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We describe our statistical system for promoter recognition in genomic DNA with which we took part in the
Genome Annotation Assessment Project (GASP1). We applied two versions of the system: the first uses a
region-based approach toward transcription start site identification, namely, interpolated Markov chains; the
second was a hybrid approach combining regions and signals within a stochastic segment model. We compare
the results of both versions with each other and examine how well the application on a genomic scale compares
with the results we previously obtained on smaller data sets.

Within the next year, the complete genomes of several
eukaryotic organisms will be stored in the databases,
and we must face the challenge that the annotation
process is getting more and more complicated for
higher eukaryotes such as Drosophila melanogaster. The
first draft of the annotation of a newly sequenced ge-
nome is usually limited to the coding part of a gene,
but a complete annotation should also contain the po-
sitions of the transcription start sites (TSSs), as most of
the regulatory elements involved in gene expression
are located in the promoter region upstream or close to
the TSS.

The untranslated region between transcription
and translation start site, the 58 UTR region, can span
up to several kilobases in higher eukaryotes—it is an
average of almost 2000 bases for the TSS set compiled
in the paper by Reese et al. (2000). Therefore, we can-
not simply take the sequence upstream from the start
codon. Methods that aim at the identification of regu-
latory elements in the upstream regions of coexpressed
genes such as described by van Helden et al. (1998)
have been shown to deliver promising results for the
yeast genome, which has very short UTRs, but they will
be hard to apply when the annotation only consists of
the coding part of a gene. Of course, TSS identification
is alleviated by full-length cDNA sequencing projects;
but the sequencing always starts at the 38 end of a gene,
and we need additional methods to confirm the 58 end
of the sequences or to hunt for rarely expressed genes
that are not contained in the libraries at all. We are in
a desperate need to at least get a good guess where the
TSS (and thus the promoter region) is located, or we
will start looking for the needle in the wrong haystack.

The only available evaluation of promoter predic-
tion tools on genomic DNA was performed by Fickett
and Hatzigeorgiou (1997). At that time, no extensive
unstudied genomic sequences were available for com-

plex eukaryotic organisms, and the authors performed
their evaluation on a set of 18 newly released verte-
brate sequences, the longest of which comprised <6000
bp. It was, therefore, a great challenge to see how well
a recently developed promoter recognition program
performs on a genomic scale and what we can con-
clude for the annotation of complex eukaryotic ge-
nomes. We will briefly review the two versions of our
promoter recognition system that we applied, discuss
in detail the results that were described in the paper of
Reese et al. (2000), and finally draw conclusions on the
state of promoter prediction in general.

METHODS
MCPromoter (Ohler et al. 1999a) is a statistical method
to look for eukaryotic polymerase II TSSs in genomic
DNA. It consists of a model for promoter sequences
and a mixture model for nonpromoter sequences, con-
taining submodels for coding and noncoding se-
quences. To localize TSSs, a window of 300 bases is
shifted over the sequence in steps of 10 bases (see Fig
1). At every position, the difference between the log
likelihood of the promoter and the nonpromoter
model is computed. The resulting plot describes the
regulatory potential over the sequence and is
smoothed by a median and hysteresis filter (see Duda
and Hart 1973) to eliminate single false predictions
and reduce the high number of neighboring minima
that are due to noise. The program then makes a pre-
diction for each local minimum below a prespecified
threshold (see Fig. 2 for an example).

We applied two versions of MCPromoter on the
Adh sequence (for a comprehensive description of the
annotated genes, see Ashburner et al. 1999). The dif-
ference between the two versions lies in the structure
of the promoter model, and we wanted to explore how
well our more recent modeling approach improved on
the recognition of TSSs. Version 1.1 of MCPromoter is
a content-based approach and uses a single interpo-E-MAIL ohler@informatik.uni-erlangen.de; FAX 49-9131-303811.
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lated Markov chain (IMC) of 5th order to model pro-
moter sequences. As such, the model does not rely on
a priori knowledge about the structure of the promot-
ers but judges the overall composition of the sequence.
For the two nonpromoter components for coding and
noncoding sequences, we also chose IMCs. Related
methods were described by Audic and Claverie (1997)
and Hutchinson (1996). In the figures of the GASP pa-
per by Reese et al. (2000), version 1.1 is denoted by
LMEIMC (Lehrstuhl für Mustererkenung–Interpolated
Markov Chains). The submodels are trained using the
discriminative maximum mutual information (MMI)
approach. In contrast to the standard maximum like-
lihood (ML) parameter estimation, MMI maximizes
the probability of the decision for the correct sequence
class and therefore also takes negative samples
into account (Ohler et al. 1999b).

In version 2.0, we replaced the single Markov
chain promoter model by a more sophisticated
stochastic segment model (SSM) that consists of
five states for specific segments within eukaryotic
promoter sequences: the upstream region, the
TATA box, a spacer, the initiator, and the down-
stream region (Ohler et al. 2000). With this ap-
proach, we obtain more accurate statistics for
those segments, combining states for regions
such as the one for the upstream segment with
states for signals such as the one for the TATA
box. Hybrid approaches that exploit statistics for
several regions were described previously by So-
lovyev and Salamov (1997) and Zhang (1998). Ver-
sion 2.0 of MCPromoter is denoted by LMESSM
in the GASP overview paper (Reese et al. 2000).

Both versions were trained on the same rep-
resentative data set consisting of D. melanogaster

promoter and nonpromoter sequences of 300 bases in
length, obtained at http://www.fruitfly.org/sequence/
drosophila-datasets.html. Cross-validation classifica-
tion experiments on this data (described in Ohler et al.
2000) gave a recognition rate of 27.9% for version 1.1
and 58.8% for version 2.0 at the very low false-positive
rate of 1%. We used the system at this threshold for the
evaluation of the Adh region.

RESULTS
According to the results described by Reese et al.
(2000), version 1.1 of MCPromoter could identify 26
(28.2%) TSS with a false-positive rate of 1/2633 bases,
and version 2.0 successfully located 31 promoters
(33.6%) with the slightly higher false-positive rate of
1/2437 bases. This compares well with the results de-
scribed in the comparison of promoter recognition al-
gorithms in vertebrate DNA (Fickett and Hatzigeorgiou
1997), especially considering the smaller amount of
available training data for the organism of D. melano-
gaster.

Sixteen of the 26 predictions made by version 1.1
are contained in the set of 31 predictions from version
2.0. Considering that the methods are closely related,
this number is somewhat small and could be due to the
different training algorithms (MMI vs. ML parameter
estimation). A negatively surprising fact for us was the
small improvement of the performance that version
2.0 achieved in comparison with the earlier version.
With the results from cross-validation experiments on
the representative set of promoters and nonpromoters
in mind, we expected the new version to localize
∼20%–30% more TSSs at the same rate of false predic-
tions.

We also examined the accuracy of the predictions.
Nine predictions from version 1.1 are located within

Figure 2 Application of MCPromoter v. 2.0 on a 5000-bp long sequence
of the Adh region containing the TSS for the Adh gene. We show the
nonsmoothed as well as the smoothed output of the system. The strongest
local minimum corresponds to the annotated TSS of Adh.

Figure 1 Structure of the MCPromoter system. A window of
300 bases is shifted over the sequence in steps of 10 bases, and
the content is evaluated with the promoter and nonpromoter
models. The difference between the promoter and the nonpro-
moter log likelihood is stored. After postprocessing, the local
minima are reported as TSS predictions.
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540 bases of the annotated start site (mean distance
202 bases), as opposed to 13 close predictions and a
mean distance of 166 bases of the predictions obtained
by version 2.0. As we do not know exactly how far the
true TSS differs from our current annotation, this num-
ber is encouraging to us. Concerning the identification
of the exact position of the start sites, version 2.0 is
clearly more successful than version 1.1.

DISCUSSION
To get a better understanding why the performance of
version 1.1 and version 2.0 did not differ very much
from each other, we looked at the system performance
without the smoothing postprocessing steps (Table 1).
When we look at the results without postprocessing, it
becomes obvious that the new version is a great im-
provement and primarily, that the post processing is
responsible for version 2.0 not performing as well as
expected. The smoothing was designed specifically for
a region-based approach like the Markov chains ap-
plied in version 1.1 and works less well on a hybrid
approach like version 2.0 where the promoter region is
divided into several distinct segments.

A rough extrapolation of the cross-validation re-
sults at the currently used threshold (1% false posi-
tives) leads to a worst-case false-positive rate of 1/2000
bases. From the nonsmoothed results it becomes clear
now that this is obviously not met by reality. A possible
explanation is that the available training data is still
not representative enough. It certainly contains too
little noncoding data, and the available promoter set
has a bias toward TATA box containing promoters.

We already realized a number of plans to improve
the model performance of version 2.0. The first idea
was to include reverse sequence models for the non-
promoter states, as we scan both directions of the se-
quence independently. It is well known that the re-
verse sequences of genes still resemble the true genes
on the opposite strand and that the statistics of reverse
exon and intron sequences are close to the forward
sequence—hence, the problem of shadow gene predic-
tions. Nevertheless, we added two new states for re-

verse exon and intron sequences to have a more accu-
rate model for the nonpromoters.

In a second step, we increased the amount of train-
ing data. For the Adh experiment, we took the model
that performed best on three cross-validation experi-
ments and left out one third of the available data to see
whether our predictions on this set were met by reality.
Instead, we took the whole set and determined the 1%
false-positive threshold by choosing the mean thresh-
old of the three experiments.

Finally, we replaced the median and hysteresis fil-
ters by a simple approach to allow only one prediction
below the threshold within 300 bases (the model size).
A similar smoothing approach is implicitly carried out
by the gene finders with integrated promoter predic-
tors: They choose the best prediction in accordance
with the model topology that allows for only one pre-
diction before the start codon. But the question re-
mains whether some predictions close to the best one
might correspond to alternative TSSs, and whether
such a reduction actually filters out useful information.

As a result of these improvements, 20 predictions
instead of 13 are now located within 540 bases from
the putative start site, and we could increase the per-
formance to 34 identified promoters with a false-
positive rate of 1/3000 bases.

Conclusions and Outlook
The analysis of the Adh region clearly showed that pro-
moter recognition by itself, without context informa-
tion, still delivers too many false positives to be prac-
tically useful on a genomic scale. There is still a lot of
room for improvement—we think of parallel states for
the TATA box region and the downstream region, dis-
criminative training of the segment model, and a non-
linear combination of the segment likelihoods. But the
overall picture will maybe not change in the near fu-
ture when we exploit only the primary sequence. We
will see whether the usage of other features such as
DNA bendability (Pedersen et al. 1998) can lead to the
necessary improvement.

From a different point of view, though, the rate of

Table 1. Influence of Postprocessing Methods on the Performance of the Promoter Predictors

Postprocessing

Version 1.1 Version 2.0

recognized
promoters

false positive
rate per base

recognized
promoters

false positive
rate per base

None 47 1/450 57 1/719
Hysteresis 33 1/1833 43 1/1653
Median and hysteresis 26 1/2633 31 1/2437

Shown are the results without any postprocessing (i.e., every local minimum is used as prediction), after
hysteresis smoothing, and after both median and hysteresis smoothing. The postprocessing operations reduce
the number of false positives for both versions, but it becomes clear that the effect is much better for the pure
region-based approach of v. 1.1.
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one false positive in 3 kilobases seems reasonable if one
has already an idea where the coding part of the gene
is. This information can be provided both by align-
ments of cDNA to genomic sequence and ab initio
gene finding. We therefore envision a promoter recog-
nition system used within a gene finder that also in-
corporates EST and cDNA alignment information to
extend the coding region on the 58 end. The accuracy
of the TSS localization of MCPromoter is good enough
to then use such a preliminary annotation of the TSS for
the analysis of upstream regions of coexpressed genes.

Both versions of the MCPromoter system can be
accessed via the World Wide Web at http://
www5.informatik.uni-erlangen.de/HTML/English/
Research/Promoter.
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