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Abstract
The number and scope of methods developed to interrogate and use metabolic network
reconstructions has significantly expanded since the first review of the use of constraint-based
analysis in Nature Biotechnology some 14 years ago. In particular, the Escherichia coli metabolic
network reconstruction has reached the genome-scale and has been broadly adapted. Specifically,
it has been used to address a broad spectrum of basic and practical applications, falling into five
main categories: 1) metabolic engineering, 2) model-directed discovery, 3) interpretations of
phenotypic screens, 4) analysis of network properties, and 5) studies of evolutionary processes.
With these accomplishments in hand, the field is expected to move forward and seek to further, i)
broaden the scope and content of network reconstructions, ii) develop new and novel in silico
analysis tools, and iii) expand in adaptation to uses of proximal and distal causation in biology.
Taken together, these efforts will solidify a mechanistic genotype-phenotype relationship for
microbial metabolism.

The availability of reconstructed metabolic networks for microorganisms has increased
rapidly in recent years, and a growing number of research groups are reconstructing
metabolic networks for organisms of interest1. A network reconstruction represents a highly
curated set of primary biological information for a particular organism and thus can be
considered a biochemically, genetically and genomically structured (BiGG) data base1, 2. A
curated BiGG data base (de facto a knowledge base) can be converted into a mathematical
format (i.e., an in silico model), and used to computationally assess phenotypic properties
using a variety of computational methods2, 3. Genome-scale reconstructions are thus, a key
step in quantifying the genotype-phenotype relationship and can be used to ‘bring genomes
to life’4. The purpose of this review is to summarize and classify applications utilizing the E.
coli reconstruction to answer a broad spectrum of biological questions. These studies
provide both an up to date review of the applications of constraint-based analysis and a
guide to similar applications for the growing number of organisms for which genome-scale
reconstructions are becoming available.

The Key Steps in the Formulation of Genome-scale Metabolic Network
Models

The four key steps in the formulation and use of genome-scale models are illustrated in Fig.
1. Foundational to the process is the generation of global, or genome-scale, omics data.
Omics data, along with legacy information (i.e., the ‘bibliome’) and small-scale detailed
experiments, can be used to define the interactions amongst the biological components that
are used to reconstruct organism-specific networks1. Network reconstruction is also an
iterative, on-going process that continually integrates data in a formal fashion as it becomes
available5. As a result, a current and well curated genome-scale network reconstruction is a
common denominator for those studying systems biology of an organism. An in depth
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review on the bottom-up reconstruction process can be found in2 and will not be described
here.

The arrow from step 2 to step 3 in Fig. 1 involves a somewhat subtle, but critical, transition.
With the definition of systems boundaries and other details, a network reconstruction can be
converted into a mathematical format that can be computationally interrogated and
subsequently used for experimental design2. Thus, a network reconstruction is converted
into a Genome-scale Model (GEM)3. This arrow represents a bridge between the realms of
high-throughput data/bioinformatics on one hand and systems science on the other. A
network reconstruction (or BiGG knowledge base) is accessible to all and significant strides
have been made to make computation with GEMs more readily accessible and free of
use6-11. This availability of both genome-scale reconstruction and GEMs has unleashed
creativity in research groups around the world and resulted in the series of studies reviewed
below.

The E. coli Metabolic Reconstruction
The 18-year history of reconstruction of the E. coli metabolic network (summarized in Fig.
2), has culminated in a network containing a total number of 1,260 ORF metabolic
functions12-19. This reconstruction represents 48% of the total experimentally annotated
ORF functions in the E. coli genome (Table 1). It should be noted that the function of 92%
of the 1,260 gene products have been experimentally verified. Reconstruction of the E. coli
network has thus, approached an exhaustion of known metabolic gene functions and it is
now being used in a prospective fashion to discover new metabolic capabilities (see below).
The reconstruction of the E. coli metabolic network represents the best-developed genome-
scale network to date and it has proven to be a platform for a variety of computational
analyses. Three successive E. coli GEMs17-19 have been used as the basis for over 60
detailed studies reviewed below.

Ask not what you can do for a reconstruction, but what a reconstruction
can do for you

A growing number of research groups utilize the E. coli GEM for predicting, interpreting
and understanding E. coli phenotypic states and function, in addition, the reconstruction
itself has been used as a context for the interpretation of large amounts of experimental data.
Applications of the E. coli GEM range from pragmatic to theoretical studies, and can be
classified into five general categories (Fig. 3): 1) metabolic engineering20-30; 2) biological
discovery31-37; 3) assessment of phenotypic behavior19, 38-63; 4) biological network
analysis64-79; and 5) studies of bacterial evolution80-82. The in silico methods used to probe
the E. coli GEM in each study are summarized in Fig. 4. It should be noted that these
methods perform an assessment of the solution spaces associated with the mathematical
representation of a reconstruction2; these methods are categorized as unbiased and biased
methods3. The latter category relies on an observer bias that is stated through an objective
function (that is now beginning to be experimentally examined83) and is utilized in most of
the studies reviewed here use the general application of flux balance analysis (FBA)84-86.
Each category of application is now detailed, with emphasis on the first three that have the
greatest practical utility.

Applications of GEMs to metabolic engineering of E. coli
Through the application of computational methods that incorporate linear, mixed integer
linear, and non-linear programming, it has been demonstrated that model-directed strain
design can lead to increased metabolite production20-30. In these studies, the E. coli GEM is
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principally used to analyze the metabolite production potential of E. coli and identify
metabolic interventions needed to enable the production of the product of interest. Thus, E.
coli strains have been systematically designed through in silico analysis to overproduce
target metabolites such as lycopene23, 24, lactic acid25, ethanol26, succinic acid27, 28, L-
valine29, L-threonine30, additional amino acids21, as well as diverse products from hydrogen
to vanillin22. Select exemplary metabolic engineering applications will be described in more
detail.

To increase the production of an already high producing strain, a systematic computational
search was developed24 to explore the E. coli metabolic network and report gene deletions
that diverted metabolic flux towards the desired product. This process resulted a knock-out
strain, that when constructed, showed a two-fold increase in the production of lycopene over
the parental strain. In this analysis, the computational algorithm MOMA41 and the iJE66018

E. coli GEM were utilized to sequentially examine additive genetic deletions that would
improve lycopene production while maintaining cell viability. Strain designs were
constructed through genetic manipulations using the predicted modifications and it was
found that this computational approach yielded the twofold increase in production rate over
a previously engineered overproducing strain and an 8.5 fold increase over wild-type
production harboring only a lycopene biosynthesis plasmid24. Strain performance was
evaluated by monitoring lycopene production through enzymatic assays and mutant growth
rates. In addition, the strain designs identified computationally were compared to mixed
combinatorial transposon mutagenesis and it was found that the maximum production
observed could be designed solely using the systematic GEM aided computational
method23, 24. Furthermore, a deleterious effect was observed when targets identified in
individual computational designs were combined in an attempt to achieve an overall more
desirable phenotype. Thus, the overall systematic effects from individual designs were not
additive and needed to be interpreted in the context of the entire network.

Two studies producing the amino acids L-valine29 and L-threonine30 have demonstrated the
broad usage of GEM aided computation for strain design. In the first study, GEM aided
modeling was employed in three different areas to increase the production of L-threonine to
industrial titers30. In one instance, in silico modeling was used to identify the optimal
activity of a key enzymatic reaction towards maximum L-threonine production using a
parametric sensitivity analysis that compared reaction activity to L-threonine production
rate. The optimal activity prediction was subsequently used to tune the overexpression of the
gene which encodes for this enzymatic reaction through comparison to base-line activity and
the result was a production increase. This method proved to be vital to the success of this
strain, as a previous transcription profiling guided attempt at overexpression resulted in an
undesirable surplus of activity and was detrimental to L-threonine production. For the same
strain, a GEM aided flux analysis in conjunction with mRNA expression data levels also
guided the elimination of negative regulation on a gene which encoded for a reaction that
channeled flux towards the final product. The third use of the GEM for the design of this
strain occurred when an unwanted byproduct was observed in the culture medium and
computation was utilized to divert the flux from this byproduct to L-threonine30 through
overexpression of another key gene encoded activity. The second analysis applied the
systematic computational search algorithm previously described24 to the updated E. coli
GEM MBEL9797 (similar to the iJR904 GEM17) to improve L-valine production. The in
silico analysis of beneficial knock-outs to divert flux towards the desired product once again
resulted in a significant increase in the production of the desired metabolite over an existing
overproducing strain; more than a two-fold increase in this case29. Furthermore, in this same
study, a number of additional metabolic engineering approaches to increase overproduction
were performed (i.e., relieving feedback inhibition and regulation through attenuation,
removing competing pathways, up-regulation of primary biosynthetic pathways, and
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overexpression of exporting machinery). When compared to each of the other individual
strain modifications, the in silico GEM aided interventions resulted in the greatest increase
in L-valine production29. Taken together, these two studies demonstrate the broad
applications for which GEMs can be utilized to design strains not only in a de novo fashion,
but to make further improvements on strains through integrating and interpreting
experimental data.

Several other strain designs utilizing E. coli GEMs have been reported. In a combined
computational and experimental study, the bi-level optimization algorithm OptKnock20 and
iJR90417 were utilized to overproduce lactate in E. coli25. The algorithm OptKnock
optimizes two objective functions, biomass formation and product secretion, to produce
strains that will couple the excretion of a desirable product to the growth rate. Using
adaptive evolution with growth rate selection pressure, the lactate producing strains
designed using OptKnock were found to possess this growth-coupling property. Growth
rate, uptake and secretion rate profiles were the measures by which this property was
examined and thus this study demonstrated the utility of adaptive evolution as a design
tool87. Additional noteworthy examples of GEM aided design are two studies which
demonstrated27, 28 that GEM modeling using iJR90417 was beneficial to screen genes that
were deemed to be important for succinate production. Combinatorial knock-outs that were
predicted to be overproducers in silico were experimentally verified to display the same
overproducing phenotype in vivo. Furthermore, this method had an advantage over using
comparative genomics for strain design, which was also performed in one of the studies27.

Taken together, a growing number of metabolic engineering studies demonstrate the use of
GEMs to generate strain designs that are often non-intuitive and non-obvious. An excellent
example of a non-intuitive strain improvement outlined in this section was when modeling
was used to not only study the effect of a gene removal, but to tune the expression of a gene
to an optimally predicted level, that when expressed too highly, was detrimental to product
formation. Genome-scale reconstructions thus allow the examination and simulation of
metabolism as an integrated network, circumventing the possible shortcomings of methods
that rely on manual assessment of a limited number of interactions and fail to detect non-
intuitive causal interactions. With the growing availability of organism and strain specific
GEMs, applications for designing microbial strains for industrial production are expected to
continue to grow. This growth expectation is in part based on the on-going reconstruction of
additional cellular processes, such as transcriptional regulation and protein production.
Computations based on genome-scale models are also beginning to influence other areas of
industrial microbiology such as generation of renewable energy88-90 and bioremediation89.

Directing Discovery: GEM-driven discovery in E. coli
GEMs can provide a guide to biological discovery. This capability is based on comparison
of computed and actual experimental outcomes. Given the fact that BiGG knowledge bases
are incomplete and that they contain gaps91, they provide a context for systematic discovery
of missing information. The comparison between computation and experiments are
summarized in Fig. 5 highlighting how agreements and disagreements are analyzed.

The current area of most significant interest is to direct discovery efforts towards
characterizing unknown ORFs in the E. coli genome. Ten years after the first release of the
complete genome-sequence92, many unknown ORFs still exist in the E. coli genome (see
Supplementary Table 1), with many of these likely to encode metabolic functions. ORF
discovery utilizing GEMs also has significant potential to impact not only how new and less
studied genomes are annotated, but to fill out the missing pieces in E. coli metabolism.
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To address this challenge, algorithms have been developed to determine the probable gene
candidates that fill knowledge gaps in the E. coli and other network reconstructions. These
algorithms utilize global network topology and genomic correlations, such as genome
context and protein fusion events32, as well as local network topology and/or phylogenetic
profiles32, 33. Similar tools has been developed which utilize mRNA coexpression93 and
which can evaluate more general metabolic pathway databases94. In addition to these
network topology-based methods, an optimization based procedure has also been developed
to fill network gaps and evaluate reaction reversibility along with adding additional transport
and intracellular reactions from databases of known metabolic reactions36. These studies
produce specific targets for drill-down experiments needed for confirmation of these
computationally generated hypotheses.

Two recent studies have integrated a combined computational and experimental approach to
aid the ORF discovery process in E. coli through utilizing the GEM and high-throughput
phenotype data35, 37. The first study utilized an iterative process35 in which, 1) differences
in modeling predictions and high-throughput growth phenotype data were identified, 2)
potential missing reactions that remedy these disagreements were algorithmically
determined, 3) bioinformatics was utilized to identify likely encoding ORFs, and 4) resulting
targeted ORFs were cloned and experimentally characterized. Application of this process led
to the functional characterization of eight ORFs that are involved in transport, regulatory
and metabolic functions in E. coli35. The discovery process was aided by a high-throughput
growth phenotyping analysis and the genome-wide single-gene mutant collection95, along
with other characterization analyses such as targeted expression profiling. The second GEM-
based analysis which resulted in ORF discovery utilized network topology to examine
orphan reactions in the E. coli network (i.e., reactions known to exist in E. coli that have not
been linked to an encoding gene) identified by the previously mentioned network topology-
based gap-filling algorithms32, 33, 93. The basic premise behind these algorithms is the
utilization of an orphan reaction’s network neighbors as constraints to assign metabolic
function. With the resulting tentative ORF assignment, biochemical characterization studies
utilizing genetic mutants95, analysis of growth under different substrate conditions, and
expression data were all utilized to characterize and assign function to an orphan ORF that is
responsible for a metabolic conversion that has been known for 25 years37.

Further studies in this category of biological discovery applications (not focused on ORF
identification) have utilized GEMs of E. coli to identify potential bottleneck reactions in the
metabolic network34 and as of yet uncharacterized transcription factor target interactions in
E. coli31. The aforementioned study targeting the elucidation of regulatory and metabolic
interactions in E. coli developed an iterative procedure focused on reconciling
computational and experimental discrepancies stemming from high-throughput growth
phenotype and gene expression data where selected expression changes were validated using
RT-PCR31. With the advancement of high-throughput technologies to test the hypotheses
generated from computational studies, these and similar algorithmic approaches are likely to
continue to aid in the quest to achieve full functional annotation of the E. coli genome and
its context-specific uses.

Phenotypic Functions: GEM aided assessment
The area where the E. coli GEMs has been most extensively utilized is for the examination
and quantitative interpretation of metabolic physiology for wild-type, genetically perturbed
and adaptively evolved strains of E. coli19, 38-63. These efforts have implications in both the
quantitative and qualitative understanding of physiological states of the cell. Furthermore,
these efforts have examined E. coli physiology for a vast number of given genetic and
environmental conditions and incorporation of the developed methods will have an impact
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on future design of biological systems and modeling approaches. A large subset of these
studies of phenotypic behavior aim to utilize thermodynamic laws and information to refine
phenotype predictions of GEMs and to incorporate metabolomic and fluxomic data into
modeling19, 40, 47, 49, 52, 54, 55, 57, 61.

A set of distinct computational methods using GEMs have been developed to determine the
physiological state of E. coli after genetic perturbations41, 45, 50. These studies have
utilized 13C flux measurements and growth rate phenotype data to evaluate the predictability
of the developed algorithms when compared to experimental observations. Whereas
comparisons to flux data from wild-type and E. coli mutants reveals that the computational
algorithm MOMA41 provides better predictions for transient growth rates (early post
perturbation state), the algorithm ROOM45 (and basic FBA) was found to be more
successful in predicting final steady-state growth rates and overall lethality45. These
algorithms have been utilized, in addition to basic FBA, for genome-wide essentiality
screens, as now outlined.

A range of computational studies have sought to understand phenotypes through
determining the essential genes19, 46, 51, 53, 63, metabolites44, 60 and reactions39, 47, 48, 58 in
the E. coli metabolic network. A common benchmark for examining GEM predictive ability
is to determine the agreement with growth phenotype data from knock-out collections of E.
coli. Such studies will be further enabled by the recent availability of a comprehensive
single-gene knock-out library for E. coli95 (for example19, 53). Implications for examining
network essentiality in E. coli include determining network essentiality in similar
organisms39, 48, 53, 58, deciphering network makeup and enzyme dispensability (i.e.,
measures of robustness)46, 58, 60, aiding in metabolic network annotation, validation and
refinement44, and even rescuing knock-out strains through additional gene deletions63, to
name a few. The predictive capability of the E. coli GEM, as demonstrated by these studies,
has been instrumental in the adaptation of its use. One particular study examining knock-out
phenotypes has demonstrated that the E. coli GEM was able to predict the outcomes of
adaptively evolved strains to a high degree (78%) when knock-out E. coli strains were
grown in a number of different substrate environments by examining growth rates at the
beginning and end of adaptive evolution43. This study represents a demonstration of a
GEM’s ability to look at adaptive behavior (or ‘distal’ causation96), in addition to immediate
behavior (or ‘proximal’ causation96). Predictive capability is expected to improve through
examining growth behavior across a greater number of environments (additional
phenotyping screens will be necessary) and with an increase of integration of additional
cellular processes. Genetic perturbations have played a key role in the study of the genotype-
phenotype relationship in biology and GEMs can be used to mechanistically interpret the
results and predict the outcomes of such perturbations.

Incorporating thermodynamic information into E. coli GEMs has shown promise in
narrowing predictions of allowable physiological states in a given
environment19, 40, 47, 49, 52, 54, 55, 57, 61 and in identifying reactions likely to be subject to
active allosteric or genetic regulation49, 54. This field is progressing rapidly and should
prove to increase the predictive capabilities of genome-scale modeling through the addition
of governing thermodynamic physiochemical constrains. One particular analysis
incorporating compound formation and reaction energies for the content of the GEM based
on iJR90417 identified reactions that are likely to be effectively irreversible for any realistic
metabolite concentration54. The hypothesis was advanced that these reactions are candidates
for cellular regulation in their respective pathways since enzyme regulation will likely be the
dominant mechanism for control of flux through these reactions54.
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The addition of thermodynamics enables the analysis of metabolomic data in the context of
a reconstruction. A study utilizing high-throughput metabolomic data and GEMs proposed
likely regulatory interactions by deciphering the metabolite concentrations in the context of
overall network functionality49. Not only did the metabolomic data benefit computations by
constraining the system using physiological measurements, but the computational
predictions were also able to validate quantitative metabolomic data sets for consistency
through providing a functional context to relate metabolite concentrations. This application
is one example of how metabolomic data will directly influence modeling and metabolite
concentration data is likely to greatly influence future metabolic modeling due to its intimate
connection with GEM content. Similar work incorporating other quantitative values with
FBA, such as metabolite concentrations57 and flux ratios at branch points in metabolism56 is
also appearing.

Applying a different physiochemical constraint, molecular crowding, a framework has also
been developed to incorporate spatial constraints into FBA59. The functional states predicted
with this method (i.e., FBA with molecular crowding, FBAwMC) and the E. coli GEM were
validated against generated growth, substrate, and production rate data along with gene
expression profiles and enzyme activity measures to demonstrate predictive accuracy,
including substrate preferentiality, when examining growth in complex substrate
environments59, 62. Overall, these studies which incorporate reaction thermodynamics and
additional cellular constraints should further narrow the range of allowable functional
network states that can made based on stoichiometry alone and thus improve the utility of
GEMs.

In addition to analyses on the genomic scale, a number of studies modeling the metabolism
of E. coli on a smaller-scale have been performed. These analyses typically utilize models
containing approximately 100 reactions or less and most often, focus on incorporating non-
linear analysis to understand quantitative experimental data (e.g., isotopomer modeling).
With the advancement of computational power and developed platforms, the networks that
can be analyzed will grow in size97. Given that the results produced from analyses such as
isotopomer modeling have been shown to be highly dependent on the content of a reduced
model, the logical starting point for building such models is the E. coli GEM97. A number of
noteworthy studies have been conducted with reduced models, but not detailed here as they
are outside the scope of this review.

Systems Biology: Analysis of network properties
E. coli is generally viewed as having the most complete characterization of any model
organism98, 99. Due to the incorporation of thousands of metabolic interactions with
relatively high reliability (e.g., 92% of the genes included in the latest reconstruction of E.
coli19 have experimentally determined annotated functions99, Table 1), validated genome-
scale reconstructions of E. coli have become popular resources for the analysis of various
network properties64-79. The methods designed to analyze the underlying network structure
of E. coli metabolism, some characterizing its interplay with regulation, have been
developed to determine a number of physiological features. These features include the most
probable active pathways and utilized metabolites under all possible growth
conditions67, 69, 73, 75, the existence of alternate optimal solutions and their physiological
significance65, conserved intracellular pools of metabolites68, coupled reaction activities66

and their relationship to gene co-expression77, metabolite coupling71, metabolite
utilization72, the organization of metabolic networks64, 76, strategies for E. coli to
incorporate metabolic redundancy78, and the dominant functional states of the network
across various environments70, 74, 79. These findings are both driven by biased approaches
utilizing FBA and biomass objective function optimization and by unbiased approaches such
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as graph-based analyses (see Fig. 4). One noteworthy study utilizing the GEM outlined
network examined thousands of different potential growth conditions and observed a ‘high-
flux backbone’ in E. coli that both carried high levels of flux across the different
environmental conditions and was composed of a relatively small set of enzymatic
reactions67. This result can be of practical importance for synthetic biology efforts aimed
towards manipulating flux within biological systems. Furthermore, this finding was
hypothesized to be a universal feature of metabolic activity in all cells and was consistent
with flux measurements from 13C labeling experiments67.

The studies in this category have a common systems biology theme; namely the
development and subsequent demonstration of methods that identify sets of reactions or
metabolites with correlated or coordinated functions and systematic relationships. The
systems biology that these methods enable and demonstrate has potential implications for, i)
antimicrobial drug-target discovery68, 69, ii) aiding the development of additional metabolic
reconstructions66, 68, iii) guiding genetic manipulations66, iv) improving metabolic
engineering applications67, 68, and v) increasing the general understanding of biological
network behavior65, 74, 77 and resilience78. The role that the E. coli GEM has taken is a
comprehensive and curated set of up to date metabolic knowledge; thus providing a scaffold
for these large-scale computations.

Bacterial evolution: GEM aided studies of distal causation
The GEMs of E. coli have been used to examine the process of bacterial evolution80-82.
Specifically, the network reconstructions have been used to interpret adaptive evolution
events81, horizontal gene transfer80, 81 and evolution to minimal metabolic networks82.
These studies, which utilize the E. coli reconstruction as an organism-specific genetic and
metabolic content database, and the corresponding GEM, have been able to provide insight
into evolutionary events through combining known physiological data (e.g., in various
environmental conditions) with hypotheses and in silico computation. Examining the
evolution of minimal metabolic networks through simulation demonstrated that it was
possible to predict the gene content of close relatives of E. coli by examining the necessity
of genes and reactions in the overall context of the system functionality for a specific
lifestyle82. Similarly, by re-examining network functionality in a number of different
environments and through the utilization of comparative genomics, it was shown that recent
evolutionary events (i.e., horizontal gene transfer) likely resulted from a response to a
change in environment81. Furthermore, computational analysis led to the additional
conclusion that these horizontal gene transfer events are more likely if the host organism
contains an enzyme that catalyzes a coupled metabolic flux related to the transferred
enzyme’s function80, 81. Taken together, these studies demonstrate the importance of having
high-quality curated reconstructions to enable studies on an organism’s response to
environmental changes and for understanding the fundamental forces driving bacterial
evolution.

Closing
The myriad of studies described in this review highlights the rapid development and use of
genome-scale reconstruction and derived computational models to address a growing
spectrum of basic research and applied problems. The experience with genome-scale
reconstructions has demonstrated that they are a common denominator in the systems
analysis of metabolic functions. With the recognition of its basic paradigms and a growing
spectrum of practical uses enabled, there are several exciting challenges that this field now
faces. Accordingly, further development is necessary, and three major areas where it will be
influential are now discussed; i) network reconstructions and the reconstruction process, ii)
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computational BiGG query tools (i.e., modeling), and iii) application to proximal and distal
causation in biology.

The scope of reconstructions is bound to grow, representing more and more BiGG
knowledge in the structured format of a GEM91. Growth in scope in the near-term will on
one front, involve the transcriptional and translational machinery of bacterial cells100-102.
Such an extension will enable a range of studies including the direct inclusion of proteomic
data, fine graining of growth requirements and the explicit consideration of secreted protein
products. Another expansion in scope in the near-term is the reconstruction of the genome-
scale transcriptional regulatory network (TRN). Such reconstruction at the genome-scale is
now enabled by new experimental technologies, such as ChIP-chip103. Experimental
interrogation of the currently available TRN suggests that we know about one-fourth to one-
third of its content31, indicating that there is much to be discovered. Once reconstructed, the
TRN will allow computational predictions of the context-specific uses of the E. coli genome
and the responses of two-component signaling systems. Taken together, these near-term
expansions in content will encompass the activity of apparently 2000 ORFs in the E. coli
genome.

Mid-term expansions in scope will include the growth cycle, shock responses and additional
cellular functions. Such a reconstruction should eventually be a comprehensive
representation of the chemical reactions and transactions enabled by E. coli’s gene products.
Longer-term reconstruction may begin to address the 3-dimensional organization of the
bacterial cell. In particular, high-resolution ChIP-chip data on the DNA binding protein
could enable the estimation of the topological arrangement of the genome, and potentially
elucidate the structure of the cell wall and other cellular structures that will allow us a full 3-
dimensional reconstruction of E. coli.

We now know how to represent BiGG data in either a stoichiometric format or in the form
of causal relationships104 and how to use them to perform several lines of computational
inquiries. Computational query tools of GEMs will continue to be developed. New advances
will likely include modularization methods, use of fluxomic data and eventually kinetics. As
the scope and content of the reconstruction grows, the need to modularize its content
becomes more pressing. Fine or course grained views of cellular processes are needed for
different applications. For instance, as previously mentioned, current computational
limitations force the reduction in a network for the analysis of isotopomer data, and a
rational way to carry out such reduction is needed. Given the systemic nature of fluxomic
data and its phenotypic relevance, there is a pressing need to increase the size of the
networks that can be analyzed for experimental measurement and estimation of flux states.
Finally, although detailed kinetic models of microbial functions may currently be mostly of
academic interest, we will most likely be able to construct them in the mid-term based on
advances with metabolomic and fluxomic data, in addition to the developments that are
occurring with the incorporation of thermodynamic information. Such large-scale kinetic
models are likely to differ from those resulting from traditional approaches for construction
of kinetic models as, they come with different challenges.

As this review shows, the scope of applications of genome-scale reconstructions and GEMs
is growing. Going forward, we wish to comment on three categories of applications: growth
in coverage (i.e., gap-filling), engineering (i.e., synthetic biology), and the development of
fundamental understanding. Growth in coverage will come through discovery of missing
network components. For instance, the latest metabolic reconstruction, iAF1260, contains
14% blocked reactions19. This disconnected content means that we have knowledge gaps
that have arisen due to characterization of individual gene products outside the context of a
given physiological function (i.e., outside a defined pathway). Metabolomic profiling is one
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measure that will provide us with the missing upstream or downstream routes to such dead
ends in the network. Also, an expansion of scope in modeling will allow for further
investigation of network content, such as tRNA charging reactions that are currently in this
blocked reaction set19. Furthermore, growing metabolomic data suggests that we are
discovering the existence of several new metabolites. Pathways that include these
metabolites need to be discovered. Methods exist to compute missing pathways between
molecules105 that can be applied to such data. Such pathways, in turn, will lead to
experimental programs to discover novel gene functions and to validate or refute the
existence of such pathways. Similarly, we expect that a number of the components of TRNs
are missing, such as new sRNA molecules (see Supplementary Table 1). Clearly, well QC/
QA’ed reconstructions will help in guiding us to comprehensive genome-scale
representation of all major cellular processes in bacteria at the BiGG data level of resolution
that, in turn, enables GEMs of growing coverage and resolution. The scope of this effort has
been described as being; “… 10 times more ambitious and 100 times more important for
mankind [compared with Human Genome Project]…” Hans Westerhoff106.

Predictive models allow for design. In fact, in engineering, there is ‘nothing more useful that
a good theory.’ As this review demonstrates, genomics and high-throughput technologies
have enabled the construction of predictive computational models. The scope of such
predictions is limited at the moment, but with the growing scope and coverage of genome-
scale reconstructions and advancements in the development of computational tools, this
scope will broaden. Not only will GEMs influence design in synthetic biology, but their
influence in discovery of cellular content will provide a more complete picture of the
environment (i.e., the parts list in the cell) in which future synthetically engineered
constructs and circuits will be placed. The impact of GEMs on synthetic biology is thus
likely to be notable; ranging from the provision of the cellular-context of a small-scale gene
circuit design to engineering of the entire genome-scale network towards fundamentally new
and useful (i.e., production) phenotypes.

Finally, we can speculate about the deep scientific impact that comprehensive predictive
GEMs will have on our understanding of the living process. A comprehensive view of
cellular functions will allow us to study the fundamental properties of both the underlying
energy and information flows in living organisms. Such a view is likely to deeply affect our
understanding of both distal and proximal causation in biology.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Formulation and use of GEMs as a four-step process
Formulation and use of GEMs as a four-step process. Step 1, the process is based on a
variety of high-throughput data sets (i.e., omics data) and a comprehensive assessment of the
literature (i.e., bibliomic data). Step 2, all of the data types are used to reconstruct the list of
biochemical transformations that make up a network as well as their genetic basis1. In
principal, the network is unique. Step 3, the data contained in the reconstruction can be
formally represented (i.e., in the form of matrices and logical statements) that can be
mathematically characterized by a variety of methods. Step 4, the computational model
enables a broad spectrum of applications, as reviewed in this article. Figure adapted from2
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Figure 2. The ongoing reconstruction of the E. coli metabolic network
History of the E. coli metabolic reconstruction. Shown are six milestone efforts contributing
to the reconstruction of the E. coli metabolic network. For each of the six
reconstructions 12-19, the number of included reactions (blue diamonds), genes (green
triangles) and metabolites (purple squares) are displayed. Also listed are noteworthy
properties that each successive reconstruction provided over previous efforts. For example,
Varma & Palsson13, 14 included amino acid and nucleotide biosynthesis pathways in
addition to the content that Majewski & Domach12 characterized. The start of the genomic
era92 (1997) marked a significant increase in included reconstruction components for each
successive iteration. The reaction, gene and metabolite values for pre-genomic era
reconstructions were estimated from the content outlined in each publication and in some
cases, encoding genes for reactions were unclear.
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Figure 3. Applications of the Genome-Scale Model (GEM) of E. coli
Uses of the E. coli reconstructions divided into five categories. (A) A drawing of a predicted
effect from a loss of function mutation in a simple system is shown. Metabolic engineering
studies have investigated in silico strain design using E. coli metabolic reconstructions to
overproduce desired products20-30. (B) Recent studies utilizing the reconstruction in a
prospective manner have aimed to use the current biochemical and genetic information
included in the metabolic network along with additional data types to drive biological
discovery, such as predicting genes encoding for orphan reactions32, 33, 35-37. (C) Utilizing
the reconstruction in phenotypic studies, computational analyses have examined
gene19, 46, 51, 53, 63, metabolite44, 60 and reaction39, 47, 48, 58 essentiality along with
considering thermodynamics19, 40, 47, 49, 52, 54, 55, 57, 61 to make better predictions about the
physiological state (i.e., the active pathways) of the cell for a given environmental condition.
(D) The E. coli reconstructions have been used to analyze and interpret the intrinsic
properties of biological networks. One example being finding coupled reaction activities66

(as shown in the drawing) across different growth conditions. (E) Using the network
reconstruction, evolutionary studies have examined the cellular network in the context of
adaptive evolution events81, horizontal gene transfer80, 81 and minimal metabolic network
evolution (as shown in the drawing)82.
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Figure 4. Summary of the in silico methods utilized in published E. coli GEM studies
This heatmap characterizes the incorporation of different computational methods into
studies utilizing genome-scale models of E. coli. A dark box indicates that a particular
method (one method per row) was utilized in a corresponding study (one citation per
column); the frequency of usage of a particular method is given on the right. Studies were
grouped into one of five general categories and studies examining phenotypic behavior were
further divided into three subgroups. Studies that contributed new experimental growth data
are also marked along the bottom offset row.
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Figure 5. Comparison of computation and experimental data: identification of agreements and
disagreements
The comparison of GEM computation and organism-specific experimental measurements
identifies agreements and disagreements. The phenotypic outcomes are tabulated for genetic
perturbations examined in a given environment (e.g., growth or no growth). A ‘+’ indicates
that a given phenotype is not affected by the perturbation, and ‘−’ indicates it does. Each
outcome of comparison has a different implication; 1: consistency check - a perturbation has
no affect on the property being measured and modeling predicts the same; 4: validation - the
perturbation affects the experimental outcome and modeling with the GEM predicts this
outcome; 2: identification of missing content - when GEM modeling fails to predict the
positive confirmation of the property being measured, this outcome indicates that there is
missing content in the GEM and can lead to the identification of specific areas for biological
discovery; 3: identification of errors, inconsistencies or missing context-specific information
– a positive prediction for the measured property and an opposite experimental observation
indicates a possible error in the current organism-specific knowledge or that additional
context-specific information is lacking from the GEM or modeling method (e.g.,
transcriptional regulation).
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Table 1

Properties of the most current E. coli metabolic reconstruction19

Included Genes 1260 (28%) d

  Experimentally Based Function 1161 (92%)

  Computationally Predicted Function 99 (8%)

Unique Functional Proteins 1148

  Multigene Complexes 167

    Genes Involved in Complexes 415

 Instances of Isozymes a 346

Reactions 2077

Metabolic Reactions 1387

 Unique Metabolic Reactions b 1339

  Cytoplasmic 1187

  Periplasmic 192

  Extracellular 8

Transport Reactions 690

    Cytoplasm to Periplasm 390

    Periplasm to Extracellular 298

    Cytoplasm to Extracellular 2

Gene - Protein - Reaction associations

  Gene Associated (Metabolic / Transport) 1294 / 625

 Spontaneous / Diffusion Reactions c 16 / 9

  Total (Gene Associated and No Association Needed) 1310 / 634 (94%)

  No Gene Association (Metabolic / Transport) 77 / 56 (6%)

Exchange reactions 304

Metabolites

 Unique Metabolites b 1039

  Cytoplasmic 951

  Periplasm 418

  Extracellular 299

a
tabulated on a reaction basis, not counting outer membrane non-specific porin transport

b
reactions can occur in or between multiple compartments and metabolites can be present in more than one compartment

c
diffusion reactions do not include facilitated diffusion reactions and are not included in this total if they can also be catalyzed by a gene product at

a higher rate.

d
overall genome coverage based on 4453 total ORFs in E. coli; iAF1260 contains 48% of the ORFs in E coli that have been characterized

experimentally (2403 ORFs)99
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