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The application of the gene finder HMMGeneto the Adh region of the Drosophila melanogaster is described, and the
prediction results are analyzed. HMMGeneis based on a probabilistic model called a hidden Markov model, and
the probabilistic framework facilitates the inclusion of database matches of varying degrees of certainty. It is
shown that database matches clearly improve the performance of the gene finder. For instance, the sensitivity
for coding exons predicted with both ends correct grows from 62% to 70% on a high-quality test set, when
matches to proteins, cDNAs, repeats, and transposons are included. The specificity drops more than the
sensitivity increases when ESTs are used. This is due to the high noise level in EST matches, and it is discussed in
more detail why this is and how it might be improved.

It is difficult to accurately identify all the genes in the
eukaryotic DNA sequences that are pouring out of the
large-scale sequencing laboratories these days. At pres-
ent, the most reliable way to find genes is by close
similarity to proteins from the same or other organ-
isms, by cDNAs from the same or a closely related or-
ganism, or by comparison between closely (but not too
closely) related genomes, such as human and mouse.
Homology information does, of course, not solve the
annotation problem completely, because many genes
have no significant similarity with other known se-
quences. In addition, the homology information is of-
ten incomplete, so that only part of the gene can be
localized because ESTs are incomplete or a protein only
shows similarity to part of the sequence.

Most work on automated gene finding has fo-
cussed on de novo prediction of genes with no homol-
ogy. These efforts have not yet produced the perfect
method, at least not for most eukaryotes. For a gene
finder to be really useful for large-scale annotation, it
has to be able to combine database matches with de
novo prediction so as to give a reasonable prediction of
gene structures compatible with the matches. This is
more complicated than it sounds because many data-
base matches are quite uncertain, in particular, those
involving ESTs.

This paper describes the application of the HMMGene
gene finder (Krogh 1997, 1998a) to the 3-Mb Adh re-
gion of Drosophila melanogaster (Ashburner et al. 1999).
The expert annotation of this region was held back,
and a blind prediction experiment called GASP was
done. Several groups submitted predictions (Reese et al.
2000a), and this paper is a description of my submis-
sion to GASP.

HMMGeneis based on a probabilistic model called a

hidden Markov model (Durbin et al. 1998). The proba-
bilistic framework allows for a very simple, and yet
powerful, way of including database matches. The ad-
vantage of the hidden Markov model, as compared
with many other models, is that it can model the gram-
matical structure of genes (Krogh 1998b), which means
that the prediction will always splice correctly, always
start with a start codon and end with a stop codon (if
the gene is complete), always obey whatever consensus
splice sites you specify, and so on. (HMMGenevery rarely
violate the grammar of a gene by predicting an intron
in the middle of a stop codon, meaning that after splic-
ing there will be an in-frame stop codon. This problem
is difficult to fix in the standard HMM framework.) In
addition, it has modules for recognition of both coding
regions and the common signals associated with genes
built into it. This combination of “everything you
want for a gene finder” in one model is the reason for
the recent popularity of HMMs for this problem (Krogh
et al. 1994; Kulp et al. 1996; Burge and Karlin 1997;
Henderson et al. 1997; Lukashin and Borodovsky
1998).

In this paper I will focus on the improvements
obtained when database matches are included.

RESULTS
The Adh region was searched for matches to proteins,
cDNAs, ESTs, repeats, and transposons. Each match
was recorded with the type of match (coding, EST, re-
peat, etc.), beginning and end of the match (on the
DNA), the strand on which it occurs, and a confidence.
If the confidence is close to 1, the feature is considered
certain, whereas if it is close to 0, it is considered very
uncertain. For the ESTs matching the sequence, it was
checked whether it was likely that the match was on
the wrong strand (see Methods). Introns were anno-
tated when a match was split in two segments in anE-MAIL krogh@cbs.dtu.dk; FAX 45 4593 1585.
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intron-like manner (see Methods). After resolving over-
lapping matches, the number of different regions re-
sulting from the searches are shown in Table 1.

A hidden Markov model was estimated from a set
of 514 sequences with a total of ∼4 Mb (see Methods).
The model has states for intergenic regions, 58 and 38-
untranslated regions (UTRs), coding regions, and in-
trons in both UTRs and coding regions. It contains
states designed to recognize translation start and stop,
splice sites, branchpoints, and poly(A) sites.

The model was used to predict genes in the Adh
sequence. For each strand, the most probable gene
structures were found given the model and using the
various types of database matches.

To assess the effect of using database matches, ex-
actly the same procedure was repeated once without
any database matches and with all database matches,
except for ESTs. Here, I have given the standard statis-
tics, that is, the sensitivity and specificity at the base
level, the exon level, and gene level. Note that “exon”
here means only the coding part of an exon—UTRs are
not included in the statistics. For exons and whole
genes, the number of missed ones and wrong ones are
also given. The sensitivity calculated at the gene level is
the percentage of annotated genes with a correctly pre-
dicted coding region. This means that the annotated
and predicted coding regions agree exactly. The speci-
ficity is defined as the percent of the total number of
predicted genes that are correct.

The sensitivity and specificity at the whole gene
level was also calculated with a less stringent measure
of correctness, 99% and 95% correct coding bases. This
is for two reasons. First, a 95% correctly predicted gene
is almost as good as a 100% correctly predicted one for
most uses, and second, for a 99% correct gene it is quite
likely that the prediction is the correct one and the
annotation is a bit off, because coding regions of a few
base pairs or the exact start codon can easily be
wrongly annotated even from cDNA. These numbers, I
believe, are of more practical relevance than those for
exactly correct genes.

The performance was measured on the two anno-
tations provided by the GASP organizers: std1 that con-
tains 43 genes that are quite certain and std3 that con-

tains 222 genes of which many are less certain. The
numbers for the std1 and std3 annotations are shown
in Tables 2 and 3. The annotations in std1 are nonex-
haustive, so numbers on specificity are not given. For
std3, which is probably close to being exhaustive, but
of less certainty, I have given both sensitivity and
specificity. Because of software limitations, the predic-
tions were done on pieces of ∼300 kb of the Adh se-
quence, and while making the statistics for this paper,
I discovered that the program had failed on the reverse
strand of the piece between bases 1,000,001 and
1,300,000. This has been rectified, so I give the num-
bers from both the original submission and the cor-
rected one, which contains eight additional genes in
that region.

DISCUSSION
The performance of the method compares well with
the other submissions to GASP (Reese et al. 2000a). It is
interesting that the sensitivity is significantly higher
on the std1 set than on std3. This might be an indica-
tion of more errors in std3 than should be expected,
but it could of course also be a random fluctuation,
because std1 contains only 43 genes. Another possible
explanation is that std1 may contain “easier” genes
than std3 for some reason. More than half of the genes
are >95% correct in std1 (when including all database
matches), which is a quite encouraging number.

There is a general increase in sensitivity when
more of the database matches are included, and there
is an accompanying drop in the number of missed
genes. The only exception is that sensitivity drops by
one gene for 100% correct genes for std1 when EST
matches are used. However, when EST matches are
added, the specificity consistently drops significantly,
and the number of wrong predictions increases for std3
(wrong predictions are those where the predictions do
not overlap any annotated coding region).

The drop in specificity is probably an indication
that the method is sensitive to ESTs matching in un-
expected places or being on the wrong strand. This is
confirmed when looking at the lengths of the coding
regions of predicted genes. When not using ESTs, the
two shortest predicted coding regions are 183 and 270
bases. With ESTs there are nine predictions of a coding
region <100 and six between 100 and 200. To accom-
modate the strange EST matches, the program predicts
silly little genes. When excluding the 15 predicted
genes with a coding region <200, the specificity in-
creases without affecting the sensitivity on either of
the standard sets (see Table 3).

It is still unclear to what extent it pays to include
EST matches in the way done here. The inclusion of
ESTs is a complicated affair because of the high noise
level. HMMGeneassigns a probability to a base in a da-
tabase match, and the total probability of the region is

Table 1. Number of Various Types of Regions
Annotated in the Adh Sequence after Database Searches

Type of
match

No. of
matches

No. of bases
covered

Coding 130 120647 (4.13%)
cDNA 48 8682 (0.30%)
EST 337 91010 (3.12%)
Intron 176 158868 (5.44%)
Repeat 50 65999 (2.26%)

Total 741 445206 (15.25%)
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this probability raised to the power of the length of the
match. This means that ignoring a long EST is very
improbable, whereas it is quite probable to ignore a
short one. The way database matches are included in
the prediction seems quite sensible for “safe” database
matches, such as proteins and cDNA, but for ESTs ex-
perimentation with other types of length dependences
is necessary. Another possible improvement is to in-
clude information about the position of the EST, that
is, whether it is 58 or 38, which was not done here.

The problem of ESTs being on the wrong strand is
a serious one for a method like HMMGene. If a long EST
is on the wrong strand, a gene is likely to be predicted
on that strand. It does not exclude a correct prediction
on the opposite strand, however. For each EST on one
strand, I put a weak EST match on the other strand to
permit the information to be used, but that of course
makes it possible to get a gene on the wrong strand

when the EST is correctly placed, so it has to have a
very low confidence. Another possibility would be to
have the matches with equal confidence on both
strands and then in a post-processing step choose be-
tween overlapping genes.

It is a nontrivial task to postprocess database hits.
For instance, How should overlapping hits be dealt
with? and How should the confidence be assigned?
The rules I have used are quite ad hoc and are essen-
tially just a first shot. It is very likely that better pro-
cedures can be found.

There is perhaps also room for improvements in
the underlying gene model. Comparing the results of
the gene predictions without database matches with
those obtained with, for example, Genie (Reese et al.
2000b) suggests that it could be better. A comparison
of the length distribution of predicted exons with that
of annotated exons (data not shown) suggests that this

Table 3. The Performance on the std3 Set

No database
matches

All but EST
matches

Including all
matches

Predictions
>200

Original
submission

Base level
Sensitivity 74.0 80.6 81.1 81.1 77.9
Specificity 91.3 92.5 91.1 91.5 90.7

Exon level
Sensitivity 48.3 50.4 51.4 51.4 50.1
Specificity 58.1 56.7 52.7 54.5 53.2
Missing exons 29.8 24.2 23.1 23.1 25.6
Wrong exons 15.6 15.1 21.3 18.7 20.9

Gene level
Sensitivity 100% 26.1 28.8 30.2 30.2 29.3
Sensitivity 99% 28.8 32.0 33.3 33.3 32.4
Sensitivity 95% 33.3 39.2 42.3 42.3 41.4
Specificity 100% 34.3 33.9 30.2 32.4 30.4
Specificity 99% 37.9 37.6 33.3 35.7 33.6
Specificity 95% 43.8 46.0 42.3 45.4 43.0
Missing genes 16.7 9.9 9.9 9.9 13.2
Wrong genes 7.7 6.9 16.7 10.6 16.4

In the column Predictions >200, 15 predicted genes with a coding region <200 bp long were removed from the predictions using all
database matches. Other columns correspond to Table 2.

Table 2. The Performance on the std1 Set

No database
matches

All but EST
matches

Including
all matches

Original
submission

Base level
Sensitivity 76.9 95.9 96.8 96.3

Exon level
Sensitivity 61.8 69.9 69.9 68.3
Missing exons 19.5 7.3 4.1 5.7

Gene level
Sensitivity 100% 37.2 39.5 37.2 34.9
Sensitivity 99% 41.9 44.2 44.2 41.9
Sensitivity 95% 46.5 48.8 55.8 53.5
Missing genes 18.6 4.7 4.7 7.0

The last column corresponds to the original submission to GASP.
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is one place where an improvement could be obtained,
and this and other improvements will be tested in fu-
ture work.

In conclusion, this study shows that gene predic-
tions can certainly be improved significantly by in-
cluding database matches, as expected. However, ESTs
are not easy to deal with in an automated manner, and
more work is needed to fully benefit from these.

METHODS
The Adh sequence was downloaded from http://
whitefly.lbl.gov/GASP1/data/data.html. The std1 and
std3 sets were obtained after the experiment from
http://whitefly.lbl.gov/GASP1/data/standard.html.

Database Searches
All database searches were done with BLAST version
2.0.9 (Altschul et al. 1997) doing gapped alignments.
All databases mentioned below, except for SWISS-
PROT, were supplied by the GASP1 organizers at http://
whitefly.lbl.gov/GASP1/data/data.html.

Below, matching a “bad word” means that the de-
scription matches the word transposon, transposable,
repetitive, retrovirus, or transcriptase.

Proteins: The SWISS-PROT database release 35.0
(Bairoch and Apweiler 1998) was searched using
BLASTXwith default settings. All matches with a score
>100 bits and not matching a bad word were kept and
annotated as coding. The fraction of identities was
used as the confidence of the match. If a protein match
had a gap in the DNA sequence, an intron was anno-
tated if the matching parts of the protein were <20
amino acids apart and overlapped with <20 amino ac-
ids and if the intron was between 40 bp and 20,000 bp
long. The confidence of the intron was set to the av-
erage of the flanking protein matches defining it.

cDNA: The Adh region was searched against the
cDNA database with BLASTNand a maximum E-value
of 1.e 1 10. All matches with a score >100 bits and not
matching a bad word were kept and annotated as
cDNA. The confidence was calculated in the same way
as for proteins, and the introns were annotated as for
the protein matches.

EST: The Adh region was searched against the EST
database with BLASTN. All matches with a score >100
bits, not matching a bad word, and having an identity
>93% were kept and annotated as EST. The confidence
was set to the fraction of identical residues minus 0.9
times 10 (i.e., ranging from 0.3 to 1). Some ESTs were
moved to the other strand (see below).

Repeats: The Adh region was searched against the
repeat database with BLASTNand a maximum E-value
of 1.e 1 10. All matches with a score >100 bits were
kept and annotated as repeat. The confidence was cal-
culated in the same way as for proteins.

Transposons: The Adh region was searched
against the Transposons database with BLASTN. All
matches with a score >100 bits were kept and anno-
tated as repeat. The confidence was calculated in the
same way as for proteins.

It is a serious problem that some ESTs occur on the
wrong strand, and an attempt was made to correct
some of them. A copy of the gene model was made and
modified to an EST model by removing states for in-
tergenic regions and allowing frameshift errors and
stop codons in the reading frame (both with very low
probabilities). For each EST, the probability of it being
one of these classes was calculated: 58 → 58, 58 → cod-
ing, 58 → 38, coding → coding, coding → 38, or
38 → 38. Here, for example, 58 → coding means that the
EST starts in the 58 UTR of a gene and ends in the
coding region. These probabilities were also calculated
for the reverse strand. If the log probability of the most
probable class on the reverse strand was 5 higher than
the best on the direct strand, then the EST was moved
to the other strand.

All of these database matches were combined in
the following way (outline): every database match
within cDNA introns was deleted. Repeats and trans-
posons were combined into one group called repeats,
and overlapping matches were combined. EST matches
overlapping with repeats or introns (defined by cDNAs
or proteins) were removed. All overlapping ESTs were
combined. Parts of EST or cDNA that overlapped cod-
ing regions were discarded.

Finally, repeat matches were copied to the other
strand, protein and cDNA matches were labeled inter-
genic on the other strand, and ESTs were copied to the
other strand with a confidence scaled by 0.01.

Data Sets for Training
Two data sets were obtained with GenBank annota-
tions of reasonable quality. The first was supplied by
Staffan Bergh and Anneli Attersand who had carefully
checked it. The second one was supplied by the GASP1
organizers and is available at the GASP1 Web site.
These two sets were combined into one such that iden-
tical GenBank entries were avoided. The two sets may
contain some homologous genes, but not very many.
Sequences longer than 20 kb were split into two or
more. The final set contains 4 Mb in 514 sequences. For
the GASP1 experiment it was not required that only
the data set provided by the organizers was used, so it
was supplemented in this way simply to enlarge it. The
larger the data set, the better the gene finder tends to
perform.

HMMGene
HMMGenebuilds on a hidden Markov model (Durbin et
al. 1998) with states for intergenic regions, 58 and 38
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UTRs, coding regions, and introns in both UTRs and
coding regions. It contains states designed to recognize
translation start and stop, splice sites, branchpoints,
and poly(A) sites. The model is estimated by condi-
tional maximum likelihood from the training data
(Krogh 1997).

Each state of the model is labeled as belonging to
one of the nine classes: intergenic, 58 UTR, 38 UTR,
coding, intron of phase 0, 1, or 2 in coding region,
intron in 58 UTR, or intron in 38 UTR. Each path
through the model gives a labeling of the DNA se-
quence. The total probability of a labeling is the sum
over all paths giving that labeling. Genes are predicted
as the most probable labeling given the model by the
N-best algorithm (Krogh 1997). This is an approxima-
tive algorithm, because there is no efficient way to do
it exactly, but the approximation is very good. A se-
quence of states (a path) p = p1,. . .,pL has the prob-
ability

P~x,p! = apL,pL+1
P
i=1

L

api−1,pi
epi

~xi!

where x = x1,. . .,xL is the DNA sequence, akl is the
probability of making a transition from state k to state
l, and ek(a) is the probability of emitting base a in state
k. State p0 is the begin state, and state pL+1 is the end
state.

To include database matches, a probability distri-
bution over labels is assigned to each base in the se-
quence. In regions with no database matches, the
probabilities are uniform. In a region with a hit to a
protein for instance, the probability for coding is set
higher than the rest, and similarly for other types of
matches. If the probability for label d at position i is
called pi(d), the probability of a path and a labeling is

P~x,y,p! = apL,pL+1
P
i=1

L

api−1,pi
epi

~xi!pi@c ~pi!#

Here c(k) means the label of state k.
In Table 4 the probabilities of the various types of

matches used in this study are given under the assump-
tion that the confidence is 1. If the confidence is not 1,
a probability P is scaled by (1 1 confidence) /

9 + confidence 2 P, meaning that the distribution is
uniform (1 / 9) at a confidence of 0.

These probabilities are multiplied along a path, so
the probability of not using a path consistent with a
database match drops exponentially with the length of
the match. Therefore, some of the probabilities used
are very close to uniform. This is most notable for ESTs.

Because of software limitations, the sequence of 3
Mb was split-up into pieces of up to 300 kb in size, and
genes were predicted on these pieces. Afterwards, the
predictions were transformed back to the original se-
quence coordinates. The sequence was split either at a
repeat/transposon position or at positions where an
initial scan had not predicted any genes to try to avoid
splitting in the middle of genes.

Performance Measures
Performance was measured by several measures. Below,
exon means the coding part of an exon. UTRs are ig-
nored in the statistics. A correct prediction means one
that agrees with one of the standard sets disregarding
the possibility of errors in these:

Base level sensitivity: the percent of bases an-
notated as coding, which are predicted as coding.

Base level specificity: the percent of bases pre-
dicted as coding, which are correct.

Exon level sensitivity: the percent of annotated
exons predicted correctly (with both ends correct).

Exon level specificity: the percent of predicted
exons, which are correct.

Missed exons: the percent of annotated exons
with which no predicted exons overlap.

Wrong exons: the percent of predicted exons not
overlapping any annotated exons.

Gene level sensitivity: the percent of annotated
genes predicted >X% correct. A gene is X% correct if at
least X% of the annotated coding bases are predicted
and X% of the bases predicted as coding are also an-

Table 4. Label Probabilities for Database Matches of the Six Types Considered

Type of annotation Coding Intron in coding Intron in UTR Intergenic 5* UTR 3* UTR

Coding 0.300 0.150 0.050 0.050 0.050 0.050
cDNA 0.320 0.007 0.007 0.007 0.320 0.320
Intron 0.088 0.130 0.130 0.088 0.088 0.088
EST 0.120 0.107 0.107 0.107 0.120 0.120
Repeat 0.000 0.125 0.125 0.125 0.125 0.125
Intergenic 0.013 0.013 0.013 0.990 0.013 0.013

There are three different labels for introns in coding regions (corresponding to the three possible phases) and two intron labels for
UTRs, those in 58 UTRs, and those in 38 UTRs. Therefore, the rows sum to 1 (e.g., for coding 0.3 + 3 2 0.15 + 2 2 0.05 + 0.05 + 0.05
+ 0.05 = 1).
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notated as coding (i.e., base level sensitivity and speci-
ficity >X% for that gene). Numbers are reported for
X = 95, 99, and 100.

Gene level specificity: the percent of predicted
genes, which are X% correct.

Missed genes: the percent of annotated genes
with coding regions not overlapping any predicted
coding regions.

Wrong genes: the percent of predicted genes
with coding regions not overlapping any annotated
coding regions.
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