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Abstract
Intracellular and extracellular spaces are separately considered in an electrical bidomain model of
tissue. We propose a mechanical bidomain model separately considering the intracellular and
extracellular spaces with a linear restoring force proportional to the displacement difference of the
two spaces. We consider a mechanically passive model of heart fibers (no tension) with an action
potential and an electrically passive model (no action potential) in tissue with an ischemic
boundary. We find the pressure and displacement fields arising from our consideration of a
bidomain instead of a monodomain and note interesting characteristics evident only with a
bidomain approach.

Introduction
The electrical properties of cardiac tissue are often represented using the bidomain model
[1], which takes into account the anisotropic electrical properties of both the intracellular (i)
and extracellular (e) spaces. It is a continuum model, because it models the electrical
behavior averaged over many cells. One formulation of the steady-state electrical bidomain
equations is [1,2]

(1)

(2)

where ϕ is the electrical potential, g̃ is the conductivity tensor, G is the membrane
conductance per unit area, β is the ratio of membrane area to tissue volume, and I is the
source current (as through an electrode). Interesting and unexpected behavior is predicted by
the bidomain model, especially when analyzing electrical stimulation [2].

In analogy to the electrical bidomain model we propose a mechanical bidomain model to
represent the elastic properties of cardiac tissue. Much research has been performed to study
the biomechanical behavior of the heart [3–6], but biological tissue has traditionally been
based on “monodomain” models that do not distinguish between the intracellular and
extracellular spaces (see for example [7,8]). Our bidomain analysis models an intracellular
space that consists of cells embedded in an extracellular matrix, and resembles superficially
the classic study of Eshelby (1957) on the elasticity of inclusion bodies. There is, however,
one key difference. Eshelby considered the deformation around inhomogeneities (individual
cells), whereas our model represents the tissue as a continuum in which the properties of
both the intracellular and extracellular spaces are averaged over many cells.
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The Mechanical Bidomain Model
Cardiac tissue is largely composed of water, a nearly incompressible fluid. Like Chadwick
[10], we assume the tissue is incompressible, implying that the trace of the strain tensor is
zero and a hydrostatic pressure builds up as necessary to prevent volume changes.
Moreover, we assume each space is individually incompressible (no fluid is transferred
between the intracellular and extracellular spaces). We approximate the extracellular space
as an isotropic material, so the extracellular stress tensor σ̃e is [11,12]

(3)

where pe is the extracellular pressure, δnm is the Kronecker delta, μ is the shear modulus,ε̃ is
the strain tensor, and M ̃ is a tensor specifying an external body force acting on the
extracellular space such that F⃗e = ∇ · M ̃e.

The intracellular space is not isotropic, and we represent its mechanical properties as a fluid-
fiber continuum. Assume the myocardial fibers are directed along the unit vector τ̂, which in
general can be a function of position. The intracellular stress σ̃i is given by [10–12]

(4)

T is the fiber tension, which consists of two parts [10]: an active isometric tension at zero
strain T0 and a passive linear stress-strain relationship characterized by the Young’s
modulus Y

(5)

where e is the strain along the fiber, given in terms of the displacement u as [10]

(6)

Chadwick [10] and Holzapfel et al. (2000) examine the case of curving fivers. In our
analysis, we restrict ourselves to straight fibers, whence

(7)

If the intracellular and extracellular spaces were not coupled, the quasistatic equations of
equilibrium could be found by setting the divergence of the stress tensor equal to zero in
each space

(8)

(9)

The intracellular and extracellular spaces are not, however, isolated from each other. These
spaces interact in a number of ways, including transmembrane extensions of the
cytoskeleton, transmembrane proteins, etc [13]. Therefore, we assume that displacements in
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the intracellular space will cause displacements in the extracellular space and vice versa
through a coupling force. As a first approximation, we model this interaction by a linear
restoring force similar to Hooke’s law and proportional to the displacement difference which
modifies the equations of mechanical equilibrium

(10)

(11)

where u⃗ is the intracellular displacement field and w⃗ is the extracellular displacement field.
This pair of equations is the mechanical analog of the electrical bidomain equations in
Equations 1 and 2.

Boundary conditions are that the displacements and the normal components of the stress
tensor in each space are continuous across a boundary [12,14].

Example 1
We now apply our model of cardiac tissue to two specific examples. First, we examine the
magnetic forces on action currents associated with a propagating action potential wave front.
We restrict ourselves to the two-dimensional case (plane strain), with straight fibers along
the x-axis. We also assume there is no active tension (T0=0) and the body forces are given
by the Lorentz forces [14] on the action potential currents, Ji and Je, in a magnetic field B:
Fi = Ji × B and Fe = Je × B. If the magnetic field is perpendicular to the plane (in the z-
direction), the mechanical equations become

(12)

(13)

(14)

(15)

Roth and Woods [15] have solved the electrical problem of an action potential propagating
in the x-direction with fibers at an angle θ with respect to the x-axis as depicted in Fig. 1.
The intracellular and extracellular conductivities are both of the form [16]
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(16)

where gL and gT are the conductivities parallel to and perpendicular to the fibers,

respectively. A model for the transmembrane action potential is  for |x| >

L and  for |x| ≤ L. The intracellular and extracellular current densities are

given by [15]  where

(17)

(18)

(19)

We will find it convenient to define the peak amplitude of the intracellular current density as

.

Using the boundary conditions τxx, τxy, u⃗ and w⃗ continuous across x = ±L, we find solutions
for the intracellular and extracellular hydrostatic pressure distributions and tissue
displacement fields

(20)

(21)

(22)
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(23)

with no x-displacements in the intracellular or extracellular spaces. The given hydrostatic
pressure functions are odd functions of x, while the displacement fields are even functions.
The mechanical bidomain model introduces a new length scale into the problem

(24)

analogous to the electrical length constant familiar in the electrical bidomain model [16].

Typical values for most of the mechanical parameters of cardiac tissue can be found in the
literature. However, experimental evidence is lacking for an estimate of K. To illustrate

behavior arising from the bidomain model we use a somewhat large value of ,

relative conductivities [16,17] , and a ratio of Young’s to shear modulus [18]

 for the dimensionless plots of displacements and pressures shown in Fig. 1. There is a
build-up of intracellular hydrostatic pressure within the action potential before, and not at

the boundary . In Fig. 1 we observe this pressure buildup Δp depends on K, the stiffness
of the coupling spring constant. As the spring is stiffened pi approaches the dashed curve of
intracellular pressure with K → ∞ and the magnitude of this pressure buildup decreases. We
take note, however, of the fact that this pressure buildup is only approximately 1% of the
largest pressure and that the largest pressure, itself, is only approximately half of the
quantity J0B0L. Referring again to Fig. 1, we observe, as we expect, that the greatest
displacements of tissue are in the region of greatest current densities (here at x=0) and that

the magnitude of the intracellular displacement uy is only approximately 5% of .
Evidently, displacements associated with a cardiac action potential propagating at an angle
to the fibers while in an external magnetic field are very small indeed.

Example 2
Another common is a boundary between an area of ischemic tissue (T0 = 0) and an area of
healthy, uniform active tissue (T0 = T1) as shown in Fig. 2. We consider the area of ischemic
tissue is in the region y<0 and the area of healthy tissue is in the region y>0 with fibers at an
angle θ with respect to the x-axis. Again we assume plane strain, and in this case the external
body forces are zero (F⃗l = F⃗e = 0). The equations governing the tissue are

(25)

(26)
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(27)

(28)

and the boundary conditions are τyy, τxy, u⃗, and w⃗ are continuous across the boundary y=0.
The hydrostatic pressure and displacement fields are found to be

(29)

(30)

(31)

In this example there are no y-displacements in the intracellular or extracellular spaces and
there is no external pressure (pe = 0). The new spatial scale parameter x0 again appears in the
solution. We assume a free boundary at infinity allowing displacement to increase with
increasing y. The x-displacements are increasingly negative with increasing distance from
the ischemic boundary, thus the fibers are righting themselves to be perpendicular to the
ischemic boundary. The dotted line indicates displacements with infinite stiffness that are
not zero. Instead, with K → ∞, we find ux = wx and the tissue behaves like a monodomain.
For an infinite stiffness the pressure is discontinuous across the boundary, while for a finite
stiffness it is smoothly varying between these two regions.

Discussion
We have developed a bidomain mechanical model, in analogy to the well-known electrical
bidomain model. Our model is similar to the monodomain mechanical model of Ohayon and
Chadwick [18], who included three terms in their stress tensor: a pressure, a fiber tension,
and an isotropic elastic matrix they associated with collagen. In our case, we assign the
isotropic collagen matrix to the extracellular space and the fiber tension to the intracellular
space. The two spaces are coupled with a term characterized by the spring constant K.

A bidomain mechanical model is particularly valuable when the intracellular and
extracellular body forces are in opposite directions. For instance, in the model of magnetic
forces on action currents (our example 1), the x-component of the intracellular and
extracellular current densities are equal in magnitude and opposite direction. Therefore, the
y-component of the magnetic force acting in the intracellular space is equal and opposite to
that in the extracellular space. In a monodomain model, the net force acting on the tissue
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would therefore be zero, and one would not expect displacements. In the bidomain model,
however, the intracellular and extracellular spaces are displaced in opposite directions. This
is an example of a new effect predicted by the bidomain mechanical model that is not
predicted by a monodomain model.

Another new feature of the bidomain model is the introduction of a new length scale x0,
which is inversely related to the spring constant K. Although we do not have a good value
for K, we suspect that it will be large enough that x0 is relatively small. Many of the
interesting bidomain effects are confined to a distance of a few x0.

We made a number of limiting assumptions in our analysis: 1) We considered straight fibers
in the x-direction, although our model could easily handle curving fibers [10,19]. Analytic
solutions might be difficult to find in that case, and numerical methods may be needed. 2)
We have assumed that in the intracellular space the tension develops only along the fibers.
This is an idealization that is probably more applicable to skeletal muscle where fibers are
independent than in cardiac muscle. In heart tissue, there may be some intracellular
mechanical coupling between fibers because of intracellular junctions coupling cells.
Nevertheless, the intracellular space should be far more anisotropic that the extracellular
space (the spaces have “unequal anisotropy ratios” [2]), so our model should capture any
new qualitative behavior arising from the bidomain representation. 3) Our model uses linear
elasticity and therefore assumes small strains. Our results indicate that often the strains are
small, but a nonlinear model could be developed for large strains. 4) Treating the tissue as
incompressible is probably a good assumption, but requiring both the intracellular and
extracellular space to be individually incompressible is more questionable. This assumption
is equivalent to saying that the intracellular volume fraction is constant, and there is no net
flow of fluid from one space to the other. Brief displacements, such as those associated with
an action potential, probably do not provide enough time for significant flow of water
between spaces. Over longer time scales, this assumption is more suspect. 5) The central
assumption in our model is that the coupling force between the two spaces can be
represented by a simple Hooke’s law, with spring constant K. We have little experimental
evidence to justify this assumption. Rather, this is a first order approximation and may be a
first step towards a more realistic model.

We have shown through two relatively simple examples that equilibrium displacements and
hydrostatic pressures of biological tissue under the action of body forces (e.g. the Lorentz
force) or in response to an ischemic boundary are small. This is an important fact to
recognize, as others have considered Lorentz force displacement imaging a potential use of
MRI; our results suggest otherwise and are in agreement with previous mechanical analysis
[20]. We note some distinct features of our bidomain results: In the two examples presented
here, the intracellular and extracellular pressures are not equal in magnitude. If these
pressures are maintained for a long time fluid will move from one space to the other in
response to the pressure differential. Bidomain effects appear to be more important when
fibers lie at an intermediate angle to either the direction of wave propagation or the
boundary of the ischemic region. In our calculations if θ = 0° or 90°, effects specific to the
bidomain model disappear. We consider steady-state mechanical equilibrium here. At high
frequencies our model suggests a possibly new type of elastic wave with the intracellular
and extracellular spaces oscillating out of phase; a large value of K would suggest fast
propagation at a very high frequency. Detection of such a wave might allow the
experimentalist to determine K. We have presented a first order approximation of bidomain
elastic properties of cardiac tissue.
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Figure 1.
Propagation of a planar cardiac action potential (shaded gray) in the x-direction, with fibers
at an angle 45° with respect to the x-axis. The sum of the intracellular and extracellular
current densities Ji + Je is not, in general, zero; there is, in this case, a net current in the y-
direction [15]. The intracellular and extracellular displacements, while in opposition, are not
equal in magnitude; observe, however, that displacements are greatest at the site of

maximum current density , as we expect. Hydrostatic pressure is found to buildup

within the region of the action potential and peak before, and not at the boundary . We
label this buildup before the boundary Δp, which diminishes with increasing K. The dashed
line indicates the intracellular pressure distribution with infinite stiffness; with infinite
stiffness uy = wy = 0 and there is no displacement, again as we expect. Our estimate of K is
somewhat small to exaggerate the effects in the plot. Large K make displacements and
pressure buildup significantly smaller.
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Figure 2.
Cardiac tissue with a boundary between an ischemic region (shaded gray) and a non-
ischemic region with fiber angle again 45°. We assume a free boundary at infinity, allowing
displacements to increase. Negative x-displacements are found to increase with distance
from the ischemic boundary, suggestive of a situation where the fibers are trying to right
themselves perpendicular to the ischemic boundary. The dotted line indicates displacements
with infinite stiffness, which is not zero; instead, with infinite stiffness we find uy = wy (not
necessarily zero) and the tissue behaves like a monodomain. For an infinite stiffness, we
observe the pressure is discontinuous across the boundary, while for a finite stiffness it is
smoothly varying between these two values.
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