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Abstract

Flux balance analysis is a mathematical approach for analyzing the flow of metabolites through a
metabolic network. This primer covers the theoretical basis of the approach, several practical
examples and a software toolbox for performing the calculations.

Flux balance analysis (FBA) is a widely used approach for studying biochemical networks,
in particular the genome-scale metabolic network reconstructions that have been built in the
past decadel=5. These network reconstructions contain all of the known metabolic reactions
in an organism and the genes that encode each enzyme. FBA calculates the flow of
metabolites through this metabolic network, thereby making it possible to predict the growth
rate of an organism or the rate of production of a biotechnologically important metabolite.
With metabolic models for 35 organisms already available
(http://systemsbiology.ucsd.edu/In_Silico_Organisms/Other_Organisms) and high-
throughput technologies enabling the construction of many more each year®: 7, FBA is an
important tool for harnessing the knowledge encoded in these models.

In this primer, we illustrate the principles behind FBA by applying it to the prediction of the
specific growth rate of Escherichia coli in the presence and absence of oxygen. The
principles outlined can be applied in many other contexts to analyze the phenotypes and
capabilities of organisms with different environmental and genetic perturbations (a
supplementary tutorial provides six additional worked examples with figures and computer
code).

Flux balance analysis is based on constraints

The first step in FBA is to mathematically represent metabolic reactions (Box 1). The core
feature of this representation is a tabulation, in the form of a numerical matrix, of the
stoichiometric coefficients of each reaction (Fig. 1a,b). These stoichiometries impose
constraints on the flow of metabolites through the network. Constraints such as these lie at
the heart of FBA, differentiating the approach from theory-based models based on
biophysical equations that require many difficult-to-measure kinetic parameters® 9,

Constraints are represented in two ways, as equations that balance reaction inputs and
outputs and as inequalities that impose bounds on the system. The matrix of stoichiometries
imposes flux (that is, mass) balance constraints on the system, ensuring that the total amount
of any compound being produced must be equal to the total amount being consumed at
steady state (Fig. 1¢). Every reaction can also be given upper and lower bounds, which
define the maximum and minimum allowable fluxes of the reactions. These balances and
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bounds define the space of allowable flux distributions of a system—that is, the rates at
which every metabolite is consumed or produced by each reaction. Other constraints can
also be added9,

From constraints to optimizing a phenotype

The next step in FBA is to define a biological objective that is relevant to the problem being
studied (Fig. 1d). In the case of predicting growth, the objective is biomass production, the
rate at which metabolic compounds are converted into biomass constituents such as nucleic
acids, proteins, and lipids. Mathematically, the objective is represented by an ‘objective
function’ that indicates how much each reaction contributes to the phenotype. A ‘biomass
reaction’ that drains precursor metabolites from the system at their relative stoichiometries
to simulate biomass production is selected by the objective function in order to predict
growth rates. This reaction is scaled so that the flux through it is equal to the exponential
growth rate () of the organism.

Taken together, the mathematical representations of the metabolic reactions and of the
phenotype define a system of linear equations. In flux balance analysis, these equations are
solved using linear programming. Many computational linear programming algorithms exist,
and they can very quickly identify optimal solutions to large systems of equations. The
COBRA Toolbox!1 is a freely available Matlab toolbox for performing these calculations
(Box 2).

In the growth example, suppose we are interested in the aerobic growth of E. coli under the
assumption that uptake of glucose, and not oxygen, is the limiting constraint on growth. This
involves capping the maximum rate of glucose uptake to a physiologically realistic level
(e.g. 18.5 mmol glucose gDW 1 hr~1) and setting the maximum rate of oxygen uptake to an
unrealistically high level, so that is does not constrain growth. Then, linear programming is
used to determine the flux through the metabolic network that maximizes growth rate,
resulting in a predicted exponential growth rate of 1.65 hr~1. (See Supplementary Tutorial
for computer code).

Anaerobic growth of E. coli can be calculated by constraining the maximum rate of uptake
of oxygen to zero and solving the system of equations, resulting in a predicted growth rate of
0.47 hr~L. Studies have shown that these predicted aerobic and anaerobic growth rates agree
well with experimental measurements!2.

Although growth is easy to experimentally measure, computational approaches such as flux
balance analysis shine in simulations to predict metabolic reaction fluxes and simulations of
growth on different substrates or with genetic manipulations. FBA does not require kinetic
parameters and can be computed very quickly even for large networks, so it can be applied
in studies that characterize many different perturbations. An example of such a case is given
in Supplementary Example 6, which explores the effects on growth of deleting every
pairwise combination of 136 E. coli genes to find double gene knockouts that are essential
for survival of the bacteria.

FBA has limitations, however. Because it does not use Kinetic parameters, it cannot predict
metabolite concentrations. It is also only suitable for determining fluxes at steady state.
Except in some modified forms, FBA does not account for regulatory effects such as
activation of enzymes by protein kinases or regulation of gene expression, so its predictions
may not always be accurate.
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The many uses of flux balance analysis

Because the fundamentals of flux balance analysis are simple, the method has found diverse
uses in physiological studies, gap-filling efforts and genome-scale synthetic biology3. By
altering the bounds on certain reactions, growth on different media (Supplementary Example
1) or with multiple gene knockouts (Supplementary Example 6) can be simulated!2. FBA
can then be used to predict the yields of important cofactors such as ATP, NADH, or
NADPH?13 (Supplementary Example 2).

Whereas the example described here yielded a single optimal growth phenotype, in large
metabolic networks, it is often possible for more than one solution to lead to the same
desired optimal growth rate. For example, an organism may have two redundant pathways
that both generate the same amount of ATP, so either pathway could be used when
maximum ATP production is the desired phenotype. Such alternate optimal solutions can be
identified through flux variability analysis, a method that uses FBA to maximize and
minimize every reaction in a network4 (Supplementary Example 3), or by using a mixed-
integer linear programming based algorithm1®. More detailed phenotypic studies can be
performed such as robustness analysis'6, in which the effect on the objective function of
varying a particular reaction flux can be analyzed (Supplementary Example 4). A more
advanced form of robustness analysis involves varying two fluxes simultaneously to form a
phenotypic phase planel’ (Supplementary Example 5).

All genome-scale metabolic reconstructions are incomplete, as they contain ‘knowledge
gaps’ where reactions are missing. FBA is the basis for several algorithms that predict which
reactions are missing by comparing in silico growth simulations to experimental

results!® 19, Constraint-based models can also be used for metabolic engineering where
FBA based algorithms, such as Optknock?0, can predict gene knockouts that allow an
organism to produce desirable compounds?: 22,

This primer and the accompanying tutorials based on the COBRA toolbox (Box 2) should
help those interested in harnessing the growing cadre of genome-scale metabolic
reconstructions that are becoming available.

Box 1: Mathematical representation of metabolism

Metabolic reactions are represented as a stoichiometric matrix (S), of size m*n. Every
row of this matrix represents one unique compound (for a system with m compounds)
and every column represents one reaction (n reactions). The entries in each column are
the stoichiometric coefficients of the metabolites participating in a reaction. There is a
negative coefficient for every metabolite consumed, and a positive coefficient for every
metabolite that is produced. A stoichiometric coefficient of zero is used for every
metabolite that does not participate in a particular reaction. S is a sparse matrix since
most biochemical reactions involve only a few different metabolites. The flux through all
of the reactions in a network is represented by the vector v, which has a length of n. The
concentrations of all metabolites are represented by the vector x, with length m. The
system of mass balance equations at steady state (dx/dt = 0) is given in Fig. 1¢23:

Sv=0

Any v that satisfies this equation is said to be in the null space of S. In any realistic large-
scale metabolic model, there are more reactions than there are compounds (n > m). In
other words, there are more unknown variables than equations, so there is no unique
solution to this system of equations.
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Although constraints define a range of solutions, it is still possible to identify and analyze
single points within the solution space. For example, we may be interested in identifying
which point corresponds to the maximum growth rate or to maximum ATP production of
an organism, given its particular set of constraints. FBA is one method for identifying
such optimal points within a constrained space (Fig. 2).

FBA seeks to maximize or minimize an objective function Z = c¢Tv, which can be any
linear combination of fluxes, where c is a vector of weights, indicating how much each
reaction (such as the biomass reaction when simulating maximum growth) contributes to
the objective function. In practice, when only one reaction is desired for maximization or
minimization, c is a vector of zeros with a one at the position of the reaction of interest
(Fig. 1d).

Optimization of such a system is accomplished by linear programming (Fig. 1e). FBA
can thus be defined as the use of linear programming to solve the equation Sv = 0 given a
set of upper and lower bounds on v and a linear combination of fluxes as an objective
function. The output of FBA is a particular flux distribution, v, which maximizes or
minimizes the objective function.

Box 2: Tools for flux balance analysis

FBA computations, which fall into the category of constraint-based reconstruction and
analysis (COBRA) methods, can be performed using several available tools?426. The
COBRA Toolbox!! is a freely available Matlab toolbox
(http://systemsbiology.ucsd.edu/Downloads/Cobra_Toolbox) that can be used to perform
a variety of COBRA methods, including many FBA-based methods. Models for the
COBRA Toolbox are saved in the Systems Biology Markup Language (SBML)?7 format
and can be loaded with the function r eadCbNModel . The E. coli core model?8 used in this
Primer is included in the toolbox.

In Matlab, the models are structures with fields, such as ‘r xns’ (a list of all reaction
names), ‘met s’ (a list of all metabolite names) and ‘S’ (the stoichiometric matrix). The
function ‘opt i mi zeCbMbdel ’ is used to perform FBA. To change the bounds on
reactions, use the function ‘changeRxnBounds’. The Supplementary Tutorial contains
examples of COBRA toolbox code for performing FBA.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Formulation of an FBA problem.(a) First, a metabolic network reconstruction is built,
consisting of a list of stoichiometrically balanced biochemical reactions. (b) Next, this
reconstruction is converted into a mathematical model by forming a matrix (labeled S) in
which each row represents a metabolite and each column represents a reaction. (c) At steady
state, the flux through each reaction is given by the equation Sv = 0. Since there are more
reactions than metabolites in large models, there is more than one possible solution to this
equation. (d) An objective function is defined as Z = ¢Tv, where c is a vector of weights
(indicating how much each reaction contributes to the objective function). In practice, when
only one reaction is desired for maximization or minimization, c is a vector of zeros with a
one at the position of the reaction of interest. When simulating growth, the objective
function will have a 1 at the position of the biomass reaction. (e) Finally, linear
programming can be used to identify a particular flux distribution that maximizes or
minimizes this objective function while observing the constraints imposed by the mass
balance equations and reaction bounds.
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Figure 2.

The conceptual basis of constraint-based modeling and FBA. With no constraints, the flux
distribution of a biological network may lie at any point in a solution space. When mass
balance constraints imposed by the stoichiometric matrix S (1) and capacity constraints
imposed by the lower and upper bounds (a; and b;) (2) are applied to a network, it defines an
allowable solution space. The network may acquire any flux distribution within this space,
but points outside this space are denied by the constraints. Through optimization of an
objective function, FBA can identify a single optimal flux distribution that lies on the edge
of the allowable solution space.
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