypic
phase is generally unobservable. The proposed method is applied to a cohort of 626 subjects with
human immunodeficiency virus (HIV) to assess the potential contribution of four genes,
apolipoprotein-C-III, apolipoprotein-E, endothelial lipase and hepatic lipase in predicting lipid
abnormalities. A simulation study is also presented to describe the method performance.
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1. INTRODUCTION
The explosion of molecular-level information, including the recent release of data from the
HapMap project [1], coupled with large epidemiological studies, presents an exciting
opportunity to uncover the genetic underpinnings of complex diseases; however, several
analytical challenges remain to be addressed in order to take advantage of these rich
repositories of information. Understanding the genetic contributions to complex diseases
will inevitably require consideration of synergistic effects across multiple genetic loci and
environmental and demographic factors. In addition, it will be critical to capture information
on allelic phase, that is, whether alleles within a gene are in cis (on the same chromosome)
or in trans (on different chromosomes) [2]. Haplotype-based analysis is particularly relevant
for two reasons. First, combinations of genotypic variation on the same chromosomal copy
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(in cis) may act together to affect transcription or translation, and thus disease traits, in a
manner different from that when the same genotypic variations are on opposite
chromosomal copies (in trans). Second, if the alleles under investigation are putative
markers for the disease-causing variant, that is, they are in linkage disequilibrium (LD) with
the disease variant but are not causal, then knowledge of phase permits the use of allelic
variants to identify disease associations indirectly. This phenomenon of LD is commonly
observed in haplotype blocks with limited recombination over time.

In association studies of unrelated individuals, the allelic phase is generally unobservable,
but a corresponding probability distribution can be estimated. An emerging body of
literature describes such estimation procedures, including expectation maximization (EM)-
type methods [3–7], Markov chain Monte Carlo (MCMC) approaches [8], and hidden
Markov modeling [9]. One common approach to analyzing the relationships between
haplotypes and a phenotype is to assume an individual’s haplotype to be the one with the
highest estimated posterior probability. While this approach can be informative,
disregarding uncertainty in phase can potentially bias results towards those with complete
information and may lead to underestimation of variance parameters [10–12]. More
sophisticated methods that iterate between haplotype estimation and inference on
phenotypes have also been described [5, 7, 13], although these are limited to consideration
of single genes.

In addition to the challenges inherent in the unobservable nature of haplotype data, the high-
dimensional component of genetic information creates a further analytical obstacle.
Combining single nucleotide polymorphism (SNP) data across a large number of loci within
and across genes to characterize genotype–phenotype associations is especially challenging
due to the complex, uncharacterized relationships among them. Several groups have
proposed methods for considering multi-locus effects on complex traits in studies of
unrelated individuals [14–22]. For example, the approach of Schaid et al. [21] invokes a
single-degree-of-freedom test based on a non-parametric U-statistic. This method was
developed for case–control data and has not, to our knowledge, been extended to the
analysis of unobservable phase haplotype data. Each method offers insight into the
underlying mechanisms that relate high-dimensional SNP data to measures of disease. Such
approaches may also require assumptions about the nature of associations at both the allelic
level (e.g. dominant or recessive effects within an SNP) and across loci (e.g. additive or
multiplicative effects across SNPs). We return to the types of models and underlying
assumptions in Section 2.

Finally, methods that simultaneously address uncertainty in haplotype and multiplicity have
also been described. These include the method of Becker et al. [23] that uses an EM
algorithm coupled with the minP procedure to test a global null of no haplotype associations
with a disease trait. The uncertainty introduced by the estimation of haplotype prevalences is
accounted for using a Monte Carlo simulation. Notably, this approach is both powerful and
computationally efficient and can be applied to multiple markers within and across genes.
The approach we propose in this article similarly tests a global null, specifically whether
there is variability across haplotype effects within or across genes. Our approach differs,
however, as it is applicable to continuous traits (phenotypes), whereas the approach of
Becker et al. was developed for the analysis of case–control data. In addition, our approach
allows for covariate adjustment, thus providing a natural framework for handling potential
confounders.

Among the methods for identifying high-order associations is a mixed modeling approach
that allows for characterizing high-order gene–gene interactions, while providing a flexible
statistical framework to account for the confounding and mediating role of person-specific
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covariates [22]. In this paper, we extend the mixed modeling approach to incorporate the
potential ambiguity in allelic phase that is relevant in the context of studying multiple SNPs
that are in LD, as is usually the case, although to varying degrees, for SNPs within the same
gene. Specifically, we propose a combination of multiple imputation [24, p. 85] and mixed
modeling [25] that provides a natural framework for assessment of haplotype effects across
multiple genes. Multiple imputation is a technique that is commonly used in the context of
non-response in sample surveys [11, 24]. Its generalizability and flexibility render it
applicable to a broad range of statistical and substantive problems ranging from
measurement error [12] to confidentiality and national health surveys. Specifically, this
approach is appropriate for contemporary haplotype-based and genome-wide approaches to
disease association.

We apply our approach to a cohort of N = 626 individuals infected with human immunodefi-
ciency virus-1 (HIV-1) and consider whether combinations of genetic polymorphisms
contribute to antiretroviral therapy (ART)-associated dyslipidemia in this population.
Dyslipidemia has been associated with specific agents within each class of antiretrovirals,
although protease inhibitors (PIs) are the class most consistently associated with the greatest
lipid abnormalities [26–30]. The most common lipid abnormality associated with ART is an
increase in triglyceride-and apoB-containing lipoproteins, but reduction in HDL cholesterol
(HDL-C) levels, a major risk for cardiovascular disease (CVD), is also quite marked.
Preliminary studies suggest that lipoprotein abnormalities are likely to result in substantially
increased-risk CVD events, particularly as it is likely that life-long ART may be required to
maintain control of viral replication [26, 31, 32]. Therefore, it is of considerable importance
to develop strategies for identification of HIV-1-infected subjects who are at increased risk
of ART-related dyslipidemia in order to facilitate rational decision making when selecting
ART regimens and early use of appropriate preventive CV therapies in those at greatest risk.
As a hypothesis-driven example, the current investigation aims at characterizing the genetic
contribution of four candidate genes, apolipoprotein-C-III (ApoCIII), apolipoprotein-E
(ApoE), endothelial lipase (EL) and hepatic lipase (HL), to variability in HDL-C in this
sample.

We begin in Section 2 by describing the mixed-effects model for haplotype association data,
with particular consideration of how alternative formulations of the mixed model can
accommodate varying underlying genetic models and models of association. Since
haplotype data are not observed consistently, we then describe a multiple imputation
approach to filling in these ‘missing data.’ The testing procedure we propose is similar to the
approach in [22], with additional consideration to combining test statistics across multiply
imputed data sets. An illustration of the mixed modeling approach for both genotype and
haplotype data is provided in Section 3.1. Finally, simulation results are presented in Section
3.2 in order to illustrate the features of this approach for detecting true, underlying
associations.

2. METHODS
In the analysis of genetic associations with disease in the general population, consideration
needs to be given to specification of several models. We distinguish among three types of
models: (1) the genetic model for locus (haplotype or single SNP) effects, (2) the model for
multi-locus association and (3) the population genetic model (often called the coalescence
process). The genetic model refers to how two genotype or haplotype copies (one on each
chromosome) act in concert. Commonly described genetic models include additive,
recessive, or dominant. For the simple case of a single SNP, suppose the possible genotypes
are AA, Aa, and aa. If the effects on phenotype of carrying A or a are denoted e(A) and e(a),
respectively, then the additive model assumes that the effect of AA is e(AA) = 2 * e(A), while
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the effect of the Aa genotype is e(Aa) = e(A) + e(a). A dominant model, on the other hand,
assumes that the effect of Aa is the same as that of AA, while a recessive model assumes that
an effect is observed only in the presence of two a alleles.

Additionally, what we term the model for multi-locus association relates to how multiple
SNPs or genes interact with one another in explaining the variability in phenotype,
regardless of the placement of alleles on chromosomes. Models for association are typically
additive or multiplicative, although alternative formulations have also been described. For
example, now suppose we observe AA, Aa, or aa at one position and BB, Bb, or bb at
another position. An additive model for association assumes that the phenotypic effect of
presenting the AA and BB genotypes is the sum of e(AA) and e(BB), while a multiplicative
model for association would assume that this is given by the product of e(AA) and e(BB).

Finally, the population genetic model refers to the process by which SNPs are inherited in
combination over generations. Measures of LD between two SNPs are highly dependent on
the coalescence model assumption [33–40]. While there remains considerable uncertainty as
to which population genetic models are most appropriate, a neutral coalescent infinite-many-
site model with recombination has been used commonly [34, 35] because of its ability to
capture efficiently the complicated genealogic dependence structure. Relevant software can
be found at http://home.uchicago.edu/rhudson1/source/mksamples.html. Notably, this model
assumes constant population size and does not account for variation in regional rates of
recombination and mutation as well as the occurrence of gene conversions and multiple
mutations as has been observed in actual human genetic data [41–47]. The population
genetic model is particularly relevant in the context of estimating posterior haplotype
probabilities, which our approach requires to impute unobserved haplotype information.
While we do not focus additional attention on the selection of these models, we
acknowledge the importance of considering the genetic assumptions regarding the
population in identifying a method for estimating posterior haplotype probabilities.

In the original formulation of mixed modeling for genotype–phenotype association data
[22], a subject who is heterozygous at two positions, so that the observed genotype is Aa for
SNP 1 and Bb for SNP 2, would be assigned to the genotype group defined by (Aa, Bb).
However, the true haplotype pair (diplotype) for this individual could be (1) (AB, ab): A and
B are on the same chromosome, and a and b are on the same chromosome, or (2) (Ab, aB): A
and b are on the same chromosome and a and B are on the same chromosome. While this
additional layer of information is usually unobserved, the probabilities that each haplotype
pair is the true haplotype pair can be estimated, as described in [3].

Haplotype pairs (in this simple example, a set of two of AB, Ab, aB, or ab) can be regarded
as clusters, rendering the mixed-effects model a natural framework for analysis. While a
small number of clusters can render instability in model fitting, in general, the number of
potential haplotypes under consideration within a gene (or combinations of haplotypes
across genes as discussed below) is large. In some instances this cluster membership is fully
observable. For example, if a subject is homozygous for all SNPs within a gene, then the
haplotypes for that individual are known deterministically. However, if an individual is
heterozygous for two or more SNPs within a gene, then the true haplotypes are not
observable. In the following sections we present a multiple imputation approach to
incorporating this uncertainty in phase. Notably, this approach is applicable to the analysis
of haplotype–phenotype associations in settings in which we observe multiple SNPs within a
single gene, as well as multiple SNPs across many genes.
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2.1. Mixed modeling for haplotype data
Consider the general mixed-effects model given in [25, 48, 49] and equation (1). Here, yi j is
the response for the jth individual in cluster i, xi j and zi j are the corresponding covariate
values and β is the vector of parameters corresponding to xi j. For simplicity of notation, we
assume that  is a scalar,  is measurement error and bi is
independent of εi j.

(1)

In our setting, we define clusters based on the ‘observed’ haplotype pairs across one or more
genes. ‘Observed’ is in quotation marks here since, in general, haplotypes are unobservable
with genotype data from unrelated individuals. We begin by describing the model assuming
complete (i.e. phase-known) data and then address the unobservable nature of haplotypes as
a missing-data problem. Consider first the simple case in which clusters are defined based
on single genes. Further, let Hr = (hk, hl ) and Hs = (hk′, hl′ ) denote the diplotypes (pair of
haplotypes) at genes r and s, respectively, for a given individual. The cluster  for gene r
then consists of the set of all individuals for whom . Similarly, the cluster  for gene
s equals the set of all individuals for whom . More generally, and depending on the
scientific questions under consideration, clusters can be defined on the basis of haplotype
pairs across multiple genes. For example, in the case just described, we could define  as
the set of all subjects for whom  and .

As described in Foulkes et al. [22], an omnibus test of  is a test of overall genetic
variability. Further investigation of empirical Bayes estimates of the random effects (bi in
Equation (1)) and corresponding prediction intervals can lend insight into the specific
genotypes that contribute to this variability. Note also that bi could be a vector with
components equal to the random cluster i effect and the interaction effect between cluster i
and a specific covariate represented in zi j. For example, we may have zi j = [1 ti j ], where ti j
is an indicator for drug exposure for the jth person in cluster i. Recall that each individual
will have a pair of haplotypes, one on each chromosome, making this model distinct from
the genotype setting in which each individual has a single genotype [22].

Assuming an additive model of association, equation (1) reduces to equation (2). Here we
change the notation slightly since cluster assignments based on one gene may differ from
assignments based on another gene, as described above. Let ℋ denote the combination of
haplotypes across all observed genes so that yℋj is the response for the jth person with
multi-gene haplotype combination ℋ and xℋj and zℋj are corresponding covariates. In this
equation, the summation is over ℋ/g, which refers to the component of ℋ (i.e. the cluster
assignment) corresponding to gene g. Note that an additive model assumes that the effect of
carrying the diplotypes Hr and Hs is simply the sum of the individual diplotype effects. A
multiplicative model of association, on the other hand, is described by equation (3), where
the effect of having a combination of diplotypes is the product of the individual effects.
Finally, a third and less structured formulation assumes that each combination of haplotypes
across multiple genes has its own random effect, resulting in the model given by equation
(4).

Models of association in a mixed framework
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(2)

(3)

(4)

Since each individual carries up to two haplotypes, particular consideration needs to be
given to how haplotypes act in concert, which is generally referred to as the genetic model.
One such model is an additive model, which assumes that the effect of each haplotype is the
sum of the individual haplotype effects. An example of an additive genetic model (that
additionally assumes the general model of association given in equation (4)) is given in
equation (5), where again ℋ represents the multi-gene haplotype combination and ℋ(1) and
ℋ (2) represent the respective combinations on the two chromosomal copies. In contrast, a
dominant haplotype model (given by equation (6)) assumes that one haplotype combination
over-rides the effect of the others. More complex models in which a haplotype is dominant
only for a subset of the other haplotypes are also feasible. Finally, a general genetic model,
assumes that each pair of haplotypes has its own random effect, as described in equation (7).
For the purpose of the present study, we focus on this most general genetic model, since in
many data settings a clear model of haplotypic effects has not been described.

Genetic models in a mixed framework

(5)

(6)

(7)
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2.2. Incorporating uncertainty in phase and testing
In order to fit the models described above and test relevant hypotheses, haplotypes need to
be inferred. A natural approach is to treat unobservable haplotype information as missing
and to adopt a multiple imputation framework for this missing data setting. This requires
specification of (1) the mechanism generating the missing data and (2) the probability model
used to simulate the missing values. Since the haplotypes of individuals who are
heterozygous for at least two SNPs within a gene cannot be specified deterministically, we
consider these missing. For these individuals the probability of missingness is 1, regardless
of the observed data, while for individuals who are heterozygous at exactly 0 or 1 SNP
within a gene the probability of missingness is 0. Note that the missingness does not depend
on the specific values of the haplotypes, and therefore it is reasonable to assume that the data
are missing completely at random [24, 50].

We further assume that haplotypes are realizations from a multinomial probability
distribution, that is, an individual has a haplotype combination h with an unknown
probability, ph, h = 1,…, Nh. We propose using an EM-type method as described in [3] to
estimate this probability distribution within each gene and imputing haplotypes from this
individual posterior probability distribution. A haplotype pair is thus selected for each gene
for each individual and this process is repeated for all individuals to arrive at a single
completed data set. By repeating this procedure multiple times, we arrive at a total of M
completed data sets.

For example, suppose the estimated haplotype probabilities for an individual with genotypes
(Aa, Bb) for gene r and (Cc, Dd) for gene s are: p̂r,1 = 0.40 for Hr,1 = (AB, ab), p̂r,2 = 0.60
for Hr,2 = (Ab, aB), p̂s,1 = 0.20 for Hs,1 = (C D, cd) and 3 p̂s,2 = 0.80 for Hs,2 = (Cd, cD).
Webegin by sampling one haplotype from Hr,1 and Hr,2 with probabilities 0.40 and 0.60,
respectively. We then select one haplotype from Hs,1 and Hs,2 with probabilities 0.20 and
0.80, respectively. Combined, these two selected haplotypes represent the completed data
for this individual. This is repeated for each individual to arrive at a single completed data
set and then repeated multiple times to generate multiply imputed data sets.

A mixed model with random haplotype effects can be fitted for each of the M imputed data
sets and an omnibus test statistic for the null hypothesis that the variability in the haplotype
effects equals zero is calculated. This corresponds to the null hypothesis , where 

defined in equation (1). These test statistics are denoted  and are combined using
the method described by Li et al. [51]. In general, investigators may be interested in testing a
genetic contribution to the disease phenotype that is mediated by an environmental or
demographic factor and a corresponding composite null could be considered. In our
example, we consider two genes; however, more generally, if K genes are observed, subsets
of 1, 2, …, K genes can be used in the modeling. In that setting, findings need to be
interpreted with caution due to the large number of tests performed and the corresponding
inflation of the type 1 error rate. Further discussion of this is provided in Section 4.

3. NUMERICAL EXAMPLES
3.1. Genetics of ART-associated dyslipidemia in HIV

In this section we present an analysis of data generated as part of the AIDS Clinical Trials
Group (ACTG) New Works Concept Sheet (NWCS) 224, a study to identify genetic factors
that predict lipid abnormalities in HAART-treated HIV-1-infected individuals. First-stage
analysis results, including complete demographic and clinical characteristics of this study
population, can be found in Foulkes et al. [52]. The cohort under investigation includes N =
626 subjects (N = 378, 60.4 per cent White/non-Hispanic, N = 121, 19.3 per cent Black/non-
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Hispanic, N = 112, 17.9 per cent Hispanic and N = 15, 2.4 per cent other) enrolled in
selected ACTG studies (A5005s, ACTG372, A5068, A5116 and A5087) who consented to
collection and storage of their blood for genetic studies (A5128). The population is
predominantly male (N = 557, 89 per cent), with a median age of 41 (IQR = (36, 48)),
median body mass index of 25 (IQR = (22, 28)) and median CD4 count of 442 (IQR = (294,
643)).

In this paper, we consider the effects of each of the four genes, ApoCIII, ApoE, EL and HL
on the lipid outcome, HDL-C. In addition, the three gene combinations ApoCIII/ApoE, EL/
ApoE and HL/ApoE, are evaluated. Potential confounding by clinical and demographic
variables, including age, gender, use of lipid-lowering therapy, CD4 count and ART drug
exposures, is controlled through multivariable modeling. In order to account for potential
effect modification by race/ethnicity, as described in Foulkes et al. [52], all analyses are
presented overall and then stratified by race/ethnicity. Individuals with unknown drug
exposures, short durations of exposure (<21 days) to a specific class, or a short washout
period (<14 days) are excluded from analysis. In addition, subjects with missing genotype
are excluded from analysis involving the corresponding gene.

SNPs in ApoE [Arg112Cys T/C (rs429358), Arg158Cys T/C (rs7412)] used to define the
common E2 (Cys-Cys; C-C), E3 (Cys-Arg; C-T) and E4 (Arg-Arg; T-T) alleles are
analyzed. In addition, SNPs in ApoCIII [−482C/T (rs2854117), −455T/C (rs2854116),
intron 1 (466) G/C (rs2070669), Gly34Gly C/T (rs4520), exon 4 SstI 4348(5) C/G (rs5128)],
[HL [rs2070895, rs12595191, rs690, rs6084] and EL [rs12970066, Asn396Ser, rs3829632
(−1309A/G)] were chosen for analysis based on prior knowledge of functionality and
association with plasma lipoproteins [53–59]. As described previously [52], genotyping was
performed at the University of Pennsylvania Genotyping Core employing Taqman (Applied
Biosystems, Inc., Foster City, CA) ABI SNP genotyping assays using the ABI 7900HT on
DNA samples that were isolated from blood (PURE-GENE blood kits; Gentra Systems Inc.,
Minneapolis, MN) at the ACTG DNA Core Laboratory at Vanderbilt University.

All data analyses were performed in R (ver 2.2.1). The observed genotypes and
corresponding frequencies are reported by race/ethnicity in Table I. Estimated posterior
haplotype probabilities were calculated within racial/ethnic strata using the haplo.em()
function in the R haplo. stats package and are presented in Table II. Fully adjusted
multivariable models were fitted assuming general models of association (as defined in
equation (4)) and genetic models (equation (7)). Separate models were fitted with random
effects of genotypes and haplotypes for each gene and then for the two gene combinations.
M = 500 imputations were performed for each haplotype analysis. Likelihood ratio test
statistics for variability in the random genotype and random haplotype effects are presented
in Table III. This corresponds to the test , where  is defined in equation (1). Note
that these tests have a 50:50 mixture of a  and  distribution since a variance parameter
is being tested at the boundary.

Significant variability is observed across EL/ApoE genotypes on HDL-C within Hispanics
but not in the other racial/ethnic groups. For Hispanics, the findings of the haplotype-based
analysis are almost identical. This is explained by the fact that, for this data example and
within this racial/ethnic group, haplotypes were almost all fully determined. In fact, closer
examination of Table I reveals only 13 Hispanic subjects with heterozygosity at more than
one SNP within EL and no Hispanics with heterozygosity at both SNPs within ApoE.
Furthermore, given the very low estimated haplotype probability of GGA in EL (given in
Table II), and the correspondingly low posterior probabilities for these 13 individuals, the
multiple imputation procedure is highly likely to select the same haplotype at each iteration.
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In other words, the high degree of concordance in the genotype and haplotype findings is
likely due to the fact that, in our simple example, the two variables are capturing similar
information within Hispanics.

In general, if the SNPs under investigation are markers for disease-causing variants (i.e. are
in LD with such variants) or have functional effects on transcription, translation or function
only when found in combination in cis (as a haplotype on the same chromosome), then the
genotype- and haplotype-based findings may deviate. The majority of individuals in our
cohort (60.8 per cent) have unobservable haplotypic phase for ApoCIII, in which five SNPs
are considered to constitute a haplotype block. In this case, a lack of deviation between the
genotype- and haplotype-based analyses suggests that any association of ApoCIII variation
with HDL is related entirely to the studied SNPs, i.e. they have direct functional effects, or
that the underlying ApoCIII haplotype structure is incompletely defined by the genotyped
SNPs. In fact, both of these possibilities are supported by the literature [59].

While significant variability in HDL-C is observed for the EL/ApoE combination within

Hispanics ( ), the empirical Bayes estimates and corresponding prediction
intervals provided in Figure 1 do not provide conclusive evidence to suggest a particular
genotype pattern with a non-zero effect. In fact, the three most extreme genotype patterns
(based on empirical Bayes estimates) have only n = 3, 6 and 3 observations each within
Hispanics. We present 99 per cent prediction as an ad hoc approach to adjust for inflation of
type 1 error due to multiple testing. Further consideration to multiple testing may be
warranted for settings in which more than two genes are under investigation, as discussed in
Section 4.

In order to characterize the first-stage estimation of posterior haplotype probabilities, we
took 1000 bootstrapped samples of the observed genotypes, re-estimated haplotype
probabilities for each of these sample and calculated variances of the posterior haplotype
probabilities. As noted above, the haplotypes within Hispanics were almost fully
determined, with a small number of subjects having two possible haplotypes at EL, with
estimated posterior probabilities in the original sample of >0.99 and <0.01. For these
subjects, the variance of the posterior haplotype probabilities for EL over the bootstrapped
samples was equal to 5.07e–14. The greatest haplotype uncertainty was observed for two
Caucasian subjects with estimated posterior probabilities in the original sample of 0.26 and
0.74 for their two possible haplotypes. In this case, the variance of these probability
estimates was 0.044. We do not expect this additional uncertainty to affect our findings
within Hispanics, given the magnitude; however, consideration of this additional layer of
uncertainty may be relevant in some settings.

3.2. A simulation study
A simulation study was performed to assess the performance of the methods presented in the
previous sections. A particular motivation for the simulation study was to investigate the
statistical power of the mixed modeling approach for identifying the overall genotype effects
and the combination of multiple imputation inference and mixed modeling for characterizing
hap-lotype effects. Samples of sizes N = 200, 400 and 800 were generated. For the purpose
of our simulation study, the within-Caucasian estimated genotype and haplotype frequencies
for EL and ApoE (based on the data observed for our cohort) are assumed to be the true
frequencies. Caucasian genotype data had the greatest frequency of phase-unknown data in
our sample and therefore were most appropriate for these simulations. Phenotypes are
simulated according to the general model of association (equation (4)) and genetic model
(equation (7)). Power to detect variability in the two-gene combination is reported for ratios
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of the standard deviation of the random effects to the error standard deviation (σb/σε), where
σ ε is set equal to 1 and σb ranges from 0.1 to 0.8.

Power curves are provided in Figure 2. For the genotype analysis, genotypes were sampled
with probabilities equal to the assumed frequencies (estimated from the observed data) and
100 simulations were performed under each condition (i.e. for each sample size and for each
ratio of standard deviations). This was repeated 10 times to characterize the variability in
sampling from the assumed frequencies. The median power across the 10 samples is plotted
for each condition and bars represent 25th and 75th quartiles. For the haplotype analysis,
haplotype pairs were sampled with probabilities equal to the corresponding products of
estimated haplotype frequencies. In each of the 100 simulations the true underlying phase
was treated as unobserved and 10 multiply imputed data sets were generated as described in
Section 2.2. Again, this was repeated 10 times to account for variability in sampling from
the assumed frequencies.

The simulation analysis suggests that, for this two-gene example, a sample of size 400
provides approximately 90 per cent power to detect genotype-related variability when the
ratio of standard deviations (σb/σε) is 0.3 or higher. A sample size of 800 would be required
to achieve the same power for a haplotype analysis in which phase is unobservable. Notably,
in general, the number of clusters based on genotype will be smaller than those based on
haplotype. In our example for EL/ApoE, there are 33 genotype clusters (out of a possible
(32)(33) = 243) with an estimated prevalence of greater than 0 (i.e. 33 genotypes are
observed in our data set for the EL/ApoE combination). On the other hand, there are

 possible haplotype clusters with estimated prevalences of greater than 0.

Additional simulations were performed under the assumption of no genetic contribution to
the variability in phenotype. For each simulated data set, a test of the null hypothesis

 is performed at the α = 0.05 level. An estimate of the type 1 error rate is given by
the proportion of times this null is rejected. The estimated type 1 error rates for samples of
sizes 200, 400 and 800 are 0.05, 0.06 and 0.055, respectively, for the genotype analysis and
0.065, 0.065 and 0.06 for the haplotype analysis. Again, 100 simulations were performed
under each condition and this was repeated 10 times to account for sampling variability. The
numbers reported are the medians across these 10 repeats.

4. DISCUSSION
The pathophysiology of dyslipidemia in ART-treated HIV patients is likely to be
multifactorial and involves synergy among several genetic and gene–drug pathways,
including (1) HIV-related inflammation, (2) disease–drug interactions, (3) direct and indirect
effects of therapy on lipoprotein metabolism, and (4) drug metabolism-related gene effects.
This paper presents a novel analysis, that accounts for potential ambiguity in allelic phase, to
explore potential multi-locus effects on HDL-C across candidate genes.

As discussed in Section 1, consideration of haplotypic phase in the analysis of gene
associations is informative when genetic variation on the same chromosome affects
transcription or translation differently than when the variation occurs on different
chromosomal copies and/or the SNPs under investigation are in LD with functional alleles
but are not causal. Contemporary genetic associations are identified using a staged approach
that typically proceeds by first characterizing association among tag SNPs (that mark
haplotypes) and a disease trait. Using this knowledge, further investigation of variation
within specific regions is generally obtained through dense SNP mapping and resequencing
efforts. Finally, additional analysis and lab-based experiments allow for the identification of
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functional SNPs that are causal for the disease trait. If interest lies in testing associations of
putative functional SNPs, then a haplotype-based analysis is not necessary and may result in
a loss of power; however, if the SNPs under investigation are haplotype tagging SNPs but
not in necessarily disease causing, then a haplotype-based analysis provides unique and key
information on the regional significance.

ApoE, an apolipoprotein on circulating lipoproteins, facilitates hepatic clearance of
atherogenic apoB-rich particles (e.g. low-density (LDL) lipoproteins) through its binding to
specific receptors in the liver [60]. Genetic variation in apoE, particularly the common
E2/3/4 alleles that we have studied here, has been associated with the variation in apoB
lipoproteins due to direct effects of these alleles on apoE hepatic clearance functions [53,
55]. ApoCIII, similar to ApoE, circulates on lipoproteins and also regulates the metabolism
and clearance of apoB lipoproteins. Genetic variation in both ApoE and ApoCIII can have
indirect effects on HDL-C levels through their direct modulation of circulating apoB-rich
lipoproteins [59]. EL and HL belong to a family of lipases that catabolize and remodel
circulating lipoproteins, specifically lowering HDL-C because of their preferential activity
for HDL substrates [61]. Our group and others have shown that SNPs in EL are associated
with the variation in HDL-C levels [54, 56, 58]. In the current work, we hypothesized that,
because of distinct but complementary effects on HDL particles, genetic variation in apoE
would interact with EL, HL or APOCIII to have additive or synergistic effects on HDL-C,
particularly in this HIV-1 sample that is exposed to HAART drugs that also tend to lower
HDL-C. Interestingly, we found this to be the case for apoE and EL in Hispanics but not in
Whites and Blacks, which may be suggestive of additional genetic or environmental (e.g.
diet) factors influencing the association.

Similar formulations of the proposed method using applications of non-linear mixed models
for categorical outcomes and frailty models for survival data are straightforward. In the
example provided, the most general genetic model and model of association were assumed,
rendering model fitting straightforward using the lme() function of the nlme package in R.
Fitting the more structured models described in Section 2 is less straightforward and may
require development of novel software tools. In this paper we focused on an omnibus test of
an overall genotype or haplotype effect. In the presence of such an effect, interest may lie in
identifying specific multi-locus haplotype effects that are significantly different from 0.
Posterior means of random haplotype effects and corresponding prediction intervals inform
us about this likelihood; however, appropriate consideration needs to be given to how to
combine information across imputed data sets in calculating these prediction intervals.

A fully likelihood-based approach to address missing cluster membership in a mixed
modeling framework using expectation conditional maximization is also tenable. The
multiple imputation approach described in this paper is likely to have reduced power
compared with a full likelihood approach due to the increased standard errors resulting from
the multiple imputation procedure. Multiple imputation, however, leads to valid inference
[10] and has the primary advantage of ease of implementation with existing software tools,
including the nlme and haplo.stats libraries of R as described in Section 3.1. In addition, the
approach presented here provides flexibility to incorporate alternative haplotype estimation
procedures. For example, posterior haplotype probabilities could be estimated using the
MCMC approach described in [8] or the hidden Markov modeling approach more recently
presented in [9]. Again, existing software tools (PHASE or fast-PHASE [9]) can be utilized.
Finally, using a staged approach has the advantage that it allows for stratifying by race/
ethnicity to obtain each individual’s posterior haplotype probability estimates under the
assumption of HWE and then combining racial/ethnic groups in assessing phenotype
associations. This, however, requires the assumption of no effect modification by race/
ethnicity.
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Inflation of type 1 error resulting from multiple testing is always a concern in studies
investigating multiple predictor variables (in our setting SNPs or genes). One of the key
advantages of the mixed modeling approach is the formation of a single cluster variable
within a gene and/or across multiple genes. Traditional genotype analysis involves testing
the association between single SNPs and an outcome, often resulting in a large number of
tests. More sophisticated haplotype-based methods generally test for haplotype effects
within each gene, although multiple testing continues to be a concern if a large number of
genes are under investigation. In the mixed modeling setting, on the other hand, a single
omnibus test of variability across the cluster effects (where again clusters are defined based
on multiple SNPs within a single gene or across multiple genes) is performed, obviating the
need for a multiple comparison adjustment. Multiple testing remains a concern, however, in
the construction of prediction intervals for the resulting empirical Bayes estimates and
requires further consideration.

In addition, due to sample size limitations or based on the biological hypothesis at hand,
testing of multiple small groups of genes may be of interest. For example, in this paper we
investigated the interaction between apoE and EL due to the potential complementary
mechanistic pathways each gene product has on HDL-C. A similar approach could be used
to look at interactions between several lipoprotein pathway genes (e.g. apoE, ApoC-III, EL,
lipoprotein lipase, and HL) or groups of pathways (lipoprotein, adipocyte, and inflammatory
pathways) on plasma lipoproteins. Since clusters based on all of these genes would be
untenable, a series of models could be fitted, one for each combination of two genes at a
time, and corresponding omnibus tests performed. In this case, an adjustment for multiple
testing is crucial and, given the correlated nature of the tests, a resampling-based method
may be most appropriate [62].

Principled methods for analyzing clustered data with missing cluster memberships will
enhance our ability to assess underlying associations in many settings. For example,
administrative data systems (e.g. those maintained by hospitals or cancer registry systems)
are often missing information on natural groupings, such as country of origin, postal zip-
codes, race/ethnicity or income category. Incorporating confidential information can
improve the accuracy of both the imputation procedure and the statistical inference;
however, obtaining such information is not always feasible. The method described in this
paper provides a natural framework for obtaining statistically valid results in these
additional settings. Furthermore, extension to settings in which there is incomplete
information on more than one nested cluster (e.g. hospital identifier and race/ethnicity
distribution within each hospital) is straightforward. Additionally, alternative distributional
assumptions (e.g. the general location model) for the missing information that additionally
adjust for covariates can be employed. Ultimately, the approach described in this paper
provides investigators with a viable analytical strategy to discover complex clinical and
biological associations in the context of unobservable information.
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Figure 1.
Empirical Bayes estimates and prediction intervals for random genotype effects within
Hispanics.
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Figure 2.
Power for detecting overall genotype and haplotype effects. Power calculations for
haplotype effects assume that haplotypic phase is not observed.
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