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Abstract
We performed “weighted ensemble” path–sampling simulations of adenylate kinase, using several
semi–atomistic protein models. The models have an all–atom backbone with various levels of
residue interactions. The primary result is that full statistically rigorous path sampling required
only a few weeks of single–processor computing time with these models, indicating the addition
of further chemical detail should be readily feasible. Our semi–atomistic path ensembles are
consistent with previous biophysical findings: the presence of two distinct pathways, identification
of intermediates, and symmetry of forward and reverse pathways.

1 Introduction
Fluctuations and conformational changes are of extreme importance in biomolecules.1 For
example, most enzymes show distinctly different conformations in the apo and the holo
forms.2 Conformational transitions are also typical in non–enzymatic binding proteins,3 and
of course are intrinsic to motor proteins.

The fundamental biophysics of conformational transitions in biomolecules is contained in
the ensemble of paths – i.e., trajectories in configurational space – defining the transition.
Such path ensembles contain the information about the relevant “mechanisms” for
transitions, including possible intermediates (see, for example, discussions by E and vanden
Eijnden4 and by Hummer5). In addition, the transition rates can only be calculated
accurately from a path ensemble, which implicitly accounts for all barriers and recrossings.6
From a computational point of view, such path ensembles are difficult to obtain due to
rugged energy landscapes and the timescales involved.6–15 Multiple local minima and/or
channels dramatically increase the computational effort required. To put the difficulty of
path sampling in perspective, note that equilibrium sampling of fully atomistic models of
large biomolecules is not typically feasible.16 Thus, path sampling using detailed atomistic
models for all, but the smallest systems, is difficult – even with potentially efficient methods
developed specifically for path sampling. A number of groups have reported atomistic path
sampling studies for small systems.17–19 Radhakrishnan and Schlick20 reported path
sampling studies of atomistic DNA polymerase using initial paths generated by targeted
molecular dynamics.21–23

Less computationally expensive approaches to determining atomistic paths are available,
including targeted and steered molecular dynamics,21–23 and more rigorous “nudged elastic
band”,24–27 and related approaches.28–31 However, all these methods yield only a single
path or a handful, and not the ensemble required for a correct thermal/statistical description.
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Specifically, fluctuations in pathways, the possibility of multiple pathways (path
heterogeneity), and possible recrossings typically are not accounted for in these approaches.

Coarse–grained (CG) models, on the other hand, permit an alternative strategy for statistical
path sampling.32–34 Although CG models omit chemical detail, they can be sampled
significantly faster than fully atomistic models, and, thus, such models are quite attractive
for path sampling studies. For example, Zhang et al.35 showed that a simple alpha–carbon
model of calmodulin can be fully path sampled using the weighted ensemble path sampling
method.36 Because full path sampling in this model required only a few weeks of single–
processor computing, it is evident that better models and/or larger systems could be studied.
Network models have also been used to study conformational transitions.37,38

In this manuscript, we report weighted–ensemble (WE)35,36 path sampling studies of
adenylate kinase which represent improvements over previous work35 in several ways. (i)
At 214 residues, adenylate kinase is triple the size of the calmodulin domain previously path
sampled using WE.35 (ii) Our models now include significant atomic details, as explained
below. (iii) We examine a series of models to test the sensitivity of the path ensemble to the
chosen interactions and parameters. (iv) We investigate symmetry, based on our recent
formal derivation,39 between forward and reverse transitions.

Adenylate kinase (Adk) is an enzyme that catalyzes phosphate transfer between AMP and
ATP via

(1)

and thus helps to regulate the relative amounts of cellular energetic units.40–42 The crystal
structure of Adk for E. coli is available in several conformations. Its native apo form
(Protein Databank code 4AKE43) is shown in Figure 1 (a). In the figure, the blue segments
represent the core (CORE), the yellow segment represents the AMP binding domain (BD),
and the green segment represents the flexible lid (LID). Upon ligand binding, the enzyme
closes over the ligands. The crystal structure (1AKE)44 of the holo form of the enzyme
obtained in complex with a ligand that mimics both AMP and ATP is shown in Figure 1 (b).
Clearly, in the apo form, the enzyme shows an Open structure (that we denote as O in this
manuscript), and in the holo form, it is Closed (denoted by C throughout).

Adk has been studied previously via computational methods using both coarse–grained
models and fully atomistic simulations. Coarse–grained models used to study transition
pathways for Adk have, primarily, utilized network models.37,38,45,46 In these methods,
the fluctuations in proteins are represented by harmonic potentials, and the deformations due
to these fluctuations are used to estimate the free energy in the basins (end states and/or
multiple basins). Subsequently, a minimum energy path is calculated to characterize the
transition. Coarse–grained models have also been used with molecular dynamics simulations
to determine transition paths.47,48

A few groups have also studied conformational fluctuations in Adk using atomistic models.
Arora and Brooks49 performed atomistic (with implicit solvent) umbrella sampling
molecular dynamics (MD) simulations along an initial minimum energy path suggested by
“nudged elastic band”. Kubitzki and de Groot50 performed replica exchange MD for
atomistic Adk to increase conformational sampling of adenylate kinase – and observed both
O and C conformers; however, a true path ensemble is not obtained from replica exchange.
In other work, fully atomistic MD on the two end structures has been performed to observe
fluctuations in the two ensembles40,51 but direct conformational transitions were not
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observed. Beckstein et al.52 performed atomistic path sampling studies for conformational
transitions in Adk using dynamic importance sampling53 with an approximate biasing
scheme.54

In the present study, we use semi–atomistic models to improve chemical accuracy compared
to typical coarse–grained models while still performing high quality path sampling. In our
models, the backbone is fully atomistic to provide chemically realistic geometry which is
often absent from bead–based models. Inter–residue interactions are modeled at a coarse–
grained level via the commonly used double–Gō potentials34,46,55,56 that (meta)stabilize
two crystal structures. Additionally, one of the models uses residue–specific interactions to
probe the effect of such interactions. We use a library–based Monte Carlo (LBMC) scheme
to perform sampling.57. LBMC was previously developed in our group and shown to
facilitate the use of semi–atomistic models of the type used here.57

Transitions between the Open and the Closed states (both directions) are studied with the
weighted–ensemble (WE) path–sampling method36 that has been previously been studied to
study folding of proteins,58 protein dimerization,59 and conformational transitions in an
alpha–carbon model of calmodulin.35 WE was shown to promote efficient path sampling of
conformational transitions in purely alpha–carbon model of calmodulin.35 Additionally, WE
is statistically exact: it preserves natural system dynamics, resulting in an unbiased path
ensemble.60 Additional strengths of WE include its ability to find multiple pathways,61 the
simultaneous determination of the path ensemble and transition rate,35,62 the ease of
implementing it at a scripting level, and its natural parallel structure.

Biophysically, we focus on heterogeneity of the path ensemble (multiple pathways) and the
forward–reverse “symmetry” of the ensemble. It is possible that evolution has favored the
fine–tuned precision of a single pathway in some systems, but the “robustness” of
alternative pathways in other cases. Although our semi–atomistic models preclude
biochemically precise conclusions, high–quality path sampling permits a complete
description of a model system.

The goal of this work, in summary, is to explore the application of statistically rigorous path
sampling to conformational transitions in proteins using semi–atomistic models of a
moderately large protein. Methodologically, we want to test whether such models can be
fully path sampled. Biophysically, we explore several outstanding issues in computational
studies of conformational transitions in Adk. Although two different pathways for
conformational transitions in Adk have been identified by models of varying level of details,
42,47,48 it has variously been suggested that a different pathway is dominant in the forward
and reverse directions47 versus a more symmetric scenario in which each pathway occurs
with same probability in the two directions.48 With our path sampling study, we can address
this issue. We can also validate our path ensembles by comparison to experimental
structures.

The manuscript is organized as follows. First, In Section 2 we discuss the models we use to
depict the protein. Section 3 then describes the method to generate the ensemble of
pathways. In Section 4, we present results for transitions in both the directions for all the
three models we used. We discuss the results, efficiency, and future models in Section 5,
with conclusions given in Section 6.

2 Semi–atomistic models
We use three semi–atomistic models, expanding on our previous work.57 In all the models,
the backbone is represented in full atomistic detail, using the three residues alanine, glycine,
and proline.57 All intraresidue interactions are included explicitly, using the OPLSAA all–
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atom force field. Both the intra–residue interaction energies and the configurations are
stored in libraries as described previously.57 In brief, we note that libraries of the three types
of residues are pre–generated according to the Boltzmann distribution at 300 K, and alanine
is used to represent the backbone of all residues besides glycine and proline (a simplification
motivated by the similarity of Ramachandran maps for the residues).63 Ligands are not
modeled explicitly in this path sampling study.

The differences in the three models lie in the treatment of inter–residue interactions: two of
the models use only double–Gō interactions at backbone alpha carbons, whereas one model
uses both double–Gō and residue–specific interactions. Complete information is given
below.

All three semi–atomistic models employ double–Gō interactions. Following Ref34, for each
of the two crystal structures, residues pairs with alpha carbons less than 8 Å apart are
considered native contacts. In the Gō energy of an arbitrary configuration, every native
contact from the Open form is assigned an energy of −∈, whereas those exclusively found in
the Closed form are scaled to be −escale∈. Gō interactions do not distinguish between
different types of residues except in terms of size. This double–Gō potential between two
residues i and j with alpha carbon distance rij is given by

(2)

where  and  are the native distances in the two crystal structure ordered such that 
(X and Y equate to Open or Closed), and δ is a well–width parameter chosen to be 0.05. If X
equals Open and Y equals Closed, ∈X = ∈ and ∈Y = escale∈, and vice–versa. In the case of

overlapping square wells, , the 0.3∈ barrier in the middle does not exist

and the lower limit of the inequality marked with (*) is replaced by .

The total Gō interactions are therefore

(3)

For Model 1, we have

(4)

The motivation behind using such a double Gō potential is that the two “end” crystal
structures are presumed stable – and the double–Gō protocol guarantees that bistability.
Such double Gō interactions have been used to probe the biophysics of several systems.
34,46,55,56
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2.1 Model 1: Pure double Gō with energy symmetry
Previous path sampling studies of proteins were limited to smaller systems and/or simpler
models. We, therefore, first study whether the simplest model within the semi–atomistic
framework can be fully path sampled. Our Model 1 omits most chemical details and uses
only symmetric double–Gō interactions as given in eq 3. That is, native contacts in the Open
and the Closed structure are treated identically (escale = 1).

Because Model 1 is a pure Gō model, the temperature is specified in units of the well depth
of Gō interactions, ∈. We choose the temperature as the highest at which the two
experimental crystal structures are stable. We therefore performed a series of Monte Carlo
simulations, as described below, at various temperatures. At T = 0.75∈/kB, both structures
melted, but both remained (meta)stable at T = 0.7∈/kB. Thus, for Model 1, all subsequent
equilibrium and path sampling simulations were performed at T = 0.7∈/kB.

2.2 Model 2: Double Gō with residue–specific interactions
Our second model adds chemical detail, both to improve upon the simplicity of Model 1,
and to provide a way to check the sensitivity of our results to modeling choices. Model 2
includes atomistic backbone hydrogen bonding, Ramachandran propensities, and residue–
specific contact interactions, as detailed below. Because these interactions are implemented
as short ranged, Model 2 is only about 30% slower than Model 1, based on wall–clock time
per MC step. Gō interactions are again symmetric, with escale = 1.

Our semi–atomistic LBMC platform makes the inclusion of additional interactions
straightforward. Since the backbone is modeled atomistically, backbone–backbone hydrogen
bonding is easily incorporated, as described below. However, due to the absence of explicit
side chains in the present implementation, residue–specific chemical interactions can only
be incorporated at a coarse–grained level. We use residue–specific contact interactions
based on the work of Miyazawa and Jernigan (MJ),64,65 as discussed below. Specifically,
we use the potential energy

(5)

where UHB is the hydrogen–bonding potential, URama is the potential due to Ramachandran
propensities, and UMJ is the residue–specific potential based on MJ interactions. These
terms are described below.

Hydrogen bonding for the backbone–backbone interactions is modeled atomistically, but
with simplifications appropriate to the otherwise coarse–grained nature of our models.
Specifically, we use ordinary Coulomb interactions with OPLSAA charges between the
backbone CO and NH groups if the O–H distance less than 2.5 Å. The cutoff was chosen as
the distance after which dipole interactions are significantly attenuated. Following previous
studies that suggest a dielectric constant of 2–5 inside a protein, we use a value of 3. The use
of physical charge and distance units in the hydrogen–bonding interactions allows physical
temperature units in the simulation (instead of merely being in relation to the Gō well
depth).

Ramachandran propensities were included via the term URama, which is based on a potential
of mean force obtained by calculating the distribution of φ–ψ dihedral angles in
acetaldehyde–alanine–n–methylamide using OPLSAA force field. This distribution was
tabulated from a Langevin dynamics simulation at 300 K using the GBSA implicit solvent
model in Tinker software package.
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The construction of MJ–type interactions required some care. Several variants of the original
MJ interaction values have been utilized in the literature (such as scaling the MJ interactions
energies, as well as shifting)66,67 – due to the fact that MJ values are based on folded
protein data and are not directly applicable for unfolded states. We follow the suggestion of
Jernigan and Bahar66 to mix MJ values of Table V and Table VI (numbering as in the
original MJ paper,64 with updated values as in Ref65) so that the residue specific
interactions are modeled as x×(Table V)+(1 – x)×(Table VI). We chose x = 0.05 to ensure
that the residue–specific interactions are a significant perturbation of the double Gō
interactions.

To make the crystal structures (meta)stable, we “titrated in” double Gō interactions (∈), until
bistability was observed at 300 K. Because, as described, hydrogen bonding introduces
physical units into Model 2, the units of Gō well depth, ∈, are also physical. We found that
at ∈/k = 400 K, both the structures remained (meta)stable.

2.3 Model 3: Pure double Gō without energy symmetry
Finally, to facilitate the generation of large path ensembles in both the Open–to–Closed and
Closed–to–Open directions, we also constructed a third model. The new model is designed
to overcome the somewhat artifactual over–stabilization of the Closed states in Models 1
and 2 (see results below in Section 4). In brief, our 8 Å cutoff permits significantly more
contacts in the Closed state, implicitly but artificially mimicking the presence of ligands in
Models 1 and 2. This implicit presence of ligands interferes somewhat with our goal of
modeling the ligand–free opening and closing of the enzyme.

In Model 3, therefore, we attempt to make the Open and Closed forms of adenylate kinase
more comparable in stability. We decrease the strength of Gō interactions specific to the
Closed form to half of Gō interactions (i.e., we set escale = 0.5). Additionally, to focus on the
effect of the reduced stability of the Closed form with respect to the Open form, we use only
asymmetric double Gō interactions (and no H-bonding, Ramachandran, or MJ interactions).
That is, we set

(6)

3 Methods
3.1 Dynamical Monte Carlo

We follow many precedents35,68,69 and use “dynamical” MC for the dynamics of our
models. Such an approximation to physical dynamics is consistent with our use of simplified
models. Specifically, we use the library–based Monte Carlo (LBMC) algorithm,57 to
propagate the system in both brute–force simulations for generating equilibrium ensembles
and path sampling simulations (discussed below in more detail). For both equilibrium and
path sampling, the systems always evolve via “natural” LBMC dynamics, and no artificial
forces are used to direct conformational transitions, as explained below.

Our LBMC simulations use the same trial moves described in our earlier work.57. Namely,
one flexible peptide plane in the current configuration is swapped with one stored in the
library, and a ψ angle is also displaced by a small amount.

3.2 Path sampling
In systems with rugged energy landscapes, such as proteins, regular brute–force simulations
are not efficient for studying transitions. For this reason, we use the statistically rigorous
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weighted–ensemble (WE) path sampling method to generate path ensembles of
conformational transitions of adenylate kinase between the Open and the Closed states. This
method preserves the natural system dynamics60 and was used previously to study protein
folding,58, protein dimerization,59, and conformational transitions of calmodulin using an
alpha–carbon model.35 Weighted ensemble studies the probability evolution of trajectories
in the configuration space using any underlying system dynamics.60 In this work, we use
the WE method to study transitions in more detailed models to evaluate the effect of
increasing chemical detail on the transitions, and to study questions of symmetry in forward
and reverse directions.

The procedure to use weighted–ensemble path sampling to study conformational transitions
is described in detail elsewhere,35,36,60 and here we describe our simple implementation
briefly. Prior to beginning the simulations, we divide a one dimensional projection of the
configurational space (i.e., the DRMS from the target structure in the present study) into a
number of bins. The DRMS is a “progress coordinate” or “order parameter” – and is not
necessarily the reaction coordinate. The progress coordinate roughly keeps track of the
progress to the target state: the DRMS of structures close to the target state is necessarily
small. It is also possible to use multidimensional or adaptively changing progress
coordinates,35,60 but was not found necessary here.

In the weighted–ensemble method, an evolving set of trajectories and their probabilities are
tracked. Procedurally, several independent trajectories are started in an initial configuration
and run for a short time interval τ (consisting of multiple simulation steps) with natural
dynamics. At the end of each τ interval, the progress of the trajectories along the progress
coordinate is noted (i.e., into which bin along the progress coordinate each trajectory ends).
Once bins are tabulated after each τ, trajectories are “split” (replicated with divided
probability) and combined. This keeps the same number of trajectories in each occupied bin,
prunes low–weight trajectories and splits trajectories with high probability. This splitting
and combining of simulations is performed statistically as discussed elsewhere.35,36,60 The
probability remains normalized and all probability flows can be measured.

The full details of our WE simulations are as follows. We employ LBMC to describe the
natural system dynamics. We utilize 25 bins between the two states, with 20 simulations
(trajectories) in each occupied bin. The end state is defined as being at a DRMS of 1.5 Å
from the target crystal structure, a definition used in both directions. Using this definition of
the end state, we calculate the probability flux of trajectories entering the target state at the
end of each τ.

It should be noted that value of the probability flux into either state – and hence the rate –
depends upon the precise definitions of the two states. Although probability flows are good
indicators of sampling quality, precise numerical values of the rates are not of great interest
in our study of simple models with Monte Carlo dynamics. In this work, we are interested in
the path ensembles and not the rates.

4 Results
4.1 Static analysis of conformational differences

For reference, we first analyze the conformational differences between the two end–state
static crystal structures to quantify the observed differences in the Open and Closed
configurations of Figures 1. Figure 2 shows the α–carbon distance difference map of pairs of
residues in the Open and the Closed crystal structures. A large positive value implies that a
pair is farther apart in the Open structure than in the Closed structure, whereas a negative
value is the opposite. By construction, the figure is symmetric about the diagonal. A few
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features of the two structures easily emerge from Figure 2. The inter–residue distances for
most of the residue pairs are very similar in the two crystal structures. The major differences
are that the distances in the Closed structure between residues labeled LID (114–164) are
closer to BD (31–60) and several residues of CORE are smaller than the corresponding
distances in the Open structure. Thus, Figure 2 quantifies Figure 1.

From Figures 1 and 2 it is clear that the structural change that characterizes the transition
between the Open and the Closed structure is fairly straightforward: the LID and the BD
close, and the rest of the protein remains fairly unchanged. Following Figures 1 and 2, for
the path sampling studies presented shortly, we monitor inter–residue distances between two
pairs of residues: residues 56 (GLY) and 163 (THR), which report on the BD–LID
proximity, as well as residues 15 (THR) and 132 (VAL), which report on the CORE–LID

proximity. In the Closed structure,  and . On the other hand, in the

Open structure,  and . Thus, the relation between the CORE and
LID is monitored, along with that of the LID and BD.

4.2 Brute force equilibrium sampling
In order to demarcate the native basins in our analysis of transitions, we first study
equilibrium ensembles for the Open and the Closed states of adenylate kinase. Put another
way, we want to quantify the size of native–basin fluctuations in our models. Further, we
determine whether transition paths can be obtained without the aid of path sampling.

We quantify fluctuations in the equilibrium ensembles in the two basins by using DRMS
from the respective crystal structures. Figure 3 (a) shows two sets of DRMS traces for
Model 1 for a simulation started from the Open structure: DRMS–from–Open (black line)
and DRMS–from–Closed (blue line). Similarly, Figure 3 (b) shows two sets of DRMS traces
for Model 1 for a simulation started from the Closed structure: DRMS–from–Closed (black
line) and DRMS–from–Open (blue line). Thus, in each panel, the black line represents
DRMS from the starting structure, whereas the blue line represents DRMS from the
opposing structure.

A comparison of the two panels of Figure 3 shows that the simulation started from the Open
structure shows significantly more fluctuations than the simulation started from the Closed
structure. Furthermore, the fluctuations drive the simulation started from the Open structure
closer to the Closed structure than vice versa. For example, Figure 3 (a) shows that the
simulation started from the Open structure gets to within 3 Å of the Closed structure at
approximately 70 million MC steps. On the other hand, the simulation started from the
Closed structure (Figure 3 (b)) remains farther from the Open structure.

Most importantly, neither simulation show a transition to the opposing structure. The DRMS
from the opposing structure for a particular simulation is always significantly larger than
DRMS values from the starting structure for the other simulation. To elaborate, let us
consider the DRMS–vs–Closed structure for the simulation started from the Closed structure
(black line in Figure 3 (b)). The fluctuations in DRMS remain less than 1.5 Å in the native
basin for the Closed structure. Comparatively, the largest fluctuations in the simulations
started from the Open structure bring it only within at most 3 Å of the Closed structure (blue
line in Figure 3 (a)). That is, the opposing native basin is never reached.

We mention that all the DRMS values plotted in Figures 3 (a) and (b) are based on the first
200 residues. This is because the 14 tail residues, which form a helical segment, are very
flexible and the helix unravels in either structure at a much lower temperature than the stable
part of the protein. Thus, Figure 3 focuses on the rest of the protein. Additionally, although
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we show results for T = 0.7 here, simulations at lower temperatures also give qualitatively
similar results.

We perform an analogous fluctuation analysis for Model 2 which incorporates backbone
hydrogen bonding interactions, Ramachandran propensities, and some residue specificity via
MJ–type interactions. Figure 4 (a) shows the DRMS (of the first 200 residues) from the
Open (black line) and Closed (blue line) structures for a simulation started from the Open
structure. Similarly, Figure 4 (b) shows the DRMS traces for a simulation started from the
Closed structure. Again, we observe very similar results as for Model 1: the fluctuations in
the Open ensemble are larger than in the Closed ensemble, and no transition to the opposing
structure is obtained in either simulation.

4.3 Path sampling: Models 1 and 2
Due to the inability of brute–force simulations to show transitions, we use weighted–
ensemble path sampling to generate an ensemble of transition pathways with the aim of
assessing path heterogeneity. In particular, we examine transitions in both directions for all
the three models.

4.3.1 Transition from Open to Closed State—We first check whether our path
sampling is sufficient by monitoring the flux into the target state. Figure 5 plots the WE
results for probability fluxes obtained into the Closed state for both Models 1 and 2. The
“time” axis is merely the number of τ intervals (where one interval contains 2000 LBMC
steps). In both models, the fluxes reach linear regimes indicating that the observed
transitions are not merely due to initial fast trajectories and the path ensemble is
appropriately sampled.

The sensitivity to the models is also apparent in the fluxes shown in Figure 5: Model 2
(which includes hydrogen–bonding, Ramachandran propensities, and MJ–type residue
specific interactions) has a smaller flux into the Closed state than Model 1. Residue–specific
interactions are expected to roughen the energy landscape, consistent with the observed
slowing of transition dynamics. However, the possible change in the Open state basin
stability due to addition of these interactions is convoluted with the roughening of the
landscape.

We further study the path ensemble by examining individual trajectories. Figure 6 shows,
for Model 1, the DRMS from the Closed structure for four typical transitions started in the
Open state as a function of time (total number of LBMC steps) obtained via WE path
sampling. In contrast with the brute–force simulation in Figure 3 (a), each trajectory in
Figure 6 gets to the Closed state (defined to be within a DRMS of 1.5 Å from the Closed
structure). Although the trajectories arrive at the target state with different weights, the ones
shown in the figures above are obtained after a simple resampling procedure,70 and, thus,
represent trajectories that arrive with relatively large probabilities. Resampling is a
statistically rigorous procedure to prune an ensemble.70 In our resampling scheme, a
trajectory arriving at the target with weight w is kept with a probability w/wmax.

For trajectories that begin transitions at larger times (such as Trajectory 4 in Figure 6), a
significant amount of time is spent in regions with large DRMS values from the Closed
structure. Thus, in Figure 7 and beyond, we do not show the “dwell time” in the Open state.

To analyze the order of domain closing, and, in particular, to study possible heterogeneity in
the path ensemble, we study the four Open–to–Closed trajectories of Figure 6 in more detail.
Figure 7 plots the projection of the above four trajectories onto the plane of the BD–LID and
LID–CORE distances.
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The transition paths traced by the four Model 1 trajectories are significantly different. For
Trajectory 1, the BD shuts after the flexible LID gets close to the CORE. For the following
discussion, we call this pathway as Open–LID–BD–Closed (first the LID relaxes, and then
the BD shuts close). On the other hand, Trajectory 3 shows a dramatically different
behavior: the BD snaps shut before the flexible LID gets closer to the CORE (this pathway
is labeled as Open–BD–LID–Closed). The other two trajectories are somewhere in between
the two extremes.

To quantify heterogeneity in the path ensembles, we compare the ratio of trajectories in the
two transition pathways. Specifically, we define a trajectory to follow the Open–LID–BD–
Closed (lower right) pathway if it first visits the region d56,163 < 10.0 Å after last leaving the
rectangular Open–state region defined by d56,163 > 10.0 Å and d15,132 > 10.0 Å. (As in
Section 4.1, dij is the distance between alpha carbons of residues i and j.) On the other hand,
a trajectory follows the Open–BD–LID–Closed (upper left) pathway if it first visits the
region d56,163 > 10.0 Å after last leaving the above Open–state rectangular region. We find
that for Open–to–Closed transition using Model 1, approximately 60% of the resampled
trajectories follow Open–BD–LID–Closed pathway (akin to Trajectory 3 in Figure 7). The
remaining 40% follow the Open–LID–BD–Closed pathway.

The Model 1 transitions exhibit good correspondence with experimental ‘intermediates’.
Figure 7 also compares the BD–LID and LID–CORE distances of several experimental
crystal structures using triangles. Several experimental crystal structures (1DVR, 2AK3,
1AK2, 2BBW – see Supplementary Information) lie along the two transition paths. In
particular, structures along the Open–LID–BD–Closed pathway approach 1DVR and 1AK2
structures, whereas structures along the Open–BD–LID–Closed pathway approach 2AK3
crystal structure. The identities of the intermediate structures differ from those found by
Beckstein et al.52 There are two possible reasons for this discrepency: we use different
models, and the effect of the ratcheting bias used by Beckstein et al.52 on the pathways and
free–energy profiles (from observed populations) is not obvious. More details on the
additional experimental structures chosen are given in the Supplementary Information.

Further, we look at a few intermediate structures for these two pathways. Figure 8 shows
four intermediates along Trajectory 3 of Figure 7. The BD and LID domains near one
another before the LID closes. On the other hand, Figure 9 shows four intermediates along
Trajectory 1 in Figure 7. The closing of the LID, followed by snapping shut of the BD is
clearly visible in the figure. As both Figures 8 and 9 show, the rest of the protein (i.e., the
CORE region) maintains a stable shape during the transformation.

To determine the sensitivity of the path ensemble to the model, we similarly analyzed results
from Model 2 (which includes hydrogen bonding, Ramachandran propensities, and a level
of residue specificity). A similar qualitative picture is obtained for Model 2. Figure 10 plots
three of the resampled trajectories from the Open to the Closed structure using Model 2. The
“dwell times” in the Open state have been omitted for clarity. Again, the symbols have the
same meaning as in Figure 7 (except that open symbols represent the equilibrium
fluctuations obtained using Model 2). The transition from the Open–to–Closed structure
again takes place by the two pathways: Open–BD–LID–Closed and Open–LID–BD–Closed.
The ratio of paths in the two pathways is the same as that for Model 1, and several additional
experimental structures show BD–LID and LID–CORE distances similar to structures along
the two types of transition pathways.

4.3.2 Transition from Closed to Open State—We also studied “reverse” transitions –
from the Closed to the Open state. Figure 11 shows the flux into C as a function of “time”
for both Models 1 and 2. Compared to Figure 5 for the transition from the Open to the
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Closed state, the flux into state B is several orders of magnitude lower. This observation
mirrors the previously described larger fluctuations in the Open state ensemble. Flux into the
Open state for Model 2 with residue specific chemistry is higher than for Model 1, despite
the expected roughening of the energy landscape. This necessarily reflects a free energy
shift, suggesting MJ interactions de–stabilize the Closed state compared to a pure double–
Gō model. Such a shift seems appropriate given that we do not model ligands which
implicitly lead to more contacts in the Closed state and consequent over–stabilization in the
Gō model.

For the Closed–to–Open transition using either model, we obtain pathways which mirror the
Open–to–Closed transition: the LID fluctuates in the Closed state, and this is followed by
the BD snapping open on a relatively fast time scale. For both Models 1 and 2, successful
trajectories appear to follow only the Closed–LID–BD–Open pathway for Closed–to–Open
transition (reverse order of the Open–BD–LID–Closed pathway in the Open–to–Closed
transition direction). The absence of symmetry is surprising given our recent formal
demonstration,39 and there seem to be two possible reasons. First, the transients for the
Closed–BD–LID–Open pathway are long–lived. Lengthy transients are consistent with the
low reverse reaction rates, shown in Figure 11, for both Models 1 and 2. Second, our state
definitions may be flawed as discussed in Section 5.3.

To clarify the issue of the symmetry of path ensembles between forward and reverse
directions, we constructed and path sampled Model 3.

4.4 Path ensemble symmetry analysis in Model 3
The slow Closed–to–Open transitions indicates that, for Models 1 and 2, the free energy of
the Closed structure is significantly lower than that of the Open structure. As discussed in
Section 2.3, this suggested the use of Model 3, which decreases in magnitude the favorable
energy for contacts present only in the Closed state. That is, Model 3 reduces the free energy
asymmetry between the Open/Closed states.

Model 3 thereby facilitates study of the symmetry between forward and reverse transitions.
As shown in Figure 12, although the flux in the Open–to–Closed direction in Model 3 is
higher than in the Closed–to–Open direction, the difference between the fluxes in the two
directions is much less than that for Models 1 and 2. The increased Closed–to–Open rate
implies that the relative stability of the Closed state is reduced compared to Models 1 and 2.
Importantly, the relatively linear behavior of fluxes in both the directions implies our path
sampling is sufficient – well beyond transients.

For Model 3, we examine the same classification of pathways as above. Both paths are
frequently observed in both directions. In Figure 13, we show the ratio of probabilities of the
two paths as a functions of simulation time in the two directions. Values in each window are
averaged over 500 τ increments. The results for the Open–to–Closed direction (diamonds)
are shown for a single simulation, whereas the Closed–to–Open transitions (circles) are
shown for 6 independent simulations. Despite large fluctuations, the ratios of paths in the
two directions are similar. We discuss the issue of path symmetry further in Section 5.

4.5 Intermediate detection
The path ensembles obtained can also be used to detect intermediates during the transitions
in the two directions. A framework for analyzing the transition path ensemble was recently
reviewed by E and vanden–Eijnden.4 In particular, transition, or reactive, trajectories can be
traced along the configuration space (or, a projection of it) to compute populations of
regions of the configuration space: regions with high populations correspond to intermediate
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structures that will be observed more frequently during transitions. Note also the analyses
proposed by Hummer.5

Figure 14 shows fractional populations in regions of configuration space obtained for Model
3 during transitions in the two directions. Both panels show significant similarity – two
distinct channels (or, transition tubes) are visible, corresponding to the two paths. Regions
with higher populations suggest metastability – i.e., intermediates.

In both the figures, the region of the transition channels with LID–CORE distance in the 10–
15 Å range and with BD–LID distance similar to that in the Closed state is significantly
more populated than other transition regions in the two directions. Such a structure is
illustrated by Configuration 3 of Figure 8. This not only reiterates the observation in Figure
13 that the Open–BD–LID–Closed pathway is the more dominant transition pathway, but
also suggests that the region noted above is a dominant intermediate in both the directions.
A qualitatively similar result is obtained for the Open–to–Closed direction for Models 1 and
2 (as noted above, Closed–BD–LID–Open pathway was not observed for Models 1 and 2).

5 Discussion
5.1 Models

An important issue in any coarse–grained study is the sensitivity of the results to the
particular model(s) used. To address this point, we used three different semi–atomistic
models of adenylate kinase. For the models used, we find that the transition pathways are
not significantly affected by the models we used. In particular, we find two dominant
pathways (Open–LID–BD–Closed and Open–BD–LID–Closed) that occur in all the models.
Although the rates vary considerably among models, we do not expect realistic kinetics in
simplified models.

Our choice of models was governed by the basic requirement of obtaining full path sampling
of conformational transitions – in order to study path ensembles, heterogeneity, and
symmetry. Two of the models are based purely on structure (Gō model) and the other
(Model 2) includes some level of residue specificity via Miyajawa–Jernigan interactions, as
well as hydrogen bonding energies and Ramachandran propensities. In Model 2, the
chemical energy terms are significant perturbations to the Gō interactions. (as quantified by
MJ interactions between residues). This model is designed to be able to capture a minimum
level of biochemistry. However, Model 2 still requires significant Gō–type interactions to
stabilize the two physical states. In the future, we plan to utilize more detailed and explicit
side chain–side chain and side chain–backbone interactions to reduce the dependence on
Gō–type interactions.

Another limitation is that we did not consider the ligand in our path sampling simulations.
The inclusion of ligand could influence the observed pathways significantly. We have plans
for modeling ligand via “mixed models” that include all–atom ligands and binding sites,
with a coarse–grained picture for the rest of the protein. Such an explicit inclusion of
ligands, with the corresponding degrees of freedom of the unbound ligands in the Open form
should reduce the dependence on arbitrary Gō interactions. A study with explicit ligands
could require a higher dimensional progress coordinates to use in weighted ensemble
simulations: one coordinate for protein structure (as is done in this work), and a second (or
further) coordinates for the distance between ligands and the protein. Note that weighted
ensemble can mix real– and configurational–space coordinates: it was originally designed
for binding studies.36
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5.2 Multiple paths
The two dominant pathways – Open–LID–BD–Closed and Open–BD–LID–Closed (and
reverse on opening) – have also been observed by other groups using coarse–grained models
with network analysis46 and molecular dynamics47,48. These works utilized double–well
potentials. We showed that adding approximate chemical details to the double–well
potential preserves the two types of pathways.

Further, Whitford et al.47 observed that different pathways were dominant in the two
directions. On the other hand, results of Lu and Wang48 suggest that any path is similarly
favored in both directions. We discuss this symmetry of pathways below.

5.3 Path symmetry
Recently, we investigated the conditions when there should be symmetry – i.e., when
pathways in the forward and the reverse directions occur with the same ratio.39 We show
that exact symmetry will hold when a specific (equilibrium–based) steady state is enforced.
Approximate symmetry is expected if the initial and final states are well–defined physical
basins lacking slow internal timescales, so that trajectories emerging from a state “forget”
the path by which they entered. Figure 13 suggests that the ratio of the two different
pathways in the two directions is very similar for Model 3, which was fully path sampled in
both directions.

Such a symmetry is clearly absent from our results (even after accounting for statistical
fluctuations) in Models 1 and 2. Although we observed transitions in both the directions for
all the models, Closed–to–Open transitions in all the models (especially in Models 1 and 2)
are harder to obtain. In particular, the Closed–BD–LID–Open pathway is not observed in
our simulations for Models 1 and 2. This indicates that the conditions required for
symmetry39 are not met in one or more ways: transitions in the Closed–to–Open direction
may be dominated by transients and/or there may be internal barriers within the Closed state.
We are currently working on developing WE path sampling methods that allow steady states
to be sampled directly and efficiently62 and we hope to investigate the issue of symmetry
further. Related steady–state methods are already available.71–73

The above discussion suggests possible reasons behind the lack of path symmetry observed
by Whitford et al.47 and path symmetry observed by Lu and Wang48. The lack of symmetry
observed by Whitford et al.47 is, perhaps, due to transitions being studied from one crystal
structure conformation (instead of from an ensemble of conformations relevant to that state)
to an ensemble of conformations of the opposing state: possible internal barriers within a
state may not allow for symmetry to be observed. On the other hand, Lu and Wang48 study
transitions from an ensemble of one state to the ensemble of the opposing state.

5.4 CPU time and efficiency
One of the basic goals of this work was to determine the level of detail we can include in a
model, while still allowing for full sampling of the path ensemble. Thus, we now discuss the
computational effort that was required. All simulations were performed on single 3 GHz
Intel processors. The results shown for Model 1 in the Open–to–Closed direction took
approximately one week of single CPU time. More simulation was performed in the Closed–
to–Open direction, requiring 3-4 weeks of single CPU time. The results for Model 2 were
obtained using approximately the same time as Model 1. For Model 3, the Closed–to–Open
transition was not much harder to obtain than the Open–to–Closed transition, and a
simulation in each direction required approximately two weeks of single CPU time. Due to
the low CPU usage for obtaining path ensembles for the models used here, obtaining path
ensembles of better models using WE is possible. See Section 5.1.
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It is not hard to estimate the efficiency of WE simulation compared to brute–force. The
transition rates determined from WE simulations indicate the time required for brute–force
simulations to achieve transitions and hence permit estimates of efficiency. For example, the
rate obtained for Closed–to–Open transition for Model 3 is 2.5×10−6/τ. Thus, one brute–
force transition can be estimated to require the reciprocal amount of time. Since 2000τ
require approximately one week of computing, BF is estimated to take approximately 4
years for a single transition. In contrast WE yielded 50 transitions after resemapling (i.e., 50
transitions with equal weights), in about two weeks of single–processor computing. (Before
resampling, there were about 3000 WE transitions for each simulation). WE is thus
significantly more efficient than BF. For transitions in the other direction and/or other
models, a qualitatively similar picture for efficiency emerges.

6 Conclusions
We applied weighted ensemble (WE) path sampling to generate ensembles for
conformational transitions between Open (apo) and Closed (holo) forms of adenylate kinase
using semi–atomistic models of the protein. The models have an all–atom backbone
including beta–carbons, along with varying levels of chemical specificity, and represent a
significant jump in complexity compared to previous models studied with WE. No
additional driving force was used to enable the transitions. We showed that conformational
transitions in both directions are possible for such models via WE, while brute–force
simulations are less efficient. Given the relatively small computational effort required for
observing transitions using WE (weeks of single–CPU time), more detailed models can be
used for full path sampling. Models with further reduction in Gō–type interactions are
needed, along with ligand modeling, to study the specific enzyme biochemistry.

All the models show significant hereteogeneity in the transition pathways, consistent with
previous work and experimental structures. Two dominant pathways are observed,
characterized by the order in which the flexible lid and the AMP binding domains close.
Although the transition rates (in terms of Monte Carlo steps) varied significantly depending
upon the model used, similar dominant pathways are obtained across the models. The model
that allows significant transitions in both forward and reverse directions shows an
approximate symmetry of pathway populations, consistent with a recently derived symmetry
rule.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Crystal structures of adenylate kinase. The blue segment represents the core of the protein
(CORE), the yellow segment is the AMP binding domain (BD), and the green segments is
the flexible lid (LID). The left figure is the Apo (or Open) form, and the right figure is holo
(Closed) form.
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Figure 2.
Map of the difference in the inter–residue distances of the Open from the Closed crystal
structure. The map is, by definition, symmetric about the diagonal. The white space on the
diagonal just implies that we do not calculate distances between residue pairs less than 2
residues apart along the chain. The residues corresponding to the LID and BD are labeled
and the unlabeled residues form the CORE.
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Figure 3.
Stability of the native basins in Model 1. The DRMS in Model 1 (pure Gō) is shown for two
simulations (a) starting from the Open structure and (b) starting from the Closed structure.
For each simulation, we show the DRMS from the starting structure (black line) and the
opposing structure (blue line). Neither simulation show a transition to the opposing
structure, but the scales of fluctuations are very different.
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Figure 4.
Stability of the native basins in Model 2. The DRMS in Model 2 (Gō, H-bonding,
Ramachandran propensities, and MJ–type residue specific interactions) is shown for two
simulations (a) starting from the Open structure and (b) starting from the Closed structure.
For each simulation, we show the DRMS from the starting structure (black line) and the
opposing structure (blue line). Neither simulation show a transition to the opposing
structure, but the scales of fluctuations are very different.
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Figure 5.
Comparison of the probability fluxes into the Closed state for two models. The fluxes from a
pure double–Gō system (Model 1, solid line) and a system with considerable chemical
specificity (Model 2, dashed line) are plotted as functions of WE time intervals (each τ
interval is 2000 LBMC steps). In both cases, the fluxes reach approximately linear regimes,
suggesting transient effects have attenuated.
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Figure 6.
Open–to–Closed transitions observed for Model 1. Four typical DRMS traces are shown,
measured from the Closed crystal structure. The Closed basin is delimited by a DRMS of 1.5
Å from the Closed crystal structure.
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Figure 7.
Path heterogeneity in Model 1 transitions. Four typical trajectories for the Open–to–Closed
transition (cf. Figure 6) are shown via distances between the CORE and LID (ordinate) and
between the BD and the LID (abscissa). Also depicted are experimental configurations,
including those from which our double–Gō models were constructed (black filled symbols)
and a number of others (pink triangles) which are tabulated in the Supplementary
Information. Open symbols depict the equilibrium ensembles obtained from simulation. The
“dwell” times for the trajectories in the Open state have been excluded for clarity.
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Figure 8.
Four time–ordered, representative structures along the Open–BD–LID–Closed path obtained
for Trajectory 3 in Figure 7 (Model 1). The CORE domain is blue, the BD is yellow, and the
LID is green. The configurations correspond to (296000, 802000, 822000, 1496000) MC
steps, respectively, in Trajectory 3 of Figure 6.
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Figure 9.
Four time–ordered, representative structures along the Open–LID–BD–Closed path obtained
for Trajectory 1 in Figure 7 (Model 1). The CORE domain is blue, the BD is yellow, and the
LID is green. The configurations correspond to (128000, 206000, 306000, 480000) MC
steps, respectively, in Trajectory 1 of Figure 6.
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Figure 10.
Path heterogeneity in Model 2. Three typical trajectories for the Open–to–Closed transition
are shown via distance between the CORE and LID (ordinate) versus the distance between
the BD and the LID (abscissa). Also depicted are experimental configurations, including
those from which our double–Gō models were constructed (black filled symbols) and a
number of others (pink triangles) which are tabulated in the Supplementary Information.
Open symbols depict the equilibrium ensembles obtained from simulation. The “dwell”
times for the trajectories in the Open state have been excluded for clarity.
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Figure 11.
A comparison of probability fluxes into the Open state for two models as a function of WE
time increment (each τ is 2000 LBMC steps). The solid line is for Model 1, whereas the
dashed line is for Model 2. The log scale emphasizes the small amount of flux in Closed–to–
Open direction for both the models, as compared to fluxes in the reverse direction.
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Figure 12.
Probability flux in either direction for Model 3 as a function of WE time increment (each τ is
2000 LBMC steps). For this model, the Closed–to–Open flux is of the same order of
magnitude as in the reverse direction.
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Figure 13.
Ratio of probabilities of the two paths, 1 and 2, in the Open–to–Closed (diamonds) and
Closed–to–Open directions (circles). Results from six independent WE simulations are
shown in the Closed–to–Open direction to highlight the fluctuations. All data points are
window averaged for 500 τ.
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Figure 14.
Fractional populations observed in the transition path ensemmble. The top panel shows
fractional populations for the Open–to–Closed direction, whereas the bottom panel is for the
Closed–to–Open direction. Also depicted are experimental configurations, including those
from which our double–Gō models were constructed (black filled symbols) and a number of
others (pink triangles) which are tabulated in the Supplementary Information. Open symbols
depict the equilibrium ensembles obtained from simulation.
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