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Although reinforcement learning (RL) theories have been influential in characterizing the mechanisms for reward-guided choice in the
brain, the predominant temporal difference (TD) algorithm cannot explain many flexible or goal-directed actions that have been dem-
onstrated behaviorally. We investigate such actions by contrasting an RL algorithm that is model based, in that it relies on learning a map
or model of the task and planning within it, to traditional model-free TD learning. To distinguish these approaches in humans, we used
functional magnetic resonance imaging in a continuous spatial navigation task, in which frequent changes to the layout of the maze forced
subjects continually to relearn their favored routes, thereby exposing the RL mechanisms used. We sought evidence for the neural
substrates of such mechanisms by comparing choice behavior and blood oxygen level-dependent (BOLD) signals to decision variables
extracted from simulations of either algorithm. Both choices and value-related BOLD signals in striatum, although most often associated
with TD learning, were better explained by the model-based theory. Furthermore, predecessor quantities for the model-based value
computation were correlated with BOLD signals in the medial temporal lobe and frontal cortex. These results point to a significant
extension of both the computational and anatomical substrates for RL in the brain.

Introduction
Using past experience to guide future decisions is critical for sur-
vival, but a long-standing question is how the brain represents
this experience. A predominant theory is temporal difference
(TD) reinforcement learning (RL), which learns from reinforce-
ment the future reward value expected after an action (Sutton,
1988; Sutton and Barto, 1998). Much evidence links such learn-
ing to spiking and blood oxygen level-dependent (BOLD) signals
in the nigrostriatal dopamine system (Houk et al., 1994; Schultz
et al., 1997; Berns et al., 2001; O’Doherty et al., 2002; Pagnoni et
al., 2002).

However, such mechanisms, which rely on repeating success-
ful actions (Thorndike, 1911), cannot explain flexible or novel
action planning seen in tasks such as latent learning or reinforcer
devaluation (Tolman, 1948; Balleine and Dickinson, 1998).
There are many suggestions of such sophistication across species
(Maguire et al., 1998; Hampton et al., 2006; Pan et al., 2007),
notably lesion results in rodent conditioning (Balleine et al.,
2008) and navigation (Packard and McGaugh, 1996), suggesting
that it might coexist in the brain with simpler reinforcement
mechanisms. Such behaviors are envisioned to arise from consid-
ering the future consequences of an action, drawing on a learned
cognitive map or model of the environment (Thistlethwaite,

1951; Gallistel and Cramer, 1996). One candidate computational
formalization of these processes is model-based RL (Doya, 1999;
Daw et al., 2005; Johnson et al., 2007), which constructs the val-
ues of possible action trajectories indirectly by simulating a
learned model of the environment. This planning process con-
trasts with model-free TD algorithms, which learn future values
directly.

However, although there has been much work quantitatively in-
vestigating TD characterizations of learning (O’Doherty et al., 2003,
2006; Lee et al., 2004; Seymour et al., 2004), much less research has
analogously investigated the neural and computational substrates
for model-based learning and planning. One promising domain for
such an investigation is spatial navigation, which sparked early cog-
nitive map work (Tolman, 1948) and in which a distinction has been
made between deliberate “place” learning and habitual “response”
behaviors (Blodgett and McCutchan, 1947) that may parallel the
model-based versus TD distinction.

We thus used functional magnetic resonance imaging (fMRI)
to investigate the neural substrates for model-based learning and
planning in humans navigating a virtual maze for money. This
task had two key features that we expected would encourage a
model-based strategy: first, the basic structure of a spatial model
is known a priori and need not have been learned during the task;
second, ongoing reconfiguration of the maze promoted contin-
uous learning and on-line planning of new routes (Daw et al.,
2005). These dynamic reconfigurations also generated discrep-
ancies between hypothesized model-based and model-free up-
date mechanisms, allowing us to distinguish these strategies
over many trials and verify our hypothesis that behavior and value-
related BOLD signals were driven by model-based rather than TD
mechanisms. Having done so, we used this computational charac-
terization of the learning to begin to map the network supporting

Received Sept. 2, 2010; revised Jan. 18, 2011; accepted Jan. 25, 2011.
This work was supported by National Institute of Mental Health Grant R01 MH087882 as part of the National

Science Foundation–National Institutes of Health Collaborative Research in Computational Neuroscience Program
and by a Scholar Award from The McKnight Foundation. The content is solely the responsibility of the authors and
does not necessarily represent the official views of the National Institute of Mental Health or the National Institutes
of Health.

Correspondence should be addressed to Dylan Alexander Simon, Department of Psychology, New York Univer-
sity, 6 Washington Place, New York, NY 10003. E-mail: dylex@nyu.edu.

DOI:10.1523/JNEUROSCI.4647-10.2011
Copyright © 2011 the authors 0270-6474/11/315526-14$15.00/0

5526 • The Journal of Neuroscience, April 6, 2011 • 31(14):5526 –5539



model-based values, much as has been done for TD, by seeking
neural correlates of learning about the more elementary quanti-
ties from which model-based values are constructed.

Materials and Methods
Participants
Eighteen healthy, right-handed adults (10 females), 18 –36 years of age,
performed the task for payment while undergoing functional magnetic
resonance imaging. All participants gave informed consent, and the
study was approved by the New York University Committee on Activities
Involving Human Subjects.

Task
Subjects navigated a virtual 4 � 4 grid of rooms (designated as states s � �)
by making choices between the available rooms adjoining the current loca-
tion (Fig. 1A). Subjects continuously viewed rendered images of a three-
dimensional representation of these rooms with a first-person perspective
from their current position. The display included boundary cues and distal
direction cues so that subjects could identify their position within the grid, as
well as any rooms ahead of them (within a 100° viewing angle). Each of the 24
pairs of adjoining rooms was connected by a one-way door, which at any
time was available for use in exactly one direction between the rooms.

At each room, subjects chose between the available doors by pressing one
of three keys with their right hand so as either to move forward or to turn 90°
and move through the left or right door. It was not possible to backtrack (i.e.,
to exit a room via the door from which it was entered). We denote the
cardinal directions of movement (N, E, S, W) as actions a � �, where
(because of one-way doors and the no-backtracking rule) on each particular
trial, only a subset A � � of one to three directions can be selected. Once an
acceptable choice was made, subjects viewed an animation moving to the
selected adjoining room. To encourage planning of new routes, with a 10%
probability at each step, but no more often than every four steps, a “jump”
occurred in which a new room was selected at random from all 16, and
instead of arriving in their chosen room, subjects viewed an animation rising
above the maze and dropping into the new location.

Four rooms were designated as reward rooms, each with a corresponding
fixed reward value of 2 or 3 units, such that each time a reward room was

visited the stated reward was received. The loca-
tions and values of these rooms were instructed to
the subjects and also represented in the visual dis-
play by flags above the rooms, visible from a dis-
tance. At the end of the study, subjects were paid
proportional to final reward count (at $0.04 per
unit).

The critical dynamic element of the task, de-
signed to drive learning, was ongoing, random
reconfiguration of the available transitions be-
tween adjoining rooms (Fig. 1B). After each de-
cision step, the doors between rooms could
reverse their direction; this would happen inde-
pendently at each door with probability 1⁄24. This
change process was additionally subject to the
constraint that each room would always have at
least one available exit. Only the state of the doors
leading to or from the current room was visible
on any particular trial (represented with colored
signs at each door, with those visible in other,
distant rooms colored gray), so subjects did not
know when changes in the doors occurred until
they encountered them.

Subjects were fully instructed on the dynamics
of the task, including specific instruction of the
independence of the random processes associ-
ated with jumps and doors (supplemental Fig. 1,
available at www.jneurosci.org as supplemental
material). Before scanning, subjects trained and
practiced the task for 10 min on a different layout
than would be used for the main experiment (re-
ward locations and door directions). After enter-
ing the MRI, they performed 25 trials to

familiarize them with the scanner interface and reward locations, and then
performed 1000 decision steps during functional image acquisition, with
breaks every 250 steps.

Behavioral
We analyzed the sequences of subjects’ choices (at) by comparing them
step by step to those predicted by different learning algorithms modeled
as having encountered the same state (st), action (at), reward (rt), and
jump ( jt) sequence up to each step. In particular, we compared different
algorithms for evaluating actions, each formalized as a method for esti-
mating an action value function (Q : � � �3 �) based on earlier
observations (e.g., of rewards received and available doors). The action
value function maps each potential action at time t to a predicted value
sum of expected future rewards (r) for each available option, discounted
for delay according to the free discount parameter � as follows:

Qt�s, a� � E��
i�1

�i�1rt�i�st � s, at � a�, (1)

where each algorithm specifies a particular method for estimating this
expectation. For each algorithm, we assumed a softmax decision rule to
produce a probability of a choice (p) given the predicted values of all the
available choices as follows:

pt�a� �
exp �Qt�st, a�

�a��A exp �Qt�st, a��
, (2)

where � is a free “temperature” parameter controlling the degree of
randomness in action selection.

For each algorithm, we estimated the set of free parameters (�, includ-
ing � and �), separately for each subject so as to minimize the negative
log-likelihood of all observed choices (i.e., the sum over the log of Eq. 2,
for the action chosen on each of n trials) as follows:

l�� � � ��
t�1

n

log pt�at���. (3)

Figure 1. Task flow and example state. A, Subjects were cued to
choose a direction by pressing a key. If the subject did not respond
within 2 s, she lost a turn and was again presented with the same choice
(no movement). Otherwise, an animation was shown moving to the
room in the selected direction (or to a random room for randomly occur-
ring jumps); this movement lasted 1.5–2 s, jittered uniformly. Then, the
next room was presented, including the available transitions from that
room and any received reward. Finally, after 0.5 s, the subject was cued
to make the next decision. Only the doors in the current room were
visible to the subject. B, A possible abstract layout of the task, where
each square represents a room, and each arrow represents an available
door direction the subject may choose from. The circles represent re-
ward locations, where the subject would gain the indicated reward
value each time the room was visited. At each step, each one-way door
could flip direction independently with probability 1⁄24.
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To compare the quality of model fit correcting for the number of free
parameters optimized, we estimated Bayes factors (Kass and Raftery,
1995), the ratio of the model evidences (i.e., the probabilities of the
models given the data). To approximate the model evidence, we com-
puted the Bayesian information criterion (BIC) (Schwarz, 1978) as
follows:

l��̂ � �
m

2
log n, (4)

where l��̂� is the negative log-likelihood of data at the maximum-
likelihood parameters, �̂; m is the number of free parameters optimized;
and n is the number of observations or (nontrivial) choices the subject
made (note that BIC, as we define it, is 1⁄2 the standard definition, to put
it in the same scale as likelihood and evidence measures; all statistical tests
are corrected appropriately). As a standardized measure of model fit, we
also report � 2, a pseudo-r 2 statistic which is analogous to a measure of

variance accounted for and is computed as 1 �
l��̂�

lrandom
(Camerer and Ho,

1999; Daw et al., 2006). Also, allowing that the algorithm used might
differ across subjects in the population as a random effect, we report
statistical tests on the Bayes factors across subjects, along with the “ex-
ceedance probability” or posterior probability that one algorithm is the
most common of a set across the population (Stephan et al., 2009), as
computed using the spm_BMS function in SPM8.

To generate regressors reflecting predicted quantities from the models
for fMRI analysis (below), we simulated the models for all subjects using
a single set of parameters taken as the median of the best-fitting param-
eters over the individuals. The group median can be viewed as an estima-
tor for the group-level parameters in a random-effects model of the
population (Holmes and Friston, 1998). We took this approach because
we have repeatedly observed, in this and other data sets (Daw et al., 2006;
Gläscher et al., 2010), that neural regressors generated using separate
maximum-likelihood estimates of the parameters produce poorer fMRI
results (i.e., noisier neural effect size estimates and diminished sensitiv-
ity). This is likely because parameters are not always well identified at the
individual level, and variability in the point estimates effectively results in
noisy rescaling of regressors between subjects, which in turn suppresses
population level significance in fMRI (for additional discussion, see Daw,
2011).

To compare subjects’ performance in terms of payoffs earned, we
determined two reference point payoffs for each subject: expected ran-
dom payoff and maximum possible payoff. Expected random payoff was
determined simply by calculating the expected state occupancy under a
uniform random policy, and weighting the rewards by the expected oc-
cupancy of their location (note that this is slightly different than uniform
occupancy because of the heterogeneous connectivity: more central
rooms are more likely to be visited). The maximum possible payoff for a
subject was defined as the largest payoff possible over all possible choice
sequences for the particular sequence of door configurations that subject
encountered. Note that actually taking advantage of such a policy would
require the subject to be omniscient or “psychic” about all current and
future unobservable door changes. Because perfect play using only the
available information is computationally intractable because of the par-
tially observable nature of the task, we neither determined nor compared
this value, but it is guaranteed to be somewhere between the best average
play from any of our formalized algorithms and psychic play.

The timing of the task was such that the choices were first allowed to be
entered 500 ms after all the information relevant to that choice was
presented (Fig. 1 A). As such, the task was not well suited for analyzing
reaction times (RTs), since subjects were presumably able to preplan
their responses and time them to the appropriate moment. To examine
reaction time effects given these limitations, we discarded all trials with
reaction times 	50 ms and analyzed the remainder using the same re-
gressors as with fMRI (see below, Model-based analysis) as explanatory
variables in linear regressions in which the dependent variable was taken
as the log reaction time. Regression coefficients were computed per sub-
ject, and then tested across subjects to assess their significance as random
effects (Holmes and Friston, 1998).

Algorithms
Although the task was simple to understand, an optimal solution is com-
putationally intractable. This design allowed for a wide range of possible
(suboptimal) strategies that could be used. Thus, in analyzing the behav-
ioral data, we are faced with (and did explore) a wide variety of algo-
rithms using different representations and learning methods based on
both TD and planning processes.

The main questions of the study concern valuation by model-based
planning. Such a strategy is categorically distinguished from more com-
mon “model-free” approaches to RL by two key features: the use of a
model representing the environment, and on-line evaluation based on
recently learned changes to this model. For specificity and efficiency, for
the bulk of the analyses we report, we used a canonical model-based
algorithm (value iteration) that exhibits these features. It is canonical in
the sense of being derived directly from a formal definition of the deci-
sion problem (Sutton and Barto, 1998); it is also, in the particular details
and approximations of this derivation, the best-fitting algorithm we dis-
covered from the model-based class. To verify that behavior and BOLD
signals are best explained by an approach of this sort, we compare its
predictions to a canonical model-free algorithm (Q learning), which was
also the best-fitting representative of that class we discovered. We addi-
tionally compare both algorithms (see supplemental material, available
at www.jneurosci.org) to reduced or extended variants that isolate par-
ticular distinguishing features of the model-based and model-free ap-
proaches. However, these best-fitting models, by virtue of being derived
from decision-theoretic definitions, are also computationally complex.
Accordingly, we do not suggest that these algorithms are direct process-
level accounts of the steps of computation, but rather that they are rep-
resentative of the overall form of the relationships between experience,
representation, and choices or BOLD activity. Additionally, as discussed
further below, the quantities that these algorithms define also help us to
examine some process-level questions.

In the following descriptions, we take as data the experience of each
subject over steps, t: visited states, st � �; rewards, rt � �; available
actions, At � �; choices, at � �; and jumps, jt � 
0, 1�. Each state–
action pair �s, a� � � � � represents one side of a particular door
within the maze, where only valid doors are considered. We use the fixed
transition function T : � � �3 � such that T�s, a� � s� if behind the
door (s, a) is the room s� (regardless of whether it is currently open),
along with the reward map R : �3 
0, 2, 3� to represent the fixed re-
ward locations. We also use the symbol At to indicate the set of available
outgoing doors from the room st at time t. For clarity, we thus have the
following invariants:

rt � R�st� @t
at � At @t

T�st, at� � st�1 @t : jt � 0
?a.T�s, a� � s�N ?a�.T�s�, a�� � s @s, s�. (5)

Planning. Rather than estimating action values directly, a model-based
approach learns a “model” of the structure of the task— here the current
configuration of the maze—and computes action values by searching
across possible future trajectories, accumulating the rewards in expecta-
tion according to the definition of these values (Eq. 1).

To learn the model, our implementation represents the subject’s esti-
mate of the direction of each one-way door as a probability of it being
open, pt(s, a), which is updated when a door is observed, and also de-
cayed at each step by a free factor 	, to capture subjects’ knowledge of the
chance that doors may have changed since last observed, as well as any
other processes by which observed door knowledge plays a declining role
in valuation (e.g., forgetting or search pruning). The two sides of each
door may be learned independently, even though this may create a model
inconsistent with the one-way dynamics. The probabilities are initialized
to 0.5 and updated at each step in which a set of open doors At is observed
in room st, according to the following:

pt�s, a�4 pt�1�s, a� � 	�0.5 � pt�1�s, a�� @s, a �decay�

pt�st, a�4 � 1 if a � At

0 if a�At
@a �model update�. �6�
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The other part of the task model—the reward value for each room,
R(s)—is assumed to be known. We believe this assumption to be innoc-
uous, since this information was fixed, instructed, and signaled in the
visual display.

Using the learned maze configuration, we compute state–action values
based on a tree search planning process terminating at reward states. For
computational efficiency (e.g., in fitting free parameters to choice data),
we implemented this planning process using value iteration, which sim-
ply unrolls a breadth-first search tree over the states from leaves (horizon
1 values) to roots (end horizon values). Specifically, at each step, in room
st, initialize all Q(s, a)4 0 and, for all (s, a) pairs in parallel, repeatedly
perform the following:

Q�s, a�

4 � R�s�� if R�s�� 
 0
@s, a, s� � T�s, a�

� �A���P�A��p�t, A� 
 �
 maxa��A�Q�s�, a�� otherwise

(7)

We took Qplan(st, a) to be the value resulting after 16 iterations of this
update.

Here, the sum takes an expectation over possible sets of open doors A�
in state s� according to the current beliefs about the probability of each
door being open individually, the no-backtracking constraint [here, that
the door T(s�, a�) � s, from which s� is entered, must be closed], and the
constraint that at least one door must be open as follows:

P�A��p�t, A� 
 �
 �
�a��A�pt�s�, a���a��A��1 � pt�s�, a���

1 � �a��1 � pt�s�, a���
. (8)

The algorithm thus has three free parameters: 	, �, �.
Although this algorithm is derived directly from the definition of ac-

tion value from Equation 1, it does incorporate a number of simplifica-
tions or approximations, all of which accorded well with the data. First,
we terminate each search path at reward. In terms of the definition of the
decision variable, this is equivalent to treating the reward states as termi-
nal in an episodic view of the problem (Sutton and Barto, 1998). Simi-
larly, we terminate each search path if no reward has been found along it
by a depth of 16. This is an innocuous assumption since the value of a
reward converges to zero as its distance increases, given � 	 1 or 	 � 0.
Sixteen steps is above the maximum distance between any two points in
the maze and was well beyond the point at which relevant fit quantities
changed meaningfully given the data (see supplemental Fig. 3, available
at www.jneurosci.org as supplemental material). In terms of the model,
the evaluation of the expectation treats the model as frozen throughout
the iteration process (i.e., it does not take into account the effect of
potential future observations and updates on the model as a full Bayes-
ian/partially observable Markov decision process approach would do).
Finally, and closely related to this, it approximates the expectation over
maze configurations as a factored tree of states, by treating the probabil-
ity of a particular door set being open as independent between states
within each iteration and, for each state, also independent between each
iteration of the value update. These last assumptions allowed the algo-
rithm to execute in reasonable time.

Finally, at the process level, there are many different approaches to
evaluating the multistep value expectation from Equation 1. For in-
stance, it seems most plausible that subjects search forward from the
current state (or perhaps backward from a goal state), rather than from
all states in parallel as in value iteration. However, for the current state,
the total value and also the intermediate values (nth horizon partial sums
of each step) from value iteration correspond to those that would be
computed at each step by a breadth-first search. Other search processes,
such as depth first, visit the states in different order, and perhaps (e.g.,
because of stochastic pruning or early termination) only visit a subset of
them on any particular trial. However, since a very wide family of such
approaches can be viewed as different ways of evaluating the expectation
defined by Equation 1, their end values should coincide either exactly or
(particularly in the average over trials) approximately with those we
compute here. For instance, the end values we compute correspond, in

the average, to those that would be computed if discounting is eliminated
but paths are instead terminated stochastically with probability �; or to
values accumulated over a trajectory where door traversals are not
weighted according to pt but instead sampled with this probability (for
related models, see Sutton and Pinette, 1985; Suri and Schultz, 2001;
Smith et al., 2004).

TD. We use a model-free Q-learning algorithm (Watkins, 1989), aug-
mented with eligibility traces. Such an algorithm maintains a represen-
tation of the state–action value function Q directly and updates it locally
after experience with particular state–action pairs and rewards. The in-
clusion of eligibility traces, for � � 0, allows the algorithm to update the
values for states and actions other than the pair most recently observed,
but only backward along the recently encountered trajectory. In this
implementation (unlike that of Watkins), eligibility traces are truncated
on “jump” events but not for exploratory actions.

The model has five free parameters: Q0, �, �, �, �. Specifically, each
door within the maze, (s, a), is associated with a value, Qt(s, a), all ini-
tially set to Q0. Each also has an associated trace et(s, a), all initially 0. At
each step, if door at is chosen in room st, arriving in room st�1 (either via
a jump, jt � 1, or not, jt � 0) with reward rt�1 � R(st�1), the variables are
updated according to the following:

et�1�s, a�4 ��et�s, a� @s, a �decay traces�
et�1�st, at�4 et�1�st, at� � 1 �accumulating traces�
et�1�s, a�4 �1 � jt�et�s, a� @s, a �truncate traces on jump�

v � rt�1 � � max
a�
At�1

Qt�st�1, a�� �value prediction�

�t � v � Qt�st, at� �prediction error�
Qt�1�s, a�4 Qt�s, a� � �et�1�s, a��t @s, a. �9�

QTD(s, a) is simply the learned value function Qt(s, a).

Imaging
Functional imaging was performed on a 3T Siemens Allegra head-only
scanner with a custom head coil (NM-011; Nova Medical) located at the
Center for Brain Imaging at New York University. Thirty-three contigu-
ous oblique-axial echo-planar images (3 � 3 � 3 mm voxels) were ob-
tained each 2000 ms repetition time (TR), oriented 23° off the anterior
commissure–posterior commissure axis so as to improve functional sen-
sitivity in orbital frontal areas (Deichmann et al., 2003). Slices were po-
sitioned to obtain full coverage from the base of the orbitofrontal
cortex and medial temporal lobes ventrally; coverage extended dor-
sally/caudally into the superior parietal lobule and above the dorsal
anterior cingulate cortex but omitted some occipital and parietal re-
gions, and in a few cases, some posterior-superior frontal regions.
A high-resolution T1-weighted anatomical image (magnetization-
prepared rapid-acquisition gradient echo sequence, 1 � 1 � 1 mm)
was also acquired for each subject.

Images were preprocessed and analyzed using the SPM5 software
(Wellcome Department of Cognitive Neurology, London, UK), and final
results were corrected for multiple comparisons using SPM8 (Wellcome
Trust Centre for Neuroimaging, London, UK). Functional images were
realigned for head motion, coregistered between runs and to the struc-
tural image, spatially normalized to Montreal Neurological Institute co-
ordinates (SPM5 “segment and normalize”), and finally resampled to
2 � 2 � 2 mm voxels and smoothed with an 8 mm full width at half-
maximum Gaussian kernel. Because of the short TR, interleaved acqui-
sition, and fast events, we did not additionally resample temporally to
correct for slice timing.

Neural models were analyzed using general linear models to obtain
single-subject � images. Regressors were convolved with the canonical
hemodynamic response function in SPM5. To control for nuisance ef-
fects, all designs included the following: the six rigid-body motion pa-
rameters that were inferred by realignment; four event regressors
covering times in which the subject was viewing animations of left turns,
right turns, forward movement, and jump movement, respectively; and a
“no-choice” impulse event regressor at the time of choices in which the
choice set size was one.

Separate coefficients were computed for each regressor for each of
the four runs, and contrasts were computed by adding up these coef-
ficients. Contrast values were then brought to the group level using
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one- or paired-sample t tests for random effects. Unless otherwise
noted, we produced whole-brain effect maps using a p 	 0.001 un-
corrected threshold, and then assessed significance correcting for
whole-brain multiple comparisons using topological cluster-size false
discovery rate (FDR), p 	 0.05, as implemented in SPM8. [Note that
cluster-level FDR is distinct from voxelwise FDR, which has recently
been argued to be invalid (Chumbley and Friston, 2009).] Accord-
ingly, reported peak t values are uncorrected, and significance is in
relation to the containing cluster. SPMs have been displayed graphi-
cally by including all uncorrected activations, with clusters that did
not reach significance, where assessed, depicted in a lighter, translu-
cent color.

Model-based analysis
Each general linear model (GLM) included an event regressor containing
an impulse at each choice (response) time, along with some number of
parametric regressors on these events, depending on the particular com-
putational algorithm being analyzed. These regressors were mean-
corrected separately within choice and no-choice trials (according to the
corresponding nuisance regressor), but, except where stated, when mul-
tiple parametric regressors were entered in a design, these were not or-
thogonalized against one another. Parametric regressors were derived
from the sequence of predicted values or other latent variables produced
by each algorithm, according to the learning algorithm exposed to the
subject’s actual experience up to the current trial. Because we were inter-
ested in many different, often highly correlated, properties of the neural
signals, such as different deconstructions of the value signal, we ran
separate GLMs to ask different questions, primarily focusing on distinct
brain regions.

In order initially and qualitatively to identify basic activation pat-
terns related to the predictions of either algorithm separately (which
are correlated), the first two analyses entered the predicted Q(s, a)
values for the current state and chosen action (from Eqs. 9 and 7) as
parametric regressors, with GLM1 containing only QTD and GLM2
only Qplan. (We refer to these as the “chosen values.”) To identify peak
value-responsive voxels in an unbiased manner, and to directly com-
pare the fit of these regressors, GLM3 contained both of these values
as separate regressors, and a contrast summing the coefficients from
both was used on the second level. Confining the analysis to an ana-
tomically defined striatal region of interest (ROI) (Maldjian et al.,
2003)—which was of specific interest because it is often associated
with TD (O’Doherty et al., 2006; Lohrenz et al., 2007)—we found all
peak (locally maximally responsive) value voxels from GLM3 in cau-
date and putamen that exceeded a p 	 0.001 uncorrected threshold
and defined these as our voxels of interest (VOIs). To then compare
between these two predictions with an independent test, the orthog-
onal contrast,a taking the difference between the planning and TD
coefficients, was used on these VOIs.

In order further to decompose and explore differences between the
predicted value signals of the algorithms, we performed additional anal-
yses using a series representing the chosen values Q(s, a), as they would
be computed either by the TD or planning algorithms. Both algorithms
can be viewed as representing cues as exponentially decaying sums of
terms, either of expected rewards (for planning), or of prediction errors
previously encountered at a state (for TD). Since the GLM is additive, we
can use separate regressors to express the BOLD signal by their weighted
sum, and estimate the relative weights.

For planning, the state–action values are explicitly computed as a sum
of exponentially discounted expected rewards expected at each future
step (from Eq. 1) as follows:

Qplan�st, at� � �
i�1

�i�1E �R�st�i�
. (10)

Here, the expectation is as in Equation 7 and simply unrolls the indepen-
dent reward terms from that computation. When making predictions
from a forward breadth-first search, this is exactly how the values are
computed: by considering reward at the next step, then potential rewards
at the subsequent step, and so on. [Other types of search (e.g., depth first)
do not visit the states in the same order, but insofar as they compute the
same end values they may still be decomposed this way.]

For the TD algorithm, the rewards expected at individual states are
never explicitly represented, but instead values are produced (i.e.,
learned through the action of the learning rule) by accumulating them
over time with each prediction error update, weighted by the learning
rate. That is, we can unroll the effects of the iterated updates in Equation
9 in a form similar to Equation 1, expressing the learned value at a
particular time as the exponentially weighted sum of previous prediction
errors. For � � 0, this sum is over the prediction errors encountered on
previous state–action pair choices as follows:

QTD�st, at� � �
i�1

��1 � ��i�1�ui�st, at�, (11)

where �u�st, at� is the sequence of times at which that action was chosen in that
state before time t, so that u0(st, at) � t, u1(st, at) is the time of the first such
preceding visit, and so on. When � � 0 (as in our behavioral fits), a state–
action is updated not only after visits to it, but also by prediction errors
subsequently encountered at other states, weighted by the decaying eligibility
trace. We can modify Equation 11 to account for this effect by taking the
terms � in the sum to be themselves accumulated series of single-step pre-
diction errors encountered subsequently to the state visit as follows:

�i � �
k�0

����k�ui�st, at��k. (12)

Here, k ranges up until whichever is first: ui(st, at) � k � t � 1 (the
present) or jui�st, at��k�1 � 1 (the first subsequent jump) at which point
eligibility is cleared.

For both algorithms, if the BOLD signal is representing the corre-
sponding value, it should reflect the sum of all these terms, with the
appropriate coefficients: the sums essentially unroll the computation or
learning of the values as predicted by either algorithm. To investigate
these predictions, we created two more designs that decompose the two
chosen values using the first two terms of either sum. (Since the weights
are exponentially decaying, the earliest terms should dominate.) GLM4
included parametric regressors for �u1�st,at� and �u2�st,at� from the TD algo-
rithm, and GLM5 included E[R(st�1)] and E[R(st�2)] from planning
(referred to as �1, �2, r1, and r2, respectively). For comparison, we also
inferred what the expected coefficients from this analysis would be based
on the Q coefficients from GLM1 and GLM2 and the (behaviorally fit)
values of � and �. These two GLMs were initially applied only to the
identified VOIs. This analysis is similar to a number of techniques used to
analyze neural data in terms of value subcomponents (Bayer and Glim-
cher, 2005; Montague et al., 2006; Samejima and Doya, 2008).

We additionally used GLM5 to seek areas better correlated with only
the expected next reward r1, viewed here as an intermediate quantity in
the value computation as opposed to a portion of the full value. (As
noted, r1 is indeed the first partial sum computed during a breadth-first
search; for another approach like depth-first, it might be viewed as the
expectation over trials of the value of the first state visited.) We thus
sought activity related specifically to r1 rather than the cumulative future
reward Q � r1 � �r2, using the contrast �1 � �2r1 � r1 � �r2. (Note
that this contrast equates the length of the two contrast vectors to avoid
confounding the test of the direction of the neural effect.)

Next, in looking for effects related to the iterative computation of
future values, we first considered the total number of choices available
from the current state, n0. This information is clearly relevant for any
decision-making system that considers all the options, and in particular,
an algorithm that searches forward through possible routes will have this
many starting points. We then considered the next-step expectation of
this quantity: the expected number of total choices in all reachable rooms
given the model of the doors specified by the best-fitting planning

a Because there is correlation between TD and planning predictions, these two contrasts are not perfectly orthogonal
in the space of the (temporally whitened) design matrix (Kriegeskorte et al., 2009). In fact, they are slightly anticor-
related (r � �0.142). This equates to a bias toward finding a more negative difference (i.e., TD coefficients being
larger, when having first selected on their sum being large and positive); we neglect this bias since it works against
the results reported here.
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algorithm, using the behaviorally fit value for 	 and the subject’s obser-
vations up to the current point as follows:

n0 � �At�
n1 � �

a
At

�
A�

P �At�1 � A��st�1 � T�st, a�, p�
�A��, (13)

where the conditional expectation is the same as in Equation 7. Although
the normative planning algorithm as we actually implement it examines
all state–action–state pairs regardless of how likely it is that a door exists,
a more realistic process-level search implementation would likely
“prune” or examine the most likely transitions, thus requiring expected
computation proportional to n1. We constructed GLM6 with a regressor
for n0 and a regressor for n1 orthogonalized against the n0 regressor.b We
also included a regressor of no interest containing reaction time for each
trial, against which the other two regressors were orthogonalized. We
then identified all voxels significantly responsive to n0 (p 	 0.05 cluster-
size FDR on p 	 0.001) and used this as a mask to identify regions
responsive to n1 using p 	 0.001 and assessing significance with small-
volume familywise error (FWE) correction. Unfortunately, because of
our slice prescription, three subjects ended up with reduced coverage of
superior frontal regions, resulting in these areas being masked out of our
analysis because of missing data. Thus, to study the extent of activity
identified in premotor regions, these 3 subjects were left out, and the
GLM6 analysis repeated using the remaining 15 subjects.

Finally, to investigate whether obtained results were specifically related
to model-based planning processes, we studied how neural effects cova-
ried with the degree to which the planning or TD models fit their data
(measured by the per-subject log-likelihood of the choice data under
either model, or the difference between the two). In particular, we se-
lected the per-subject � values from the peaks of the relevant contrast and
correlated these with the log-likelihood measures from the per-subject
behavioral fits, assessing one-tailed significance for the correlation coef-
ficient. Since the contrasts used to define the peak voxels are main effects
over all subjects, and since, furthermore, they are extrema of contrasts
unrelated to the likelihood measures, the resulting correlations will be
unbiased and not subject to corrections for the whole-brain multiple
comparisons involved in seeking the peak voxel.

Results
Behavioral
On average over 1000 steps, subjects earned $23.78 � $1.91
(mean � 1 SD). These earnings exceeded what would have been
expected under chance performance by 12.5 � 8.8% on average,
which was significantly different from zero across subjects (t �
6.82) and numerically greater than zero for 16 of 18 subjects
individually. Although it is computationally intractable to define
the earnings of an optimal decision maker in this task, an upper
bound on this quantity is the earnings of a psychic subject who
was fully informed about the maze state at each step, and behaved
optimally according to this knowledge. On average, earnings
were 10.4 � 5.4% worse than this benchmark. Together, these
results suggest that subjects were reasonably successful at harvest-
ing rewards.

Learning models
We attempted to characterize subjects’ learning—that is, how
their choices depended on previous feedback— by fitting two
alternative algorithms to explain their trial-by-trial choices.
These exemplify two representational strategies for reinforce-
ment learning: a model-based planning approach, which learns a
representation of the maze layout and evaluates actions using it,
and a model-free TD approach that learns estimates of the values

of actions directly and locally. These approaches have been ar-
gued to formalize a long-standing distinction in psychology be-
tween response-based approaches and more cognitive, map-
based or goal-directed approaches (Doya, 1999; Dickinson and
Balleine, 2002; Valentin et al., 2007; Gläscher et al., 2010). We
hypothesized that the task would favor a model-based strategy
instead of the model-free strategy quantified in many previous
fMRI studies of decision making (Daw et al., 2005), allowing us to
examine the neural implementation of such learning. In this task,
the ongoing maze reconfigurations play a similar role to an out-
come revaluation manipulation (Balleine and Dickinson, 1998),
allowing the strategies to be distinguished by their distinct pre-
dictions about how behavior should adjust after observed
changes. In particular, although the strategies are related in that
they are pursuing the same ends, they make different trial-by-trial
predictions about choices because they draw on past experience
to evaluate options using different strategies and representations.
Notably, the TD approach updates the predicted values of actions
only locally after they are encountered (via a so-called bootstrap-
ping process in which value estimates are updated based on ad-
jacent ones), whereas a model-based approach incorporates all
learned information into a map of the environment resulting in a
global update of the derived action value estimates. This delay in
the propagation of learning in a TD model predicts that choices
should sometimes not respect recently learned information (Daw
et al., 2005).

We fit each subject’s trial-by-trial choice behavior individu-
ally with each model and assessed the relative goodness of fit.
Aggregating the data likelihoods across subjects (which is equiv-
alent to assuming that all subjects used the same one of the mod-
els), the group’s behavior was best explained by planning (BIC
3098), and worse by TD (BIC 3397; random was 4085).

We may instead consider that the identity of the best-fitting
model might have varied from subject to subject and characterize
the tendencies of the population by the summary statistics on
their individual fits, analogous to a random-effect analysis in
fMRI (Stephan et al., 2009). Thus, the average Bayes factor (the
difference in BIC scores or approximate log odds in favor of one
model vs another) was 16.61 in favor of model-based planning
over TD. This was significantly different from zero across subjects
(t(17) � 4.92; p � 0.0001), indicating that a subject drawn ran-
domly from the population will, on average, exhibit behavior
better fit by model-based RL compared with TD. An alternative
way to characterize the predominance of the strategies in the
population is to fit the entire behavioral dataset with a mixture
model in which each subject exhibits exactly one of the candi-
date algorithms, the identity of which is treated as a random
variable [BMS (Stephan et al., 2009)]. In such a fit, it was
overwhelmingly likely that planning was the more common
strategy (expected frequency, E[p(plan)] � 0.947; exceedance
probability, P[p(plan) � p(TD)] � 0.999). These results suggest
that subjects’ learning about choices in this task was, at the pop-
ulation level, predominantly driven by model-based spatial plan-
ning. The comparison of the model-based and TD approaches
suggests that values are determined prospectively by planning
rather than by local bootstrap-based learning.

We may also break down the contributions of individual sub-
jects to these groupwise results. Primarily, both of the learning
models fit significantly better than chance for each subject (like-
lihood ratio tests; for TD, all �5

2 � 13.32, p 	 0.031; for planning,
all �3

2 � 12.02, p 	 0.008). Comparing BIC scores for each
individual, planning was favored over TD for 17 of 18 subjects.

b Again, to be sure that these tests are independent, we need to consider whether these are truly orthogonal
contrasts given temporal autocorrelation. Postwhitening, we find that they are very slightly anticorrelated (r �
�0.034), so since we are only looking for where their signs agree, thiscan only make the test more conservative
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These results further indicate that, although there is some evi-
dence of individual variability among the subjects, the predomi-
nant strategy appears to be model-based RL (Fig. 2).

We additionally compared each algorithm to a reduced or
augmented version, to isolate the necessity of the kind of learning
each posited. In particular, we tested “dead-reckoning” variants
of the planning algorithm that did not involve on-line learning of
the map of doors but instead evaluated actions only on the basis
of the distance to reward, essentially relying only on the known
spatial structure and reward locations. The full planning model
explained choices better than these variants, supporting the in-
terpretation that subjects plan using a learned transition map.
Even so, dead reckoning models still fit the choices better than
TD, providing additional evidence that even simple planning
processes dominate TD learning in this task. In fact, the dead
reckoning fit was not improved by incorporating TD learning
such that the fixed distanced-weighted values were updated
based on experience using TD. For full details on these analy-
ses and comparisons with other variants in each model class,
see supplemental Results, supplemental Figures 2 and 3, and
supplemental Table S1 (available at www.jneurosci.org as sup-
plemental material).

Reaction times
We reasoned that, if subjects were planning trajectories by for-
ward search, as our results suggest, then this might be reflected in
their reaction times as well as their choices. In particular, we
hypothesized that subjects’ reaction times would be longer on
steps when the search was more extensive. This would predict
longer reaction times not only in rooms in which they were facing
more open doors (a quantity we called n0) (see Materials and
Methods), but that they would also be longer for searches in
which they expected that more doors would be open in subse-
quent rooms, a measure unique to a forward planning model. We
defined this quantity, n1, in expectation at each step according to
the learned beliefs of the model about the maze.

One complication in assessing this hypothesis is that subjects
were allowed to enter a decision one-half second after they first
entered a room and observed the doors available there. This
pause allowed subjects to decide and prepare their responses dur-
ing this time, making reaction times a poor measure of planning.
Accordingly, there were a high proportion of extremely fast re-
sponses: reaction times averaged 278 � 251 ms, with 36.1% of
responses 	150 ms and 11.8% 	50 ms. To focus on the subset
of trials in which reaction time might reflect differential

amounts of planning, we eliminated the fastest reaction times
(those 	50 ms) from analysis.

For the remaining subset of trials, we found weak but signifi-
cant effects of the search complexity (t(17) � 4.50, p � 0.0003 for
n0; t(17) � 2.49, p � 0.023 for n1) on log reaction time, such that
more complex choices resulted in longer reaction times.

Imaging
Given that the behavioral analysis indicated that the predomi-
nant learning strategy among our candidates was model-based
planning, we next exploited this model to interrogate related neu-
ral signals. Our overall strategy, based on previous work on TD
learning, was to use simulations of the fit algorithm to define
trial-by-trial time series of relevant variables such as predicted
action values, to seek and tease apart neural correlates of these
otherwise subjective quantities (O’Doherty et al., 2007). For this,
we used on the model-based algorithm (and, for initial analyses,
also the TD one) along with the medians of the parameters that
best fit the individual subjects’ choices (Table 1; supplemental
Table S1, available at www.jneurosci.org as supplemental material).
The median was used because in our experience (Daw et al., 2006;
Gläscher et al., 2010; Daw, 2011), unregularized maximum-
likelihood parameter estimates from individuals tend to be too noisy
to obtain reliable neural results. Since what distinguishes planning
from model-free RL is that it constructs action values from more
elementary information on-line at choice time rather than simply
retrieving previously learned aggregate values as in TD, our pri-
mary questions concerned dissecting these computations. As a
first step, we sought neural correlates of aggregate chosen values;
we did this both for values predicted by planning and for those
predicted by TD to verify our hypothesis that in this task neural
value signals, like choices, were predominantly better explained
by planning. To maximize power, we compared the algorithms
on the basis of BOLD signal in value-responsive voxels selected in
an unbiased manner. After similarly confirming that planning
predominates in striatal value signals over the population, we
proceeded to tease apart these activations and the computations
that we hypothesized would give rise to them by examining neu-
ral correlates of the components of model-based value construc-
tion. In particular, model-based predictions of aggregate future
value are based on two quantities: predicted single-step rewards
and predicted future states (based on knowledge of state transi-
tions). We thus sought neural correlates related to both of these
hypothesized representations. Finally, to verify the extent to
which our results related specifically to planning processes as
opposed to valuation more generally, we studied whether indi-
vidual variation in the strength of our neural effects covaried,

Figure 2. Behavioral model likelihood comparison. Negative log-likelihood evidence values
under BIC. Shown are per-subject log Bayes factors comparing planning against TD.

Table 1. Distribution of subjects’ individual maximum likelihoods and parameter
estimates

Plan TD Random

� 4.081, 11.78, 17.14 3.405, 5.315, 6.841
� 0.461, 0.816, 0.861 0.550, 0.861, 0.936
h 0.058, 0.142, 0.516
Q0 1.260, 2.883, 6.774
� 0.319, 0.408, 0.579
� 0.565, 0.756, 0.915
NLL 131.1, 156.3, 195.8 152.7, 171.3, 207.5 214.7, 224.5, 237.0
BIC 139.6, 165.0, 204.5 167.1, 185.6, 222.0 214.7, 224.5, 237.0
�2 0.141, 0.279, 0.391 0.130, 0.226, 0.321 (0)

Quartiles (medians in bold) of best-fitting parameters for the two algorithms used to produce regressors for
imaging analysis, along with negative log likelihood (NLL), BIC estimated evidence, and pseudo-r 2 measures of
individual fit quality.
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across subjects, with the extent to which planning versus TD
explained their choice behavior.

Unless otherwise stated, all t statistics are uncorrected and
refer to peak voxels of clusters that have been deemed significant
at p 	 0.05 by cluster-size FDR correction.

Correlates of value
Following much previous work on RL, we began by generating
the sequence of values, Q, that each algorithm would predict at
each step of the task on the basis of previous experience (Tanaka
et al., 2004; O’Doherty et al., 2006; Seymour et al., 2007; Witt-
mann et al., 2008). We first asked where the BOLD signal signif-
icantly correlated with the sequences of values for the chosen
actions (chosen values), for TD and planning considered sepa-
rately. For plan-predicted values within striatum, we found that
clusters in bilateral posterior ventrolateral putamen/claustrum
and bilateral dorsolateral prefrontal cortex extending ventrally
into orbitofrontal regions correlated significantly (peaks: [�32,
�8, �6] t(17) � 6.60, [28, �2, �10] t(17) � 4.72, [�48, 38, 18]
t(17) � 6.79, [52, 40, 8] t(17) � 5.34). We also found a weaker
correlation in the bilateral ventral caudate that did not survive
cluster-level correction for multiple comparisons (peaks: [�24,
16, �8] t(17) � 4.97, [12, 14, �10] t(17) � 4.53, NS). Using the
TD-based values, we found only one significant cluster in stria-
tum (left ventrolateral putamen peak: [�30, �8, �6] t(17) �
5.34). The ventral and dorsomedial regions of striatum have
commonly been identified with general reward and value expec-
tations (Delgado et al., 2000; Knutson et al., 2001; O’Doherty,
2004; Tricomi et al., 2004; Samejima et al., 2005), although the
posterior putamen regions have been less commonly implicated
(Delgado et al., 2003; O’Doherty et al., 2004). Outside of stria-
tum, we found that distinct regions of bilateral inferior frontal,
postcentral, and insular cortex showed significant correlations
with these values as well, again apparently more robustly to the
planning values (Fig. 3). However, cortical correlates of chosen
value are found in ventral prefrontal areas (Knutson et al., 2005;
Hampton and O’Doherty, 2007; Kable and Glimcher, 2007; Chib

et al., 2009; Gläscher et al., 2009; Wunderlich et al., 2009) more
often than other areas (Breiter et al., 2001; Plassmann et al., 2007;
Hare et al., 2008). On a targeted investigation of ventromedial pre-
frontal cortex (vmPFC), we found that there was a correlation with
planning values in this region that did not meet our reporting
threshold for uncorrected significance (peak: [�6, 40, 8] t(17) �3.03;
p � 0.003, uncorrected), whereas correlates with TD values here
were much weaker (p � 0.01).

As expected given the findings that the behavior showed evi-
dence predominantly for only a single sort of (model-based)
learning, as well as the correlation between the two sets of values,
the two maps show a good deal of similarity, although overall the
planning responses are slightly stronger. This suggests, consistent
with the choice analysis, that neural signals aligned with model-
based valuation. However, a difference in thresholded statistical
maps does not itself demonstrate a statistically significant differ-
ence [“the imager’s fallacy” (Henson, 2005)]; thus, we next
sought to confirm statistically the superiority of planning.

TD versus model-based value
Since the algorithms made similar predictions for many situa-
tions, and thus the chosen value regressors themselves were sub-
stantially correlated between algorithms (r � 0.791; for related
correlations, see supplemental Fig. 3, available at www.jneurosci.
org as supplemental material), we wanted to maximize power for
comparing them by minimizing multiple comparisons. To this
end, we targeted our direct comparison by first identifying a small
number of VOIs in an anatomically constrained striatal ROI that
showed value-selective activations. We identified these voxels in a
manner that did not bias the subsequent test for differences be-
tween the two chosen value regressors, by using a summed con-
trast over both of them. Based on other studies, we focused on the
caudate and putamen as regions relevant for value computations
(see Materials and Methods for more information on voxel selec-
tion). The four selected VOIs were [�32, �8, �6] (left ventro-
lateral putamen), [28, �6, �12] (right ventrolateral putamen/
pallidus border), [�20, 16, �6] (left anterior ventromedial

Figure 3. Value-responsive areas. A, B, T statistic map of group response size to planned (A) and TD-based (B) value predictions from separate models (shown at p 	 0.001, uncorrected;
significant p 	 0.05 FDR clusters highlighted).
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putamen), and [20, 18, �10] (right anterior ventromedial puta-
men) (Fig. 4). We then asked whether these voxels were signifi-
cantly more correlated with planning or TD-based chosen values
using the orthogonal (difference) contrast between both regres-
sors in the same GLM. Each of these voxels showed a significantly
stronger response to the planning predictions (p 	 0.03, FDR
corrected for the four comparisons). These findings provide evi-
dence that neural correlates of value in striatum are not strictly
bound to a TD-based value computation and may instead be
informed by a model of the environment. This sharply contrasts
with the common interpretation of the mesolimbic dopamine
system as implementing TD learning (Lee et al., 2004; Seymour et
al., 2004; O’Doherty et al., 2006).

We also repeated these neural analyses
using a version of TD augmented with
dead-reckoning planning values for ini-
tialization. That the results were mostly
the same (see supplemental Results, sup-
plemental Figs. 4, 5, available at www.
jneurosci.org as supplemental material)
further suggests that value signals in ven-
tral striatum reflect those generated from
a learned cognitive map rather than from
TD learning.

Decomposition of value responses
Having established that neural correlates
of value prediction, like choices, were well
explained by model-based values, we
sought to dissect the computation of these
values into the components from which,
according to the theory, they are com-
puted. We first attempted to tease apart
the striatal BOLD response by separately
investigating the effects of component
quantities that should be combined to-
gether in the value computation, and in so
doing to visualize the features of the re-
sponse that gave rise to the previous find-
ing (that value is better explained by
model-based planning than TD). In par-
ticular, the values from both algorithms amount to weighted
sums over a series of quantities (see Materials and Methods). TD
updates values by accumulating prediction errors, resulting in a
net learned value that at each step corresponds to the weighted sum
over errors received after previous experiences with an action.
Model-based planning produces a value at each step by a
(time-discount weighted) sum over rewards predicted by the
model at each time step into the future. We therefore may use the addi-
tivity of the GLM to seek to explain the net BOLD signal as a
weighted sum of either sequence of subquantities. Thus, we un-
rolled the first two steps of each of these computations
and entered them as separate regressors: Q

plan
� r1 ��r2 � …,

QTD � ���1 � �1 � ���2 � …�. (The early terms should domi-
nate since in both algorithms the weights decline exponentially as the
series progresses.)

We extracted the sizes of these effects in our voxels of interest
(Fig. 5). As can be seen in the figure, the pattern of BOLD activa-
tion in all the voxels, in terms of the subcomponents of the value,
more closely follows the pattern predicted by model-based plan-
ning than by TD, with the directions and relative sizes of effects
consistently in line with the predictions. Having selected these

voxels for having a large correlation with the chosen value Q
(over both algorithms symmetrically), we of course bias the sta-
tistical test for correlations with components of the value com-
putation of both algorithms to be positive as well. Thus, as
expected, we found all the correlations with r1 were significantly
positive (p 	 0.035, all tests FDR corrected for the four voxels but
uncorrected for multiple comparisons in VOI selection), as well
as one of the paired r2 correlations (p � 0.02). However, only one
of the �1 correlations was significant (p � 0.033), whereas none of
the paired �2 correlations was (p � 0.1), despite the bias toward a
positive finding expected from the selection of the voxels.

One-step reward
We next sought neural reflections for the components of the world
model elsewhere in the brain, to begin to map the broader network
supporting the computation. In particular, these analyses use sub-
components of the normatively defined model-based values to ex-
amine aspects of their process-level computations. In the theory,
model-based values are computed at choice time by summing ex-
pected rewards over candidate trajectories. Specifically, model-based
planning predicts action values by combining information from two
representations: a map of where rewards are located, and a map of

Figure 4. Identification of value-related voxels of interest. T statistic map of group response
size to either planned or TD-based value predictions (summed contrast, shown at p 	 0.001,
uncorrected; significance not assessed). The most responsive peak voxels of this map anatom-
ically within striatum were identified for additional analysis.

Figure 5. Striatal BOLD responses to partial value components. Responses (mean effect sizes, arbitrary units) to key compo-
nents of the value predictions as predicted by the two algorithms in the previously identified VOIs. Also shown are the predicted
responses from the overall value fit assuming exponential discounting and updating. Note that significances, as indicated by *p 	
0.05 and **p 	 0.01, are biased by voxel selection.
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transitions between states (here, doors). We thus hypothesized that
we should be able to find neural correlates related to both represen-
tations. To seek a representation of rewards, we considered the value
r1 discussed above, which has a clear interpretation: it is the expected
immediate reward to be received in the next room. This is the first
relevant value that a planning process would need to “look up” when
searching forward paths, where the expectation over future states
can either reflect the average over paths considered first on different
trials (as in depth first search) or be explicitly computed in the brain
on each particular trial (as in breadth-first search, where the expec-
tation r1 is the first intermediate partial sum in computing a full
action value).

The present analysis thus seeks activity related to the next
reward separately, rather than as portion of a net signal related to
the chosen value Q, as in the previous section. Of course, r1 and Q
are strongly correlated, as the former is the first term in the sum
defining the latter. To distinguish these possibilities and find ac-
tivity related specifically to elemental rewards rather than aggre-
gate future values, we searched for regions in which the
correlation with r1 was significantly greater than the correlation
with the summed value, here approximated by the sum of both of
the first two terms in the series r1 � �r2 � Qplan (Fig. 6). This
contrast revealed a pair of regions containing significant clusters:
left superior frontal cortex (peak: [�18, 46, 46] t(17) � 5.58) and
right parahippocampal gyrus (peak: [18, �6, �20] t(17) � 4.64;
left: [�34, �14, �18] t(17) � 4.66, NS). Such activity might either
represent associations of place with reward, as perhaps in the case of
the medial temporal lobe (MTL) activations, or reflect the incorpo-
ration of these one-step rewards into planning computations (Foster
et al., 2000; Hasselmo, 2005; Zilli and Hasselmo, 2008). Also, in
addition to their spatial associations, areas in MTL have been impli-
cated more generally in drawing on memory to project future events
(Buckner and Carroll, 2007; Hasselmo, 2009).

Transitions and planning
Next, we sought neural evidence for a representation of the other
aspect of the hypothesized world model, the maze transition
structure. We did so indirectly, by using hypothesized effects of
search complexity on activity related to choice difficulty in a
manner analogous to the analysis of reaction times discussed
above. In most accounts of decisions, choice difficulty increases
with the size of the choice set (here, the number of doors in the
current room). However, if actions are evaluated on-line via
some kind of realistic forward-planning process, then choice dif-
ficulty should also depend on the complexity of the subsequent
search (e.g., the number of choices expected to be available in
subsequent rooms). (Here again, the expectation, computed
from door probabilities in our full model, is meant to reflect the
average search-related activity over trials in which different num-
bers of branches may be actually examined in a pruning search.)

We thus looked throughout the brain for
regions that correlated with the number of
currently available choices, n0, and tested
whether these also depended on the num-
ber of choices expected to be available in
the next room, in expectation over poten-
tial choices at the first step, n1 (see Mate-
rials and Methods). Since reaction time
was also previously shown to be correlated
with these same quantities, to rule it out as
a confound in neural activity it was in-
cluded as a nuisance regressor in this anal-
ysis, and the variables of interest were

orthogonalized against it.
Within the mask of regions significantly correlated with n0

(totaling 10,880 mm 3; 1360 voxels for positive), we found three
relevant regions that also correlated positively with n1 (Fig. 7)
(whereas t statistics are still uncorrected, reported peak voxels are
all significant, p 	 0.05, corrected, voxelwise for FWE over mul-
tiple comparisons within the n0 mask): bilateral precentral cortex
(peaks: [�38, 4, 30] t(17) � 4.80, [42, 8, 28] t(17) � 4.86), anterior
insula (peaks: [�34, 24, 0] t(17) � 6.86, [38, 22, 6] t(17) � 5.79),
and also medial cingulate/supplementary motor area (SMA) in
the subset of 15 subjects with coverage in that region (peaks:
[�12, 14, 50] t(14) � 5.14, [0, 18, 48] t(14) � 5.48). This indicates
that these regions may be participating in a search-based plan-
ning process. We performed the same analysis looking for regions
negatively correlated with both search difficulty regressors
(mask, 34,656 mm 3; 4332 voxels for negative) and found medial
prefrontal cortex (peak: [�2, 46, 0] t(17) � 4.93) and bilateral
amygdala/hippocampus (peaks: [�18, �8, �20] t(17) � 5.06,
[22, �4, �18] t(17) � 5.44). This region of medial PFC is often
associated with future value (although the trend toward this cor-
relation did not reach significance in the present study). None-
theless, BOLD correlations with value cannot explain the present
activation, because n1 has a slight positive correlation with action
value, and therefore a value confound would predict a positive cor-
relation with n1 in BOLD. Instead, we speculate that activity nega-
tively correlated with search difficulty there may relate to assessing
the costs of the search process [e.g., for the purpose of deciding
whether it is worthwhile to complete the computation (Daw et al.,
2005; Rushworth and Behrens, 2008; M. Keramati, personal com-
munication)]. In particular, both this activity and the value re-
sponses observed in vmPFC in other studies may reflect a top-down
assessment for strategy selection based on expected cost, benefit, as
well as the uncertainty associated with each approach (Dickinson,
1985; Barraclough et al., 2004; Lee et al., 2004).

Together, these results suggest that using model-based plan-
ning to project rewards on the basis of a remembered “map” of a
maze uses a broad temporal and frontal network, areas broadly
associated with memory and control.

Individual differences
Finally, to investigate whether our neural effects were specifically
related to planning, or instead to valuation more generally (e.g.,
in a way that might be common or generic to TD and planning
strategies) or even incidentally (e.g., unrelated to choice), we
tested whether individual differences in fit quality between the
two algorithms to choice behavior covaried across individuals
with the strength of the neural responses found in each of these
analyses (Hampton et al., 2008). In this way, since subjects varied
in the extent to which their behavior was explained by either
strategy, we made use of this variability to investigate the relation-

Figure 6. Responses to predicted next-step rewards beyond chosen values. T statistic map of responsive regions to choices that
are expected to lead to a reward room (r1), greater than the first two terms of the value equation (r1 � �r2; shown at p 	 0.001,
uncorrected; significant p 	 0.05 FDR clusters highlighted).
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ship of the behavior with the neural signaling. In each case, we
select the � contrast values from each individual from the iden-
tified group peak voxel, and correlate these with either the log
likelihoods of the fits to the two algorithms to choices (such that
larger, less negative numbers indicate better fits), or the Bayes
factor from choices (i.e., the difference between them so that
larger numbers indicate better fits of planning than TD to
choices). Of the striatal VOIs responsive to value, the strength of
the unbiased value effect and the difference in the right lateral
voxel (i.e., the Qplan � QTD contrast) covaried significantly with
the individual subject planning likelihoods [r(16) � 0.498; p �
0.018], and both this and the contrast comparing value predic-
tions (Qplan � QTD) correlated with the analogous Bayes factor
between the two in the right medial voxel [r(16) � 0.552 and
r(16) � 0.537; p 	 0.011], but none with the TD likelihoods ( p �
0.05). This indicated that the value-related neural effects are also
stronger in subjects whose behavior is better explained by plan-
ning, consistent with the identification of this activity with plan-
ning. Similar results were also seen for the correlates we associate
with the representations of the world model. Specifically, we
found that the parahippocampal responses to expected next-step
reward covaried significantly with the Bayes factor [r(16) � 0.520
for right, r(16) � 0.728 for left; both p 	 0.014], and also that the
search complexity responses in the SMA covaried with choice
likelihoods under planning [for the full set of subjects, r(16) �
0.504, p � 0.016; r(13) � 0.510, p � 0.026 for the reduced set] but
not with the likelihoods under TD (p � 0.05). All of these find-
ings support the inference that these signals are related to the
decision-making behaviors studied and are consistent with this
activity supporting planning. However, although the lack of a
similar relationship with model-free valuations might be inter-
preted as supporting the specificity of these signals to model-
based planning, negative results must be interpreted with
caution. For instance, to the extent the task design was successful
in precluding the use of TD, it may not elicit meaningful individ-
ual differences in the fit of the TD model.

Discussion
Computational theories have driven rapid progress quantifying
neural signals in the mesostriatal system, primarily in terms of
model-free RL (Bar-Gad et al., 2003; O’Doherty et al., 2004; Tri-
comi et al., 2004; Bayer and Glimcher, 2005; Morris et al., 2006;
Schönberg et al., 2007; Hikosaka et al., 2008; Bromberg-Martin
and Hikosaka, 2009). Yet it has long been argued that the brain
also uses more sophisticated and categorically distinct mecha-
nisms such as cognitive maps (Tolman, 1948; Thistlethwaite,
1951). We extended the theory-driven fMRI approach to model-
based planning by leveraging a quantitative characterization of its
decision variables to investigate their neural substrates (Daw et
al., 2005; Johnson et al., 2007). Having first verified that choices,

RTs, and striatal BOLD responses suggest a forward planning
mode of valuation in this task—in contrast to broadly successful
TD models and their theoretical applicability even to complex
spatial tasks (Sutton, 1988; Foster et al., 2000; Stone et al.,
2008)—we aimed to map the network implementing such plan-
ning by seeking correlates of the theorized construction of these
values from reward and state predictions.

To distinguish learning strategies, we elicited ongoing learn-
ing via continuous maze reconfiguration. This echoes the logic of
the demonstrations by Tolman (1948) that rats could plan novel
routes after maze changes, and of place responses, wherein rats
approach previously rewarded locations from novel starting
points (Packard and McGaugh, 1996). Rather than such a one-
shot challenge (Valentin et al., 2007; Gläscher et al., 2010), we
examined how subjects adjust their behavior after many small
changes to the maze. This approach separates the valuation strat-
egies partially (producing correlated predictions) but consis-
tently over many trials, and is better suited to test accounts of
trial-by-trial learning. We use a normative value iteration algo-
rithm rather than a process-level account to define the quantities
of interest, but these quantities should (and mostly do, according
to an analysis of the covariation of regressors derived from dif-
ferent model variants) (supplemental Fig. 3, available at www.
jneurosci.org as supplemental material) represent the model-
based class more generally. Indeed, some aspects of our results
(e.g., effects of search complexity and superior fits for reward-
terminated searches) seem to resonate with a process-level tree
search model, potentially one involving selective pruning. Nev-
ertheless, more detailed studies will be required to investigate
these fine algorithmic distinctions.

Although we adopt a spatial framing, our questions are more
akin to previous studies of RL than to other work on navigation.
For instance, our focus on behavioral adjustment precludes
studying optimal or repeated routes; whereas Yoshida and Ishii
(2006) used well learned behavior in a similar task to study how
subjects resolved uncertainty about their location, we used visual
cues to minimize locational uncertainty while investigating
learning. Also, although the distinction in spatial research be-
tween planned navigation to a place and executing a learned re-
sponse resonates with the algorithmic distinction studied here,
much navigational work focuses on another aspect: allocentric
versus egocentric representations (Maguire et al., 1999; Hartley et
al., 2003; Burgess, 2006; Iglói et al., 2009). Therefore, although
our logic parallels attempts to differentiate two navigational
strategies (Doeller et al., 2008), since we do not manipulate loca-
tion cues or viewpoints, our data only speak to the reference
frame distinction insomuch as it coincides [plausibly but not
unproblematically (Gallistel and Cramer, 1996; Iglói et al., 2010;

Figure 7. Response to both one-step predicted and immediate choice count. Masked T statistic map of responses to expected next-step choice set size within regions responsive to current choice
set size (all n0 significant p 	 0.05 FDR cluster size; n1 shown at p 	 0.001, uncorrected; two-tailed).
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Weniger et al., 2010)] with the distinction between model-based
and model-free learning.

In other areas of learning, a distinction is drawn between one
network for habitual, overtrained responses associated with stria-
tum [especially dorsolateral (Knowlton et al., 1996; Packard and
Knowlton, 2002)], and another, separate or competing, associ-
ated with MTL and PFC for planning “goal-directed” responses
(Packard and McGaugh, 1996; Burgess et al., 2002; Poldrack and
Packard, 2003; Doeller et al., 2008). fMRI studies have shown that
value-related BOLD responses in PFC reflect knowledge about
higher-order task contingencies, consistent with involvement in
model-based reasoning, although not specifically its characteristic
use in RL for sequential planning (Hampton et al., 2006, 2008). In
the current task, in which behavior suggested valuations were
primarily model-based, we found that the same was true even of
responses in ventral striatum. These areas have also, in previous
studies, been associated with the habit system and TD. Although
we cannot directly test this interpretation since we did not detect
neural or behavioral evidence for TD in our data, our results
together with those others suggest that the two putative systems
may be partly overlapping or convergent, with striatum poten-
tially acting as a common value target and locus of action selec-
tion (Samejima et al., 2005). This may relate to unit recordings
suggesting model-based knowledge in the dopaminergic affer-
ents of striatum (Bromberg-Martin and Hikosaka, 2009) and also
lesion work in rodents implicating striatum in both place and
goal-directed responding, albeit a different, dorsomedial, part
(Devan and White, 1999; Yin and Knowlton, 2004; Balleine et al.,
2007).

Although our striatal results suggest that the substrates of
model-based value are more convergent with the purported TD
system than might have been suspected, our remaining results,
locating antecedents of these values in MTL and frontal cortex,
appear more specific to model-based planning. First, effects of
anticipated choice set size both on RTs and on BOLD responses
offer direct evidence for forward lookahead at choice time. The
regions implicated here were primarily more posterior than
might have been expected on the basis of work on prefrontal
involvement in decision making (Hampton et al., 2006; Kenner-
ley et al., 2006; Pan et al., 2007), neuroeconomics (McClure et al.,
2004; Mushiake et al., 2006), or memory (Poldrack et al., 2001;
Poldrack and Packard, 2003): in particular, the contrast revealed
posterior frontal regions along the motor cortex. In fact, these
areas and SMA in particular have been associated with movement
sequencing in other motor tasks (Tanji and Shima, 1994; Lee and
Quessy, 2003; Hoshi and Tanji, 2004). The effect in SMA was
stronger for subjects whose behavior was better fit by model-
based planning (but not so for TD), further indicating that this
activity is related to the computations we hypothesize.

Meanwhile, although in other tasks BOLD activity in vmPFC
is often found to correlate with expected value (Plassmann et al.,
2007; Hare et al., 2008; Chib et al., 2009; Wunderlich et al., 2009),
such a correlation did not reach significance in our study. Al-
though this may be attributable to technical limitations (Deich-
mann et al., 2003), this difference might also relate to the spatial
or sequential framing of this task shifting activity to other areas,
such as MTL. Although our study does not directly address this
possibility, correlations with the next-step reward value in ante-
rior MTL (hippocampus and hippocampal gyrus) are consistent
with many other findings indicating that these areas may sub-
serve cognitive maps or spatial associations (O’Keefe, 1990;
Maguire et al., 1998; Burgess et al., 2002; Johnson et al., 2007).

Although we have interpreted value correlates in ventral striatum
as similar to those seen in studies of putatively model-free RL, in
those studies striatal BOLD is more commonly seen to covary with
reward prediction error (Pagnoni et al., 2002; McClure et al., 2003;
Yacubian et al., 2006; Hampton and O’Doherty, 2007) rather than
value (but see Delgado et al., 2000; Tanaka et al., 2004; Kable and
Glimcher, 2007; Tom et al., 2007; on unit physiology: Arkadir et
al., 2004; Samejima et al., 2005; Kim et al., 2009). Here, we found
less robust correlations with a TD prediction error in striatum
(analyses not shown); however, the two variables are highly re-
lated, and our task was not aimed at distinguishing them (Hare et
al., 2008). Notwithstanding that, another possibility is that our
task recruits a distinct but anatomically overlapping model-based
choice process, which would not be expected to use a TD error
signal since model-based valuation constructs values by forward
lookahead rather than error-driven learning. This interpretation
by no means contradicts the substantial evidence for TD predic-
tion error signals in other tasks.

Overall, we demonstrate dynamic, parametric correlates in
various brain areas for a number of previously unstudied
decision-related variables, such as one-step reward predictions
and search complexities. Should these correlates prove generaliz-
able to future studies, they present a new possibility for investi-
gating specific hypotheses about the details of human valuation,
for example using BOLD activity in SMA to track a search pro-
cess. The model-based approach to understanding the details of
value prediction by examining its neural correlates in striatum
and vmPFC has had considerable success (Hampton et al., 2006,
2008), and, with these tools, it could be extended to new compu-
tational questions and brain areas to elucidate further the details
of human decision making. Similarly, our demonstration that we
can identify these behavioral and neural signatures for model-
based, as opposed to more commonly identified model-free, val-
uation in humans lays the groundwork for future studies of how
these two approaches trade off or are controlled. Such informa-
tion would be relevant to a number of problems of self-control
hypothesized to relate to the compulsive nature of model-free
habits, including overeating and drug abuse (Ainslie, 2001; Loe-
wenstein and O’Donoghue, 2004; Everitt and Robbins, 2005).
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Poldrack RA, Clark J, Paré-Blagoev EJ, Shohamy D, Creso Moyano J, Myers
C, Gluck MA (2001) Interactive memory systems in the human brain.
Nature 414:546 –550.

Rushworth MF, Behrens TE (2008) Choice, uncertainty and value in pre-
frontal and cingulate cortex. Nat Neurosci 11:389 –397.

Samejima K, Doya K (2008) Estimating internal variables of a decision mak-
er’s brain: a model-based approach for neuroscience. In: Neural informa-
tion processing (Ishikawa M, Doya K, Miyamoto H, and Yamakawa T,
eds), pp 596 – 603. Berlin: Springer.

Samejima K, Ueda Y, Doya K, Kimura M (2005) Representation of action-
specific reward values in the striatum. Science 310:1337–1340.

Schönberg T, Daw ND, Joel D, O’Doherty JP (2007) Reinforcement learn-
ing signals in the human striatum distinguish learners from nonlearners
during reward-based decision making. J Neurosci 27:12860 –12867.

Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction
and reward. Science 275:1593–1599.

Schwarz G (1978) Estimating the dimension of a model. Ann Stat
6:461– 464.

Seymour B, O’Doherty JP, Dayan P, Koltzenburg M, Jones AK, Dolan RJ,
Friston KJ, Frackowiak RS (2004) Temporal difference models describe
higher-order learning in humans. Nature 429:664 – 667.

Seymour B, Daw N, Dayan P, Singer T, Dolan R (2007) Differential encod-
ing of losses and gains in the human striatum. J Neurosci 27:4826 – 4831.

Smith A, Li M, Becker S, Kapur S (2004) A model of antipsychotic action in
conditioned avoidance: a computational approach. Neuropsychophar-
macology 29:1040 –1049.

Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ (2009) Bayesian
model selection for group studies. Neuroimage 46:1004 –1017.

Stone EE, Skubic M, Keller JM (2008) Adaptive temporal difference learn-
ing of spatial memory in the water maze task. Paper presented at 7th IEEE
International Conference on Development and Learning, Monterrey, CA,
August.

Suri RE, Schultz W (2001) Temporal difference model reproduces anticipa-
tory neural activity. Neural Comput 13:841– 862.

Sutton RS (1988) Learning to predict by the methods of temporal differ-
ences. Mach Learn 3:9 – 44.

Sutton RS, Barto AG (1998) Reinforcement learning. Cambridge, MA: MIT.
Sutton RS, Pinette B (1985) The learning of world models by connectionist

networks. Paper presented at Seventh Annual Conference of the Cogni-
tive Science Society, Irvine, CA, August.

Tanaka SC, Doya K, Okada G, Ueda K, Okamoto Y, Yamawaki S (2004)
Prediction of immediate and future rewards differentially recruits
cortico-basal ganglia loops. Nat Neurosci 7:887– 893.

Tanji J, Shima K (1994) Role for supplementary motor area cells in planning
several movements ahead. Nature 371:413– 416.

Thistlethwaite D (1951) A critical review of latent learning and related ex-
periments. Psychol Bull 48:97–129.

Thorndike EL (1911) Animal intelligence: an experimental study of the as-
sociative processes in animals, pp 29 –58. New York: Macmillan.

Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev
55:189 –208.

Tom SM, Fox CR, Trepel C, Poldrack RA (2007) The neural basis of loss
aversion in decision-making under risk. Science 315:515–518.

Tricomi EM, Delgado MR, Fiez JA (2004) Modulation of caudate activity by
action contingency. Neuron 41:281–292.

Valentin VV, Dickinson A, O’Doherty JP (2007) Determining the neural
substrates of goal-directed learning in the human brain. J Neurosci
27:4019 – 4026.

Watkins CJCH (1989) Learning from delayed rewards. PhD dissertation,
Cambridge University.

Weniger G, Siemerkus J, Schmidt-Samoa C, Mehlitz M, Baudewig J, Dechent
P, Irle E (2010) The human parahippocampal cortex subserves egocen-
tric spatial learning during navigation in a virtual maze. Neurobiol Learn
Mem 93:46 –55.

Wittmann BC, Daw ND, Seymour B, Dolan RJ (2008) Striatal activity un-
derlies novelty-based choice in humans. Neuron 58:967–973.

Wunderlich K, Rangel A, O’Doherty JP (2009) Neural computations under-
lying action-based decision making in the human brain. Proc Natl Acad
Sci U S A 106:17199 –17204.
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Dissociable systems for gain- and loss-related value predictions and errors
of prediction in the human brain. J Neurosci 26:9530 –9537.

Yin HH, Knowlton BJ (2004) Contributions of striatal subregions to place
and response learning. Learn Mem 11:459 – 463.

Yoshida W, Ishii S (2006) Resolution of uncertainty in prefrontal cortex.
Neuron 50:781–789.

Zilli EA, Hasselmo ME (2008) Modeling the role of working memory and
episodic memory in behavioral tasks. Hippocampus 18:193–209.

Simon and Daw • Spatial Reinforcement Learning J. Neurosci., April 6, 2011 • 31(14):5526 –5539 • 5539


