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Abstract

Heterochronous data sets comprise molecular sequences sampled at different points in time. If the temporal range of the
sampled sequences is large relative to the rate of mutation, the sampling times can directly calibrate evolutionary rates to
calendar time. Here, we extend this calibration process to provide a full probabilistic method that utilizes temporal
information in heterochronous data sets to estimate sampling times (leaf-ages) for sequenced for which this information
unavailable. Our method is similar to relaxing the constraints of the molecular clock on specific lineages within
a phylogenetic tree. Using a combination of synthetic and empirical data sets, we demonstrate that the method estimates
leaf-ages reliably and accurately. Potential applications of our approach include incorporating samples of uncertain or
radiocarbon-infinite age into ancient DNA analyses, evaluating the temporal signal in a particular sequence or data set, and
exploring the reliability of sequence ages that are somehow contentious.
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Introduction
The incorporation of temporal information into molecular
phylogenetic and genealogic analyses means that evolu-
tionary processes can be investigated on a natural timescale
of years, centuries, or millennia. This is commonly achieved
by one of two methods. If the sequences of interest are
sampled at effectively the same time (‘‘isochronous’’ data)
then an evolutionary timescale can be calibrated by assign-
ing a date, or date range, to one or more divergence events
in the tree. If data sets comprise sequences sampled at
different time points (‘‘heterochronous’’ data), these can
be calibrated by fixing the age of each sequence (the leaves
of the tree) to the known age of the specimen from which
the sequence was amplified (e.g., Rambaut 2000). Both ap-
proaches result in an estimated rate of evolution and a cor-
responding phylogenetic timescale, which can then be used
to test hypotheses about the timing and nature of evolu-
tionary and demographic events, such as dates of diver-
gence among lineages or changes in population size or
structure (Drummond, Pybus, Rambaut, Forsberg, and
Rodrigo 2003).

The two major sources of heterochronous sequence
data are rapidly evolving RNA and DNA viruses, whose high
mutation rates enable the generation of phylogenetically
informative sequence diversity within historical time

frames (Drummond, Pybus, and Rambaut 2003), and an-
cient DNA data isolated from preserved remains (Hofreiter,
Serre, et al. 2001) that may be up to several hundred thou-
sands of years old (Willerslev et al. 2007). In both cases, the
period over which sequences are isolated is sufficiently long
relative to the mutation rate to allow estimation of the
evolutionary rate (Drummond, Pybus, Rambaut, Forsberg,
and Rodrigo 2003).

The temporal information associated with RNA virus
sequences typically represents the day, month, or year of
sample isolation and/or storage (Taubenberger et al.
1997). Heterochronous viral data sets have been used to
estimate rates of mutation for specific viruses (Jenkins
et al. 2002), to investigate rates of evolution and adaptation
within hosts (e.g., Lemey et al. 2006, 2007), and to infer
epidemic dynamics within and between populations of
susceptible hosts (Rambaut 2000; Pybus and Rambaut 2009).

For ancient DNA data sets, ages of the genetic sequences
are most often approximated using radiocarbon dates that
are estimated from the same specimens from which the
DNA sequences are amplified (e.g., Shapiro et al. 2004;
Bunce et al. 2009; Campos et al. 2010). Dates from material
associated with stratigraphic context have also been used
as calibrating information, however (e.g., Lambert et al.
2002; Valdiosera et al. 2008). For ancient DNA sequences,
leaf-ages are normally assigned some number of thousands
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of years before the present (ka BP). Molecular clock anal-
yses of these data have been used to identify periods of
population turnover (e.g., Hadly et al. 1998; Barnes et al.
2002; Hofreiter et al. 2004) to estimate divergence times
within species (e.g., Shapiro et al. 2004; Debruyne et al.
2008; Stiller et al. 2010) and to correlate population-level
changes in genetic diversity with external events, such as
climate change (e.g., Hadly et al. 2004; Chan et al. 2006;
Barnett et al. 2009; Campos et al. 2010). For example, there
has been considerable debate about the relative roles of
climate change associated with the last glacial maximum
(LGM; ca 21 ka BP) and the appearance and increase in
human populations (ca 14 ka BP) in the recent disappear-
ance of the North American megafauna (Alroy 2001;
Barnosky et al. 2004; Stuart et al. 2004). Heterochronous
data sets comprising sequences directly dated to before,
during, and after these events allow explicit tests of these
alternative hypotheses.

Despite significant technical and chemical pretreatment
advances in Accelerator Mass Spectrometry radiocarbon
dating (Bronk Ramsey et al. 2004), the oldest samples
for which finite radiocarbon dates can be routinely gener-
ated are around 50-–55 ka BP (e.g., Barnett et al. 2009). The
period 0–55 ka BP includes several specific large-scale
environmental events that are likely to have affected the
distribution and abundance of plant and animal species.
However, there are a number of circumstances under
which the leaf-ages of ancient DNA or viral sequences
may be unknown, or at best, highly uncertain. First, ancient
mitochondrial DNA (mtDNA) sequences are routinely am-
plified from permafrost-preserved specimens older than
the 50–55 ka BP radiocarbon limit. For example, nearly
100 of the bison sequences reported in Shapiro et al
(2004) were too old to be assigned finite radiocarbon ages,
and ancient DNA sequences have been reported that are
perhaps as old as 800 ka BP (Willerslev et al. 2007). In this
case, only censored temporal information is often available
(i.e., age . 55 ka BP). Second, ancient DNA samples are
routinely recovered from situations in which the strati-
graphic context provides calibrating information (e.g., Lam-
bert et al. 2002; Coolen and Overmann 2007; Valdiosera
et al. 2008) but only within a wide range of uncertainty,
such that assigning a specific mean or median date to such
sequences is statistically inappropriate (Ho and Phillips
2009). Third, for rapidly evolving viral sequences, the date
of sampling may simply be unknown due to the loss or
absence of accurate archival information. Even if the viral
sampling date is known to the nearest year, it may be im-
portant to know the isolation date more accurately. Fourth,
it may also be important to independently verify posited
sampling dates due to their extreme age (Zhu et al.
1998; Taubenberger et al. 2005; Worobey et al. 2008) or be-
cause they are in some way contentious (Sonoda et al. 2000;
Coolen and Overmann 2007). Because frozen viral isolates
do not accumulate mutations while in storage, a leaf-dating
method also has the potential to identify transmitting
viruses that, after a period of storage, have been released
into the environment (Worobey 2008).

Despite these obvious problems, few studies have at-
tempted to estimate the unknown age or sampling date
of heterochronous sequences using molecular clock meth-
ods, and none have investigated the statistical reliability of
such methods. Perhaps the most similar analysis was that
undertaken by Korber et al. (1998), who validated their mo-
lecular clock of HIV-1 by testing whether it could accurately
predict the date of an ‘‘old’’ isolate sampled in 1959.
However, in that case, the approach consists of the visual
inspection of the fit to a linear regression of viral sampling
date against genetic distance rather than a statistical
analysis or estimation procedure.

Here, we investigate a statistical framework for the es-
timation of leaf-dates using molecular clock models when
the sample age or isolation date is either unknown or highly
uncertain. Following Drummond (2002), we estimate the
age of individual DNA sequences using the temporal cal-
ibrating information from other sequences in the data
set. Methodologically, the leaf-dating method is similar
to relaxing the constraints of the molecular clock on spe-
cific lineages within a phylogenetic tree. Using a combina-
tion of simulations and empirical analyses, we show that
leaf-ages can be estimated reliably and accurately using
our approach. Although the analyses presented here only
perform leaf-dating on one sequence within any given data
set, the method can be readily extended to multiple
sequences within the same analysis.

Materials and Methods
We developed and implemented a leaf-dating method that
estimates the age or date of isolation of individual sequen-
ces within the Bayesian Markov chain Monte Carlo
(MCMC) framework provided by the software package
BEAST (Drummond and Rambaut 2007). BEAST allows
dates/times to be specified for each sequence in a sample
alignment and uses this information to estimate a timescale
for the evolutionary history of the sample. The models im-
plemented in BEAST accomplish this by fixing the external
nodes of the tree (the leaves) to the specified dates and
then sampling the times of the internal nodes of the tree
from their posterior probability distribution using MCMC.
The length of each branch in units of time is mapped to an
expected number of substitutions per site using a vector of
molecular evolutionary rates. The simplest model assigns
the same single rate to every branch (the strict molecular
clock model). BEAST also implements methods that allow
the evolutionary rate to vary among branches (relaxed mo-
lecular clock models) such that the vector of rates follows
a specified parametric distribution (Drummond et al.
2006). Under these models, BEAST can simultaneously infer
the tree topology, the times of the internal nodes, the rate
of evolution and any parameters of the associated coales-
cent, and substitution models (Drummond et al. 2002). As
is required in Bayesian inference, all of these parameters are
assigned one of a wide variety of possible prior probability
distributions. MCMC sampling is then used to obtain es-
timates of marginal posterior probability distributions
for any parameters of interest.
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In previous molecular clock implementations, all nodes
in the tree are given dates/ages, that is, internal nodes are
treated as unknown parameters, although the dates/ages of
the tree external nodes (leaves) are assumed to be known.
To estimate the age of an individual sequence, we extend
the framework introduced above to estimate the time as-
sociated with the sequence, that is, the sequence’s leaf-age
is treated as a random variable. Thus, an additional param-
eter for the age of the external node is introduced and
is treated identically to the internal node age parameters
in terms of proposals made by the MCMC kernel. See
Drummond et al. (2006) for further specifications and pa-
rameterizations of the molecular clock models used here.

Synthetic Data Sets
To explore the ability of our leaf-dating model to recover
sample ages, we first estimated the dates of randomly cho-
sen sequences within synthetic heterochronous data sets.
We generated sequence alignments of 1,000 nt in length,
each including 50 taxa sampled at different times, by sim-
ulating sequence evolution down 1,000 random trees. We
simulated sequences using a Jukes–Cantor model of nucle-
otide substitution under a strict molecular clock with a rate
of 2.5 � 10�7 subs/site/year (Rambaut and Grassly 1997).
Each tree represents a random sample from the constant
size serial-sample coalescent model (Rodrigo et al. 1999),
with a population size equal to 105 haploid individuals.
The ages of the 50 individuals were 0, 0, 2,000, 2,000, . . .
, 48,000, 48,000 years. The evolutionary rate and sampling
times used in these simulations are representative of those
found in typical analyses of ancient mtDNA data sets.

For each of the 1,000 simulated data sets, a single leaf
was chosen at random and its known date was removed.
Each data set was analyzed separately in BEAST using the
method outlined above and the age of undated leaf was
estimated. This procedure represents a ‘‘leave-one-out
cross-validation’’ design and is an effective approach to ex-
amining estimator performance. BEAST analyses were per-
formed under the true model, that is, a strict clock,
a constant size coalescent model, and the Jukes–Cantor
model of nucleotide substitution. For each analysis, we
ran a single MCMC chain for 5 million generations, with
samples drawn from the chain every 5,000 generations,
of which the first 10% was discarded as burn-in.

Empirical Data Sets
We selected two empirical heterochronous data sets for
further validation of the leaf-dating method, enabling us
to test our approach when the true evolutionary model
is unknown: 1) a data set of partial (1,404 nt) E gene sequen-
ces of Dengue-2 (DEN-2) virus subtype II (Carrington et al.
2005) comprising 89 samples isolated between 1981 and
2002 and 2) a data set representing 166 ancient and mod-
ern bison (Bison priscus) for which 602 nt of mitochondrial
control region sequences are available (Shapiro et al. 2004)
with radiocarbon ages calibrated using CalPal_2007_HULU
(http://www.calpal-online.de/). Sample ages within the
bison data set ranged from 0 to 55,000 years old.

For both empirical data sets, we estimated the leaf-age of
each sequence in the alignment in a separate BEAST anal-
ysis. Because the youngest sampling date places a hard up-
per bound on the evolutionary timescale, it is impossible to
overestimate (estimated age older than the true age) the
age of the youngest sequences in each data set. We there-
fore excluded the youngest sampled sequences from both
data sets from the verification procedure. However, requir-
ing strictly positive leaf-ages is not warranted for all prob-
lems. For example, measurable evolving viral populations
may contain unknown leaf-ages that are more recent
than the youngest known age that is assumed to represent
time 0 in the tree.

For the DEN-2 analyses, we assumed a strict molecular
clock, the GTR þ G model of nucleotide substitution and
a constant coalescent model with a diffuse, log-normally
distributed effective population size, as was selected as
the best fitting coalescent model in the initial publication
(Carrington et al. 2005). A single MCMC chain of 10 million
generations was run with samples recorded from the chain
every 1,000 generations, discarding the first 10% as burn-in.
For the bison analyses, we assumed a strict molecular clock
and the HKY þ G model of nucleotide substitution. Pre-
vious work has shown that simple coalescent models are
insufficient to explain the complex demographic history
of bison (Shapiro et al. 2004; Drummond et al. 2005). There-
fore, we performed each bison analysis using two different
flexible coalescent models: a piece-wise constant, multiple
change-point (MCP) process, often referred to as the Sky-
line (Drummond et al. 2005), with 12 groups, and a Gauss-
ian Markov random field (GMRF) process, the Skyride
(Minin et al. 2008). For each bison analysis, we ran a single
MCMC chain for 50 million generations, with samples re-
corded from the chain every 5,000 generations, again dis-
carding the first 10% as burn-in. Thus, in total, we
performed 85 DEN-2 analyses (one for every leaf except
the youngest one) and 250 bison analyses (one for every
nonyoungest leaf for each of two coalescent models).
For all analyses, we evaluated parameter mixing and con-
vergence to the stationary distribution using Tracer v 1.4
(available from: http://tree.bio.ed.ac.uk/software/tracer/).

Results

Simulated Data Sets
In the simulated data sets, the true ages of the leaves
ranged from 0 to 48,000 years. In each of our 1,000 analyses,
one leaf was selected at random and its known age was
removed. In 40 cases, a leaf with a sample age of zero
was chosen; these were excluded from the statistical ver-
ification analysis (see above for explanation). Of the 960
remaining analyses, the true sequence age was recovered
within the 95% highest posterior density (HPD) interval
of the leaf-age estimates 95% of the time, demonstrating
that our leaf-dating method performs well and has favor-
able statistical coverage properties. More importantly,
comparison of the posterior mean estimated leaf-age with
the true age revealed no significant bias in the estimates for
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true ages greater than or equal to 6,000 years old (fig. 1),
indicating that the posterior mean leaf-age estimates are
equally likely to overestimate as to underestimate the true
age. Mean square error in these estimates decreases with
increasing true age. Here, the difference in expected num-
ber of substitutions between leaf-ages at zero and those
more distant in the tree increases, yielding on average more
informative data for leaf-age estimation. Modest bias is ob-
served for true ages very close to or equal zero, which is
wholly expected because, for this example, the estimated
dates cannot be smaller than zero, as the youngest se-
quence in the data set if from a modern bison. The lower
bound on unbiased estimates naturally depends both on
real times and the mutation rate.

Empirical Data Sets
Dengue-2
Of the 85 sequences in this data set that were older than
the youngest sampled sequence, the true age was
contained within the 95% HPD intervals of the leaf-age es-
timate for 79 leaves (93%; supplementary table S1, Supple-
mentary Material online). Of the six sequences for which
the real age was not included in the HPD, only one
(D2DR_1984) resulted in a significant difference in themar-
ginal likelihood, assessed by calculation of the Bayes factor
comparing the strict clock model and the leaf-age model
(BF; the ratio of the marginal likelihoods with respect to the
prior of the two models) (Suchard et al. 2001). The BF
strongly favors relaxing the strict clock assumption on
the branch leading to D2DR_1984 (log10 BF 5 3.99), sug-
gesting that either the age assigned to the sequence or the
sequence itself is incorrect or that this particular sequence
is evolving at a markedly different rate than the other
sequences in the DEN-2 data set.

Bison
Leaf-ages for 125 bison mtDNA control region sequences
(leaf-ages were not estimated for 41 modern bison) were

estimated under two different coalescent models (the MCP
and GMRF models). Both coalescent models gave consis-
tent results: the true age fell outside the 95% HPD interval
of the estimated leaf-age for 18 (14.4%) and 19 (15.2%) bi-
son sequences when assuming the GMRF and MCP coales-
cent models, respectively. Of these, 17 were estimated
incorrectly in both analyses (table 1). No significant corre-
lation was observed between the calibration age of the se-
quence and failure of the method to recover the true age
(Wilcoxon rank sum test with continuity correction: W 5

751, P 5 0.14).
To examine differences in results between the two co-

alescent models, we calculated the square root of the mean
squared error (rMSE) of the leaf-age estimate for each anal-
ysis (supplementary table S2, Supplementary Material on-
line). The rMSE integrates both the variance and bias of an
estimator and is an effective tool with which to evaluate
statistical performance when variances may differ and
there remains potential for bias. Of the sequences, whose
true age was contained within the 95% HPD interval of the
estimated leaf-age, the posterior average rMSE for the anal-
yses assuming a MCP process was 16,292 years, whereas the
same statistic for the GMRF analyses was 12,013 years. To
understand this difference, we examined the distribution of
rMSE estimates (fig. 2). From the figure, average behavior is
similar across the flexible coalescent models; however,
rMSE estimates under the MCP model can result in a very
long-tailed distribution, with a small number of leave-one-
out analyses generating highly skewed leaf-age estimates.

The molecular clock is a likely source of error in estimat-
ing leaf-ages (see expanded discussion below). To explore
this further, we reran each of the 20 bison leaf-dating anal-
yses for which the strict clock model failed to recover the
true date, this time allowing the evolutionary rate to be
relaxed across the entire genealogy. The analyses were per-
formed as described above, assuming the GMRF model and
the uncorrelated lognormal relaxed clock (Drummond
et al. 2006). Very similar results were obtained using the

FIG. 1. Relative bias in posterior mean leaf-age estimates from 960 leave-one-out analyses of synthetic data sets with varying true leaf-ages. For
true ages sufficiently distinct from zero, the posterior mean estimator is unbiased.
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relaxed and strict clock models (table 1). However, when
the molecular clock is relaxed across the entire tree rather
than just on the single branch, the true age is contained
within the 95% HPD intervals of the estimated leaf-age
for seven of the bison sequences that previously failed.

Discussion
Our results indicate that the leaf-age model is powerful
enough to recover temporal signal from sequence data
provided that the calibrating information within other

portions of the data set is sufficient. Analysis of simulated
data sets demonstrates convincingly that, when all other
sources of error are accounted for (i.e., the analysis is per-
formed under the true model), the leaf-age estimator is an
unbiased predictor of the true age of a sequence and has
correct properties of statistical coverage. Figure 1 shows
that bias is greater when the estimated leaf-age is close
to its boundary (in this case, 0). Such behavior is expected
because the variable being estimated (the sequence age) is
a strictly nonnegative quantity and as the value approaches
the boundary only ages that are older than the true age can
be estimated. Implementing an estimator from a model
that allows for negative leaf-ages may circumvent this
but would be biologically meaningless when the youngest
sample included in the data set was sampled, effectively,
today (such a negative leaf-age would become the youngest
sample, suggesting that all the other samples are older than
ascribed).

The results of the empirical data analyses were mixed.
Our leaf-dating method performed very well when applied
to the DEN-2 data set, as the known dates of sampling fell
within the 95% HPD intervals of our estimates 93% of the
time. This is extremely encouraging, as it is almost certainly
true that the evolutionary and coalescent models used in
our analyses are a gross simplification of natural processes;
yet, we were able to estimate leaf-dates reliably and accu-
rately. In addition to demonstrating the effectiveness of our
leaf-dating approach, our DEN-2 virus result also serve to
validate the molecular clock methods used, for if terminal
nodes throughout the tree are estimated with accuracy
then it logically follows the internal nodes, including the
tree root, are similarly dated correctly.

For the bison data set, the leaf-ages (as determined
by radiocarbon dating) were estimated incorrectly

Table 1. Twenty Bison for Which the Leave-One-Out Analysis Failed to Recover the True Age Within the 95% HPDs of the Estimated
Leaf-Age.

Sample ID Calibrated Age (BP)

Strict Molecular Clock Relaxed Clock

GMRF Mean (95% HPD) MCP Mean (95% HPD) MCP Mean (95% HPD)

BS111 25,920 6 503 16,566 (8,826–25,075) 16,373(8,823–25,628) 16,170 (9,072–23,940)
BS146 13,662 6 58 60,806 (28,641–89,428) 65,235 (20,633–106,620) 55,930 (22,450–84,100)
BS148 7,326 6 56 14,091 (8,284–20,545) 13,965 (8,364–19,833) 14,220 (9,087–20,490)
BS161 25,181 6 176 70,688 (36,052–101,030) 80,242 (30,538–125,386) 65,010 (27,900–94,470)
BS176 14,232 6 129 46,145 (23,488–68,808) 52,947 (21,632–83,714) 43,690 (19,410–66,600)
BS196 23,123 6 196 64,575 (30,175–94,040) 66,860 (28,657–102,425) 57,670 (23,410–86,460)
BS202 12,381 6 120 80,369 (47,807–106,660) 82,771 (19,936–119,486) 69,190 (18,720–94,030)
BS253 14,753 6 112 8,530(1,769–14,766) 8,266 (2,058–14,140) 8,749(1,948–15,660)
BS258 26,606 6 184 31,004(8,346–59,351) 206,542 (105,637–333,502) 37,130(11,720-69,840)
BS286 54,134 6 2,800 83,049 (64,269–101,972) 90,412 (66,629–116,325) 73,570(52,480–96,780)
BS292 40,991 6 686 67,453 (43,506–91,413) 70,453 (42,618–94,697) 62,680(35,570–86,290)
BS297 12,867 6 53 62,262 (41,667–79,291) 64,290 (42,197–83,495) 58,980 (35,120–78,390)
BS329 32,370 6 256 67,021 (40,663–91,504) 70,817 (43,050–97,395) 60,880(24,900–87,330)
BS365 51,433 6 4,004 29,187 (11,700–46,697) 28,916 (11,986–47,484) 33,140(12,550–52,400)
BS388 32,933 6 336 85,768 (49,700–113,587) 117,733 (52,790–178,806) 78,570 (38,190–106,500)
BS389 20,337 6 87 52,175 (34,999–72,762) 52,238 (33,254–75,360) 53,000 (30,760–79,110)
BS398 32,732 6 317 86,951 (63,479–108,490) 99,544 (60,419–142,781) 79,330 (55,530–100,000)
BS400 50,204 6 3,427 21,796 (12,297–33,451) 21,807 (11,094–33,915) 23,270 (10,210–43,990)
BS405 27,653 6 195 78,249 (41,825–111,633) 124,010 (48,004–207,590) 68,910(25,820–99,180)
BS478 39,836 6 261 17,416 (2,988–32,063) 18,784 (3,171–36,834) 18,050 (3,332–37,250)

NOTE.—Bold, italicized values are those for which the true age is recovered by the analysis.

FIG. 2. Empirical distributions of rMSE when estimating leaf-dates
under flexible coalescent models based on a multiple change-point
(MCP) process and GMRF.
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approximately 15% of the time (table 1, supplementary
table S2, Supplementary Material online). There was no
noticeable pattern in the age of the tips for which the
leaf-dating method fails. However, in general, the same
leaf-ages, which differ significantly from their priors in all
cases, are incorrectly estimated under both coalescent
models. This suggests two things: first, that the incorrect
dates likely arise from some heterogeneity in the evolution-
ary process that is not accounted for in the models and
second, that the leaf-date estimates depend more on
the data than on the prior distributions assumed. The
MCP process assumes that effective population sizes
change according to an exponential Markovian process
(Drummond et al. 2005). In rare cases, with limited infor-
mation about the root age that occurs when the unknown
dated leaf attaches near the root, this nonstationary pro-
cess can introduce excess variability (fig. 3A); the GMRF,
on the other hand, is stationary (Minin et al. 2008) and
modestly outperforms the MCP in these situations.

Although the vast majority of bison sequence ages were
estimated correctly, it is unsatisfactory that some were not
and important to consider the possible causes of such er-
ror. First, and most obviously, the ‘‘true’’ ages of the speci-
mens may have been incorrectly reported or estimated. For
example, the radiocarbon ages we used in our analysis may
be incorrect or subject to error, in particular as the age of
the specimen approaches the limits of this technique.

Second, the sequences themselves may be incorrect or
be erroneous in some way. This is particularly problematic
for ancient DNA data, where the degraded nature of the

samples results in predictable patterns of DNA damage
and base misincorporation by the polymerases used in
polymerase chain reaction (Hofreiter, Jaenicke, et al.
2001; Gilbert et al. 2003, 2005; Binladen et al. 2006). Previ-
ously, an analysis of the bison data set incorporating the
postmortem damage (PMD) model showed that this
particular aDNA data set contained very little damage
(Rambaut et al. 2009). The PMD model assumes that
the probability that any given nucleotide remained undam-
aged decays exponentially with age; the oldest sequences in
the bison data set demonstrated, on average, only 0.74
damaged sites, a level that produced no qualitative change
in the demographic reconstructions. In its current imple-
mentation, the PMD model assumes a common decay rate
for every site of every sequence (such that the probability of
a site being undamaged decays exponentially with age). A
useful extension of the PMD model may be to provide
a probabilistic expectation that each individual sequence
is damaged, thereby making it possible to identify problem-
atic sequences for additional assessment. Although incor-
porating both PMD models and leaf-dating in a single
analysis is possible, the common decay rate PMD model
and leaf-dating are expected to be only weakly identifiable
in the sampling density of the observed sequence data,
serving primarily to increase variance on the leaf-age esti-
mate without extracting much additional information
from the data. Furthermore, the individual decay rate
PMD model and a random leaf-age are not identifiable.
Consequently, prior assumptions will dominate inference
as to whether a sequence is damaged or incorrectly dated.

FIG. 3. Examples of two different leave-one-out analyses for which the true age was not recovered within the 95% HPDs of the leaf-age
estimates. In (A), the analysis identifies two similarly likely leaf-ages, whereas in B the analysis identifies a single, precise estimate that does not
coincide with the radiocarbon date of the specimen from which the sequence was isolated. By evaluating the trace files from each leaf-age
estimate, it is possible to identify potentially erroneous sequences and to devise an appropriate strategy to authenticate these sequences.

Shapiro et al. · doi:10.1093/molbev/msq262 MBE

884

supplementary tTable S2
supplementary tTable S2
Supplementary Material


Third, some aspect of the evolutionary models used may
be unrealistic and a possible source of error. We consider
each model component in turn:

(i) The phylogenetic model assumes that the sequences do
not undergo recombination. Recombination is very
unlikely to be present in our ancient mtDNA bison data
set but may be a potential cause of error in the analysis of
some viruses that do recombine readily, such as HIV-1 (in
which case the method introduced here may be used to
‘‘detect’’ putatively recombinant sequences).

(ii) The coalescent prior distribution may too constraining or
unrepresentative of the tree shapes supported by the data.
However, similar results were obtained when the bison
data set was estimated under two different coalescent
models, each of which is highly flexible, this is unlikely to
be a significant cause of estimation error.

(iii) The molecular clock model did not accurately model
temporal sequence evolution. The molecular clock
determines the estimated evolutionary timescale and is
therefore, a priori, the most likely source of error in
estimating leaf-dates. The strict molecular clock used in
our analysis does not incorporate rate heterogeneity
among lineages, which is common in many heterochro-
nous data sets (Korsten et al. 2009; Magiorkinis et al.
2009). If this variation is ignored then leaves attached to
terminal branches that evolve unusually rapidly or slowly
will have their ages poorly estimated.

Note that the discussion above does not directly address
the biological assumptions underlying model components,
such as the coalescent and the molecular clock. This is de-
liberate, as we wish to highlight a common misconception.
In population-level analyses, it is often assumed that it is
necessary to assume neutral evolution in order to accu-
rately estimate divergence times using a molecular clock.
If divergence times are the primary parameters of interest,
then the clock model used can be thought of as a statistical
or phenomenological description of the relationship be-
tween genetic distance and time rather than an explicit
model of a biological process. Viewed this way, all that
is important is that the model ‘‘fits’’ the data well, statis-
tically speaking. The same argument can be applied to the
coalescent model, which, when being treated as a nuisance
parameter, need only represent a suitable range of tree
shapes and sizes. In such cases, the assumptions of the co-
alescent model (e.g., random sampling or panmixis) are not
necessary conditions for accurate date estimation. As a re-
sult, estimation of leaf-dates is likely to be highly robust
provided that the clock model used incorporates sufficient
rate heterogeneity.

Although it is often not feasible to discriminate among
the sources of error outlined above, it may be possible to
identify problematic sequences by evaluating the output of
the leaf-dating analysis. For example, a common problem
among the small number of analyses that fail to recover the
true leaf-age is that the sequences appear to be equally or
nearly equally likely to fall in two locations in the genealogy,
with each of these resulting in very different leaf-age esti-
mates. This pattern is seen clearly by plotting the estimated
marginal posterior distribution leaf-ages, which has an

unusually high variance (fig. 3A). This result may be due
to errors within the sequence itself, which could potentially
be resolved by resequencing. Alternately, very precise leaf-
age estimates not containing the true age may indicate
a problem with the true age (fig. 3B). For ancient DNA data,
recovering an additional radiocarbon date or confirming
information about the stratigraphic context of the sample
can be useful to rule out this potential source of error. For
viral sequences, a reexamination of the documentation as-
sociated with the isolate may reveal an annotation or tran-
scription error.

Although the estimated ages recovered by the leaf-
dating method are often associated with wide credible in-
tervals, our leaf-dating method provides a means to include
in molecular clock analyses data for which little or no
temporal information is known. Incorporating additional
sequence data can improve the resolution of the phyloge-
netic, demographic, and geographic history of the sampled
sequences and can extend significantly the temporal
range of the analysis. Additionally, estimating leaf-ages
can provide an independent means of assessing both
the authenticity of heterochronous sequences and the ages
to which the sequences have been ascribed, which is often
a significant concern in ancient DNA research.

The possibility of treating leaf-ages as random variables
also allows uncertainty to be modeled explicitly. This en-
ables the incorporation of the uncertainty associated with
layer dating, for example, in the form of a uniform prior
across the age range of the source stratum. In addition,
the error in isotopic dating can be reflected by choosing
an appropriate prior distribution for the corresponding
leaf-age (Ho and Phillips 2009).

We hope that further uses for the leaf-dating method
may be found. As one potential application, consider
the forensic or archaeological examination of biological tis-
sue from which rapidly evolving viral sequences (e.g., influ-
enza) are recoverable—by estimating the date of such
sequences using our method, it will be possible to posit
a time of death.

Supplementary Material
Supplementary tables S1 and S2 are available at
Molecular Biology and Evolution online (http://www.mbe
.oxfordjournals.org/).

Acknowledgments
This work was partially supported by the National Institute
of Health (R01 GM083603, R01 GM083983, and R01
GM086887), National Science Foundation (ARC
0909456), and the National Evolutionary Synthesis Center
(NESCent), NSF #EF-0423641.

References
Alroy J. 2001. A multispecies overkill simulation of the end-

Pleistocene megafaunal mass extinction. Science 292:1893–1896.
Barnes I, Matheus P, Shapiro B, Jensen D, Cooper A. 2002. Dynamics

of Pleistocene population extinctions in Beringian brown bears.
Science 295:2267–2270.

Bayesian Estimation of Unknown Sequence Ages · doi:10.1093/molbev/msq262 MBE

885

Supplementary tables S1
S2
http://www.mbe.oxfordjournals.org/
http://www.mbe.oxfordjournals.org/


Barnett R, Shapiro B, Barnes I, et al. (17 co-authors). 2009.
Phylogeography of lions (Panthera leo ssp.) reveals three distinct
taxa and a late Pleistocene reduction in genetic diversity. Mol
Ecol. 18:1668–1677.

Barnosky AD, Koch PL, Feranec RS, Wing SL, Shabel AB. 2004.
Assessing the causes of late Pleistocene extinctions on the
continents. Science 306:70–75.

Binladen J, Wiuf C, Gilbert MTP, et al. (11 co-authors). 2006.
Assessing the fidelity of ancient DNA sequences amplified from
nuclear genes. Genetics 172:733–741.

Bronk Ramsey C, Higham TFG, Bowles A, Hedges R. 2004.
Improvements to the pretreatment of bone at Oxford.
Radiocarbon 46:155–163.

Bunce M, Worthy TH, Phillips MJ, et al. (11 co-authors). 2009. The
evolutionary history of the extinct ratite moa and New Zealand
Neogene paleogeography. Proc Natl Acad Sci U S A.
106:20646–20651.

Campos PF, Willerslev E, Sher A, et al. (20 co-authors). 2010. Ancient
DNA analyses exclude humans as the driving force behind late
Pleistocene musk ox (Ovibos moschatus) population dynamics.
Proc Natl Acad Sci U S A. 107:5675–5680.

Carrington CV, Foster JE, Pybus OG, Bennett SN, Holmes EC. 2005.
Invasion and maintenance of dengue virus type 2 and type 4 in
the Americas. J Virol. 79:14680–14687.

Chan YL, Anderson CNK, Hadly EA. 2006. Bayesian estimation of the
timing and severity of a population bottleneck from ancient
DNA. PLoS Genet. 2:451–460.

Coolen MJ, Overmann J. 2007. 217,000-year-old DNA sequences of
green sulfur bacteria in Mediterranean sapropels and their
implications for the reconstruction of the paleoenvironment.
Environ Microbiol. 9:238–249.

Debruyne R, Chu G, King CE, et al. (21 co-authors). 2008. Out of
America: ancient DNA evidence for a new world origin of late
quaternary woolly mammoths. Curr Biol. 18:1320–1326.

Drummond A, Pybus OG, Rambaut A. 2003. Inference of viral
evolutionary rates from molecular sequences. Adv Parasitol.
54:331–358.

Drummond AJ. 2002. Computational and statistical inference for
molecular evolution and population genetics. Biological sciences.
Auckland (New Zealand): University of Auckland.

Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. 2006. Relaxed
phylogenetics and dating with confidence. PLoS Biol.
4:699–710.

Drummond AJ, Nicholls GK, Rodrigo AG, Solomon W. 2002.
Estimating mutation parameters, population history and
genealogy simultaneously from temporally spaced sequence
data. Genetics 161:1307–1320.

Drummond AJ, Pybus OG, Rambaut A, Forsberg R, Rodrigo AG.
2003. Measurably evolving populations. Trends Ecol Evol.
18:481–488.

Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary
analysis by sampling trees. BMC Evol Biol. 7:214.

Drummond AJ, Rambaut A, Shapiro B, Pybus OG. 2005. Bayesian
coalescent inference of past population dynamics from
molecular sequences. Mol Biol Evol. 22:1185–1192.

Gilbert MTP, Bandelt HJ, Hofreiter M, Barnes I. 2005. Assessing
ancient DNA studies. Trends Ecol Evol. 20:541–544.

Gilbert MTP, Hansen AJ, Willerslev E, Rudbeck L, Barnes I,
Lynnerup N, Cooper A. 2003. Characterization of genetic
miscoding lesions caused by postmortem damage. Am J Hum
Genet. 72:48–61.

Hadly EA, Kohn MH, Leonard JA, Wayne RK. 1998. A genetic record
of population isolation in pocket gophers during Holocene
climatic change. Proc Natl Acad Sci U S A. 95:6893–6896.

Hadly EA, Ramakrishnan U, Chan YL, van Tuinen M, O’Keefe K,
Spaeth PA, Conroy CJ. 2004. Genetic response to climatic

change: insights from ancient DNA and phylochronology. PLoS
Biol. 2:1600–1609.

Ho SYW, Phillips MJ. 2009. Accounting for calibration uncertainty in
phylogenetic estimation of evolutionary divergence times. Syst
Biol. 58:367–380.

Hofreiter M, Jaenicke V, Serre D, von Haeseler A, Paabo S. 2001. DNA
sequences from multiple amplifications reveal artifacts induced
by cytosine deamination in ancient DNA. Nucleic Acids Res.
29:4793–4799.

Hofreiter M, Serre D, Poinar HN, Kuch M, Paabo S. 2001. Ancient
DNA. Nat Rev Genet. 2:353–359.

Hofreiter M, Serre D, Rohland N, Rabeder G, Nagel D, Conard N,
Munzel S, Paabo S. 2004. Lack of phylogeography in European
mammals before the last glaciation. Proc Natl Acad Sci U S A.
101:12963–12968.

Jenkins GM, Rambaut A, Pybus OG, Holmes EC. 2002. Rates of
molecular evolution in RNA viruses: a quantitative phylogenetic
analysis. J Mol Evol. 54:156–165.

Korber B, Theiler J, Wolinsky S. 1998. Limitations of a molecular
clock applied to considerations of the origin of HIV-1. Science
280:1868–1871.

Korsten M, Ho SYW, Davison J, et al. (24 co-authors). 2009. Sudden
expansion of a single brown bear maternal lineage across
northern continental Eurasia after the last ice age: a general
demographic model for mammals? Mol Ecol. 18:1963–1969.

Lambert DM, Ritchie PA, Millar CD, Holland B, Drummond AJ,
Baroni C. 2002. Rates of evolution in ancient DNA from Adelie
penguins. Science 295:2270–2273.

Lemey P, Pond SLK, Drummond AJ, Pybus OG, Shapiro B, Barroso H,
Taveira N, Rambaut A. 2007. Synonymous substitution rates
predict HIV disease progression as a result of underlying
replication dynamics. PLoS Comput Biol. 3:282–292.

Lemey P, Rambaut A, Pybus OG. 2006. HIV evolutionary dynamics
within and among hosts. AIDS Rev. 8:125–140.

Magiorkinis G, Magiorkinis E, Paraskevis D, Ho SYW, Shapiro B,
Pybus O, Allain JP, Hatzakis A. 2009. The global spread of
Hepatitis C Virus 1a and 1b: a phylodynamic and phylogeo-
graphic analysis. PLoS Med. 6:e1000198.

Minin VN, Bloomquist EW, Suchard MA. 2008. Smooth skyride
through a rough skyline: Bayesian coalescent-based inference of
population dynamics. Mol Biol Evol. 25:1459–1471.

Pybus OG, Rambaut A. 2009. Evolutionary analysis of the
dynamics of viral infectious disease. Nat Rev Genet. 10:
540–550.

Rambaut A. 2000. Estimating the rate of molecular evolution:
incorporating non-contemporaneous sequences into maximum
likelihood phylogenies. Bioinformatics 16:395–399.

Rambaut A, Grassly NC. 1997. Seq-Gen: an application for the
Monte Carlo simulation of DNA sequence evolution along
phylogenetic trees. Comput Appl Biosci. 13:235–238.

Rambaut A, Ho SYW, Drummond AJ, Shapiro B. 2009. Accommo-
dating the effect of ancient DNA damage on inferences of
demographic histories. Mol Biol Evol. 26:245–248.

Rodrigo AG, Shpaer EG, Delwart EL, Iversen AK, Gallo MV,
Brojatsch J, Hirsch MS, Walker BD, Mullins JI. 1999. Coalescent
estimates of HIV-1 generation time in vivo. Proc Natl Acad Sci
U S A. 96:2187–2191.

Shapiro B, Drummond AJ, Rambaut A, et al. (27 co-authors). 2004.
Rise and fall of the Beringian steppe bison. Science
306:1561–1565.

Sonoda S, Li HC, Cartier L, Nunez L, Tajima K. 2000. Ancient HTLV
type 1 provirus DNA of Andean mummy. AIDS Res Hum
Retrovir. 16:1753–1756.

Stiller M, Baryshnikov G, Bocherens H, et al. (12 co-authors). 2010.
Withering away—25,000 years of genetic decline preceded cave
bear extinction. Mol Biol Evol. 27:975–978.

Shapiro et al. · doi:10.1093/molbev/msq262 MBE

886



Stuart AJ, Kosintsev PA, Higham TF, Lister AM. 2004. Pleistocene to
Holocene extinction dynamics in giant deer and woolly
mammoth. Nature 431:684–689.

Suchard MA, Weiss RE, Sinsheimer JS. 2001. Bayesian selection of
continuous-time Markov chain evolutionary models. Mol Biol
Evol. 18:1001–1013.

Taubenberger JK, Reid AH, Krafft AE, Bijwaard KE, Fanning TG. 1997.
Initial genetic characterization of the 1918 ‘‘Spanish’’ influenza
virus. Science 275:1793–1796.

Taubenberger JK, Reid AH, Lourens RM, Wang R, Jin G, Fanning TG.
2005. Characterization of the 1918 influenza virus polymerase
genes. Nature 437:889–893.

Valdiosera CE, Garcia-Garitagoitia JL, Garcia N, et al. (11 co-authors).
2008. Surprising migration and population size dynamics in

ancient Iberian brown bears (Ursus arctos). Proc Natl Acad Sci U
S A. 105:5123–5128.

Willerslev E, Cappellini E, Boomsma W, et al. (29 co-authors). 2007.
Ancient biomolecules from deep ice cores reveal a forested
Southern Greenland. Science 317:111–114.

Worobey M. 2008. Phylogenetic evidence against evolutionary stasis
and natural abiotic reservoirs of influenza A virus. J Virol.
82:3769–3774.

Worobey M, Gemmel M, Teuwen DE, et al. 2008. Direct evidence of
extensive diversity of HIV-1 in Kinshasa by 1960. Nature
455:661–664.

Zhu T, Korber BT, Nahmias AJ, Hooper E, Sharp PM, Ho DD. 1998.
An African HIV-1 sequence from 1959 and implications for the
origin of the epidemic. Nature 391:594–597.

Bayesian Estimation of Unknown Sequence Ages · doi:10.1093/molbev/msq262 MBE

887


