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Computational methods for automated genome annotation are critical to our community’s ability to make full
use of the large volume of genomic sequence being generated and released. To explore the accuracy of these
automated feature prediction tools in the genomes of higher organisms, we evaluated their performance on a
large, well-characterized sequence contig from the Adh region of Drosophila melanogaster. This experiment, known
as the Genome Annotation Assessment Project (GASP), was launched in May 1999. Twelve groups, applying
state-of-the-art tools, contributed predictions for features including gene structure, protein homologies,
promoter sites, and repeat elements. We evaluated these predictions using two standards, one based on
previously unreleased high-quality full-length cDNA sequences and a second based on the set of annotations
generated as part of an in-depth study of the region by a group of Drosophila experts. Although these standard
sets only approximate the unknown distribution of features in this region, we believe that when taken in context
the results of an evaluation based on them are meaningful. The results were presented as a tutorial at the
conference on Intelligent Systems in Molecular Biology (ISMB-99) in August 1999. Over 95% of the coding
nucleotides in the region were correctly identified by the majority of the gene finders, and the correct
intron/exon structures were predicted for >40% of the genes. Homology-based annotation techniques
recognized and associated functions with almost half of the genes in the region; the remainder were only
identified by the ab initio techniques. This experiment also presents the first assessment of promoter prediction
techniques for a significant number of genes in a large contiguous region. We discovered that the promoter
predictors’ high false-positive rates make their predictions difficult to use. Integrating gene finding and
cDNA/EST alignments with promoter predictions decreases the number of false-positive classifications but
discovers less than one-third of the promoters in the region. We believe that by establishing standards for
evaluating genomic annotations and by assessing the performance of existing automated genome annotation
tools, this experiment establishes a baseline that contributes to the value of ongoing large-scale annotation
projects and should guide further research in genome informatics.

Genome annotation is a rapidly evolving field in ge-
nomics made possible by the large-scale generation of
genomic sequences and driven predominantly by com-
putational tools. The goal of the annotation process is
to assign as much information as possible to the raw
sequence of complete genomes with an emphasis on
the location and structure of the genes. This can be
accomplished by ab initio gene finding, by identifying
homologies to known genes from other organisms, by
the alignment of full-length or partial mRNA se-
quences to the genomic DNA, or through combina-
tions of such methods. Related techniques can also be
used to identify other features, such as the location of
regulatory elements or repetitive sequence elements.
The ultimate goal of genome annotation, the func-

tional classification of all the identified genes, cur-
rently depends on discovering homologies to genes
with known functions.

We are interested in an objective assessment of the
state of the art in automated tools and techniques for
annotating complete genomes. The Genome Annota-
tion Assessment Project (GASP) was organized to for-
mulate guidelines and accuracy standards for evaluat-
ing computational tools and to encourage the devel-
opment of new models and the improvement of
existing approaches through a careful assessment and
comparison of the predictions made by current state-
of-the-art programs.

The GASP experiment, the first of its kind, was
similar in many ways to the CASP (Critical Assessment
of techniques for protein Structure Prediction) contests
for protein structure prediction (Dunbrack et al. 1997;
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Levitt 1997; Moult et al. 1997, 1999; Sippl et al. 1999;
Zemla et al. 1999), described at http://predictioncenter.lln-
l.gov. However, unlike the CASP contest, GASP was
promoted as a collaboration to evaluate various tech-
niques for genome annotation.

The GASP experiment consisted of the following
stages: (1) Training data for the Adh region, including
2.9 Mb of Drosophila melanogaster genomic sequence,
was collected by the organizers and provided to the
participants; (2) a set of standards was developed to
evaluate submissions while the participating groups
produced and submitted their annotations for the re-
gion; and (3) the participating groups’ predictions were
compared with the standards, a team of independent
assessors evaluated the results of the comparison, and
the results were presented as a tutorial at ISMB-
99(Reese et al. 1999).

Participants were given the finished sequence for
the Adh region and some related training data, but they
did not have access to the full-length cDNA sequences
that were sequenced for the paper by Ashburner et al.
(1999b) that describes the Adh region in depth. The
experiment was widely announced and open to any
participants. Submitters were allowed to use any avail-
able technologies and were encouraged to disclose
their methods. Because we were fortunate to attract a
large group of participants who provided a wide variety
of annotations, we believe that our evaluation ad-
dresses the state of art in genome annotation.

Twelve groups participated in GASP, submitting
annotations in one or more of six categories: ab initio
gene finding, promoter recognition, EST/cDNA align-

ment, protein similarity, repetitive sequence identifi-
cation, and gene function. Table 1 lists each participat-
ing group, the names of the programs or systems it
used, and which of the six classes of annotations it
submitted (see enclosed poster in this issue for a
graphic overview of all the groups’ results). Additional
papers in this issue are written by the participants
themselves and describe their methods and results in
detail.

It should be noted that the lack of a standard that
is absolutely correct makes evaluating predictions
problematic. The expert annotations described by the
Drosophila experts (Ashburner et al. 1999b) are our best
available resource, but their accuracy will certainly im-
prove as more data becomes available. At best, the data
we had in hand is representative of the true situation,
and our conclusions would be unchanged by using a
more complete data set. At worst, there is a bias in the
available data that makes our conclusions significantly
misleading. We believe that the data is not unreason-
able and that conclusions based on it are correct
enough to be valuable as the basis for discussion and
future development. We do not believe that the values
for the various statistics introduced below are precisely
what they would be using the extra information, and
we emphasize that they should always be considered in
the context of this particular annotated data set [for a
further detailed discussion of evaluating these predic-
tions, see Birney and Durbin (2000)].

In the next section we describe the target genomic
sequence and the auxiliary data, including a critical
discussion of our standard sets. Methods gives a short

Table 1. Participating Groups and Associated Annotation Categories

Program
name

Gene
finding

Promoter
recognition

EST/c DNA
alignment

Protein
similarity Repeat

Gene
function

Mural et al.
Oakridge, US GRAIL X X X

Parra et al.
Barcelona, ES GeneID X

Krogh
Copenhagen, DK HMMGene X

Henikoff et al.
Seattle, US BLOCKS X X

Solovyev et al.
Sanger, UK FGenes X

Gaasterland et al.
Rockefeller, US MAGPIE X X X X X

Benson et al.
Mount Sinai, US TRF X

Werner et al.
Munich, GER CoreInspector X

Ohler et al.
Nuremberg, GER MCPromoter X

Birney
Sanger, UK GeneWise X X

Reese et al.
Berkeley/Santa Cruz, US Genie X X
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description of existing annotation methods that
complements other papers in this issue, including a
review article of existing gene-finding methods by
Stormo (2000) and papers describing the methods used
by the individual participants. Results assesses the in-
dividual annotation methods and the Conclusions dis-
cusses what the experiment revealed about issues in-
volved in annotating complete genomes. An article by
Ashburner (2000) provides a biological perspective on
the experiment.

Data: The Benchmark Sequence: The Adh Region
in D. melanogaster
The selection of a genomic target region for assessing
the accuracy of computational genome annotation
methods was a difficult task for several reasons: The
genomic region had to be large enough, the organism
had to be well studied, and enough auxiliary data had
to be available to have a good experimentally verified
“correct answer,” but the data should be anonymous
so that a blind test would be possible. The Adh region
of the D. melanogaster genome met these criteria. D.
melanogaster is one of the most important model or-
ganisms, and although the Adh region had been exten-
sively studied, the best gene annotations and cDNAs
for the region were not published until after the con-
clusion of the GASP experiment. The 2.9 Mb Adh con-
tig was large enough to be challenging, contained
genes with a variety of sizes and structures, and in-
cluded regions of high and low gene density. It was not
a completely blind test, however, because several
cDNA and genomic sequences for known genes in the
region were available prior to the experiment.

Genomic DNA Sequence
The contiguous genomic sequence of the Adh region in
the D. melanogaster genome spans nearly 3 Mb and has
been sequenced from a series of overlapping P1 and
BAC clones as a part of the Berkeley Drosophila Ge-
nome Project (BDGP; Rubin et al. 1999) and the Euro-
pean Drosophila Genome Project (EDGP; Ashburner et
al. 1999c). This sequence is believed to be of very high
quality with an estimated error rate of <1 in 10,000
bases, based on PHRAPquality scores. A detailed analy-
sis of this region can be accessed through the BDGP
Web site (http://www.fruitfly.org/publications/
Adh.html) as well as in Ashburner et al. (1999b).

Curated Training Sequences
We provided several D. melanogaster-specific data sets
to the GASP participants. This enabled participants to
tune their tools for Drosophila and facilitated a com-
parison of the various approaches that was unbiased by
organism-specific factors. The following curated se-
quence sets, extracted from Flybase and EMBL (pro-
vided by the EDGP at Cambridge and provided by the
BDGP, were made available and can be found at http://

www.fruitfly.org/GASP/data/data.html): (1) A set of
complete coding sequences (start to stop codon), ex-
cluding transposable elements, pseudogenes, noncod-
ing RNAs, and mitochondrial and viral sequences
(2122 entries); (2) nonredundant set of repetitive se-
quences, not including transposable elements (96 en-
tries); (3) transposon sequences, containing only the
longest sequence of each transposon family and ex-
cluding defective transposable elements (44 entries);
(4) genomic DNA data from 275 multi- and 141 single-
exon nonredundant genes together with their start and
stop codons and splice sites, taken from GenBank ver-
sion 109; (5) a set of 256 unrelated promoter regions,
taken from the Eukaryotic Promoter Database (EPD;
Cavin Périer et al. 1999, 2000) and a collection made
by Arkhipova (1995); and (6) an uncurated set of cDNA
and EST sequences from work in progress at the BDGP.
Five of the 12 participating groups reported making use
of these data sets.

Resources for Assessing Predictions: The “Correct” Answer
In a comparative study, the gold standard used to
evaluate solutions is the most important factor in de-
termining the usefulness of the study’s results. For the
results to be meaningful, the standard must be appro-
priate and correct in the eyes of the study’s audience.
Because our goal was to evaluate tools that predict
genes and gene structure in complex eukaryotic organ-
isms, we drew our standard from a complex eukaryotic
model organism, choosing to work with a 2.9-Mb se-
quence contig from the Adh region of D. melanogaster.
Comparing predicted annotations in such a region is
only consequential if the standard is believed to be
correct, if that correctness has been established by
techniques that are independent of the approaches be-
ing studied, and if the predictors had no prior knowl-
edge of the standard. Ideally, it would contain the cor-
rect structure of all the genes in the region without any
extraneous annotations. Unfortunately, such a set is
impossible to obtain because the underlying biology is
incompletely understood. We built a two-part approxi-
mation to the perfect data set, taking advantage of data
from the BDGP cDNA sequencing project (http://
www.fruitfly.org/EST) and a Drosophila community ef-
fort to build a set of curated annotations for this region
(Ashburner et al. 1999b). Our first component, known
as the std1 data set, used high-quality sequence from a
set of 80 full-length cDNA clones from the Adh region
to provide a standard with annotations that are very
likely to be correct but certainly are not exhaustive.
The second component, known as the std3 data set,
was built from the annotations being developed for
Ashburner et al.(1999b) to give a standard with more
complete coverage of the region, although with less
confidence about the accuracy and independence of
the annotations. We believe that this two-part approxi-
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mation allows us to draw useful conclusions about the
ability to accurately predict gene structure in complex
eukaryotic organisms even though the absolutely per-
fect data set does not exist.

Eukaryotic transcript annotations have complex
structures based on the composition of fundamental
features such as the TATA box and other transcription
factor binding sites, the transcription start site (TSS),
the start codon, 58 and 38 splice site boundaries, the
stop codon, the polyadenylation signal, exon start and
end positions, and coding exon start and end posi-
tions. Our gene prediction evaluations focused on an-
notations that are specific to the coding region, from
the start codon through the various intron–exon
boundaries to the stop codon, and on promoter anno-
tations. Although other types of features are also bio-
logically interesting, we were unable to devise reliable
methods for evaluating their predictions. Whenever
possible, we relied on unambiguous biological evi-
dence for our evaluations; when that was not available,
we combined several types of evidence curated by do-
main experts.

Our goal for our first standard set, called std1, was
to build a set of annotations that we believed were very
likely to be correct in their fine details (e.g., exact lo-
cations for splice sites), even if we were unable to in-
clude every gene in the region. We based std1 on align-
ments of 80 high-quality, full-length cDNA sequences
from this region with the high-quality genomic se-
quence for the contig. The cDNA sequences are the
product of a large cDNA sequencing project at the
BDGP and had not been submitted to GenBank at the
time of the experiment. Working from five cDNA li-
braries, the longest clone for each unique transcript
was selected and sequenced to a high-quality level.
Starting with these cDNA sequences, we generated
alignments to the genomic sequence using sim4 (Flo-
rea et al. 1998) and filtered them on several criteria. Of
the 80 candidate cDNA sequences, 3 were paralogs of
genes in the Adh region and 19 appeared to be cloning
artifacts (unspliced RNA or multiple inserts into the
cloning vector), leaving us with alignments for 58
cDNA clones. These alignments were further filtered
based on splice site quality. We required that all of the
proposed splice sites include a simple “GT”/“AG” core
for the 58 and 38 splice sites, respectively, and that they
scored highly (58 splice sites $ 0.35 threshold, which
gives a 98% true positive rate, and 38 splice
sites $ 0.25, which gives a 92% true positive rate) us-
ing a neural network splice site predictor trained on D.
melanogaster data (Reese et al. 1997). This process left
us with 43 sequences from the Adh region for which we
had structures confirmed by alignments of high-
quality cDNA sequence data with high-quality ge-
nomic data and by the fit of their splice sites to a Dro-
sophila splice site model. Of these 43 sequences, 7 had

a single coding exon and 36 had multiple coding ex-
ons. We added start codon and stop codon annota-
tions to these structures from the corresponding re-
cords in the std3 data set.

After the experiment, we recently discovered four
inconsistent genes in the std1 data set. For two genes
(DS07721.1, DS003192.4), the cDNA clones (CK02594,
CK01083, respectively) are likely to be untranscribed
genomic DNA that was inappropriately included in the
cDNA library. Two other genes from std3 (DS00797.5
and wb) were incorrectly reported in std1 as three par-
tial all incomplete EST alignments (cDNA clones:
CK01017, LD33192, and CK02229). In keeping with
std1’s goal of highly reliable annotations, all four se-
quences have been removed from the std1 data set that
is currently available on the GASP web site. The results
reported here use the larger, less reliable, data set as
presented at the ISMB-99 tutorial.

The complete set of the original 80 aligned high-
quality, full-length cDNA sequences was named std2.
This set was never used in the evaluation process be-
cause it did not add any further compelling informa-
tion or conclusions because of the unreliable align-
ments.

Our goal for the second, used standard set, called
std3, was to build the most complete set of annotations
possible while maintaining some confidence about
their correctness. Ashburner et al. (1999b) compiled an
exhaustive and carefully curated set of annotations for
this region of the Drosophila genome based on infor-
mation from a number of sources, included BLASTN,
BLASTP (Altschul et al. 1990), and PFAMalignments
(Sonnhammer et al. 1997, 1998; Bateman et al. 2000),
high scoring GENSCAN(Burge and Karlin 1997) and
Genefinder (P. Green, unpubl.) predictions,
ORFFinder results (E. Friese, unpubl.), full-length
cDNA clone alignments (including those used in std1),
and alignments with full-length genes from GenBank.
This set included 222 gene structures: 39 with a single
coding exon and 183 with multiple coding exons. Of
these 222 gene structures, 182 are similar to a homolo-
gous protein in another organism or have a Drosophila
EST hit. For these structures, the intron–exon bound-
aries were verified by partial cDNA/EST alignments us-
ing sim4 (Florea et al. 1998), homologies were discov-
ered using BLASTX, TBLASTX, and PFAMalignments,
and gene structure was verified using a version of GEN-
SCANtrained for finding human genes. Of the 54 re-
maining genes, 14 had EST or homology evidence but
were not predicted by GENSCANor Genefinder , and
40 were based entirely on strong GENSCANand Gen-
efinder predictions. All of this evidence was evalu-
ated and edited by experienced Drosophila biolo gists,
resulting in a protein coding gene data set that exhaus-
tively covers the region with a high degree of confi-
dence and represents their view of what should or
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should not be considered an annotated gene. Their
gene data set excluded the 17 found transposable ele-
ments [6 LINE-like elements (G, F, Doc, and jockey) and
11 retrotransposons with long terminal repeats (LTRs;
copia, roo, 297, blood, mdg1-like, and yoyo)], which al-
most all contain long ORFs. Some of these ORFs code
for known and some others for, so far, unknown pro-
tein sequences.

Both of these data sets have shortcomings. As
mentioned above, std1 only includes a subset of the
genes in the region. It also includes a pair of transcripts
that represent alternatively spliced products of a single
gene. Although this is not incorrect, it confounds our
scoring process. Because the cDNA alignments do not
provide any evidence for the location of the start and
stop codons, we based those annotations in std1 on
information from the std3 set. Many of the gene struc-
tures in std3 are based on GENSCANand Genefinder
predictions without other supporting evidence, so it is
possible that the fine details are incorrect, that the en-
tries are not entirely independent of the techniques
used by the predictors in the experiment, and that the
set overestimates the number of genes in the region.

See Birney and Durbin (2000) and Henikoff and
Henikoff (2000) for further discussion of the difficul-
ties of evaluating these predictions especially in the
protein homology annotation category, in which, by
training, these programs will recognize protein-like se-
quences such as the ORFs in transposable elements as
genes. They and others (see other GASP publications in
this issue) have raised the issues of annotation over-
sights, transposons, and pseudogenes. In cases where
GASP submissions suggest a missed annotation, this
information has been passed onto biologists for further
research, including screening cDNA libraries. We be-
lieve that it would have been biased to retroactively
change the scoring scheme used at the GASP experi-
ment based solely on missed annotations discovered
by the participant’s submissions. See Discussion for an
example of an annotation that may be missing in the
standard data sets. In the std3 data set we based our
standard for what is or is not a Drosophila gene on the
expert annotations provided by Ashburner et al.
(1999b). It is clear that both transposons and pseudo-
genes are genuine features of the genome and that
gene-finding technologies might recognize them. Be-
cause they were not included as coding genes in the
expert annotations, we decided against including them
in the standard set.

Building a set for the evaluation of transcription
start site or, more generally, for promoter recognition
proved to be even more difficult. For the genes in the
Adh region almost no experimentally confirmed anno-
tation for the transcription start site exists. As the 58

UTR regions in Drosophila can extend up to several

kilobases, we could not simply use the region directly
upstream of the start codon. To obtain the best pos-
sible approximation, we took the 58 ends of annota-
tions from Ashburner et al. (1999b) where the up-
stream region relied on experimental evidence (the 58

ends of full-length cDNAs) and for which the align-
ment of the cDNA to the genomic sequence included a
good ORF. The resulting set contained 92 genes of the
222 annotations in the std3 set (Ashburner et al.
1999b). This number is larger than the number of cD-
NAs used for the construction of the std1 set described
above because we included cDNAs that were already
publicly available. The 58 UTR of these 96 genes has an
average length of 1860 bp, a minimum length of 0 bp
(when the start codon was annotated at the beginning,
due to the lack of any further cDNA alignment infor-
mation; this is very likely to be only a partial 58 UTR
and therefore an annotation error), and a maximum
length of 36,392 bp.

Data Exchange Format
One of the challenges of a gene annotation study is
finding a common format in which to express the vari-
ous groups’ predictions. The format must be simple
enough that all of the groups involved can adapt their
software to use it and still be rich enough to express the
various annotations.

We found that the General Feature Format
(GFF) (formerly known as the Gene Feature Finding
format ) was an excellent fit to our needs. The GFF
format is an extension of a simple name, start, end re-
cord that includes some additional information about
the sequence being annotated: the source of the fea-
ture; the type of feature; the location of the feature in
the sequence; and a score, strand, and frame for the
feature. It has an optional ninth field that can be used
to group multiple predictions into single annotations.
More information can be found at the GFF web site:
http://www.sanger.ac.uk/Software/formats/GFF/. Our
evaluation tools used a GFF parser for the PERL pro-
gramming language that is also available at the GFF
web site.

We found that it was necessary to specify a stan-
dard set of feature names within the GFF format, for
instance, declaring that submitters should describe
coding exons with the feature name CDS. We pro-
duced a small set of example files (accessible from the
GASP web site) that we distributed to the submitters
and were pleased with how easily we were able to work
with their results.

METHODS
Genome annotation is an ongoing effort to assign functional
features to locations on the genomic DNA sequence. Tradi-
tionally, most of these annotations record information about
an organism’s genes, including protein-coding regions, RNA
genes, promoters, and other gene regulatory elements, as well
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as gene function. In addition to these gene features, the fol-
lowing general genome structure features are also commonly
annotated: repetitive elements and general A, C, G, T content
measures (e.g., isochores).

Genome Annotation Classes
Although the GASP experiment invited and encouraged any
class of annotations, most submissions were for gene-related
features, emphasizing ab initio gene predictions and pro-
moter predictions. In addition, two groups submitted func-
tional protein domain annotations, and two groups submit-
ted repeat element annotations. In the sections that follow,
we categorize and discuss the submitted predictions.

Gene Finding
Protein coding region identification is a major focus of com-
putational biology. A separate article in this issue (Stormo
2000) discusses and compares current methods, whereas an
early paper by Fickett and Tung (1992) and a more recent
review of gene identification systems by Burge and Karlin
(1998) give excellent overviews of the field. Table 2 lists the
six groups that predicted protein-coding regions with the cor-
responding program names. It also categorizes the submis-
sions based on the types of information used to build the
model for predictions. Although all groups used statistical in-
formation for their models—predominantly coding bias, cod-
ing preference, and consensus sequences for start codon,
splice sites, and stop codons—only two groups used protein
similarity information or promoter information to predict
gene structure. More than half of the groups incorporated
sequence information from cDNA sequences. In general,
state-of-the-art gene prediction systems use complex models
that integrate multiple gene features into a unified model.

Promoter Prediction
The complicated nature of the transcription initiation process
makes computational promoter recognition a hard problem.
We define promoter prediction as the identification of TSSs of
protein coding genes that are transcribed by eukaryotic RNA
polymerase II. A detailed description of the structure of pro-
moter regions and existing promoter prediction systems is
beyond the scope of this paper. Fickett and Hatzigeorgiou
(1997) provide an excellent review of the field.

We can broadly identify three different approaches to
promoter prediction, with at least one GASP submission in
each category. The first class consists of “search by signal”

programs, which identify single binding sites of proteins in-
volved in transcription initiation or combinations of sites to
improve the specificity. The program CoreInspector by
Werner’s group (M. Scherf, A. Klingenhoff, and T. Werner, in
prep.) belongs to this category and searches for co-
occurrences of two common binding sites within the core
promoter (the core promoter usually denotes the region
where the direct contact between the transcription machin-
ery, the holoenzyme of the transcription complex, and the
DNA takes place). The second class is often termed “search by
content,” as programs within this group do not rely on spe-
cific signals but take the more general approach of identifying
the promoter region as a whole, frequently based on statistical
measures. Sometimes the promoter is split into several regions
to obtain more accurate statistics. The MCPromoter program
(Ohler et al. 1999) is a member of this second group. In com-
parison with the signal-based group, the content-based sys-
tems usually are more sensitive but less specific. The third
class can be described as “promoter prediction through gene
finding.” Simply using the start of a gene prediction as a pu-
tative TSS can be very successful if the 58 UTR region is not too
large. This approach can be improved by including similarity
to EST sequences and/or a promoter module in the statistical
systems used for gene prediction. The TSS predictions submit-
ted by the participants of the MAGPIEand the Genie groups
belong to this last class.

The notorious difficulty of the problem itself is exacer-
bated by the limited amount of existing reliably annotated
training material. The experimental mapping of a TSS is a
laborious process and is therefore not routinely carried out,
even if the gene itself is studied extensively. So, both training
the models and evaluating the results is a difficult task, and
the conclusions we draw from the results must be considered
with much caution.

Repeat Finders
Detecting repeated elements plays a very important role in
modeling the three-dimensional structure of a DNA molecule,
specifically, the packing of the DNA in the cell nucleus. It is
believed that the packing of the DNA around the nucleosome
is correlated with the global sequence structure produced pre-
dominantly by repetitive elements. Repeats also play a major
role in evolution (for review, see Jurka 1998). Two groups,
Gary Benson [tandem repeats finder v. 2.02 (TRF; Benson
1999)] and the MAGPIEteam using two programs Calypso (D.
Field, unpubl.) and REPuter (Kurtz and Schleiermacher 1999)

submitted repetitive sequence an-
notations. TRF (Benson 1999) lo-
cates approximate tandem repeats
(i.e., two or more contiguous, ap-
proximate copies of a pattern of
nucleotides) where the pattern size
is unspecified but falls within the
range from 1 to 500 bases. The Ca-
lypso program (D. Field, unpubl.)
is an evolutionary genomics pro-
gram. Its primary function is to find
repetitive regions in DNA and pro-
tein sequences that have higher
than average mutation rates. The
REPuter program (Kurtz and
Schleiermacher 1999) determines
repeats of a fixed preselected length
in complete genomes.

Table 2. Gene-Finding Submissions

Program
name Statistics Promoter

EST/cDNA
alignment

Protein
similarity

Mural et al.
(Oakridge, US) GRAIL X X

Guigó et al.
(Barcelona, ES) GeneID X

Krogh
(Copenhagen, DK) HMMGene X X X

Solovyev et al.
(Sanger, UK) FGenes X

Gaasterland et al.
(Rockefeller, US) MAGPIE X X X

Reese et al.
(Berkeley/Santa Cruz, US) Genie X X X X
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Protein Homology Annotation
Homologies to gene sequences from other organisms can of-
ten be used to identify protein-coding regions in anonymous
genomic sequence. In addition to the location, it is often pos-
sible to infer the function of the predicted gene based on the
function of the homologous gene in the other organism or of
a known structural and functional protein element in the
gene. Whereas the tools in the gene prediction category and
the EST/cDNA alignment category are usually intended to de-
termine the exact structure of a gene, the protein homology-
based tools are usually optimized to find conserved parts of
the sequence without worrying about the exact gene struc-
ture. Traditionally, this area of genome annotations has been
dominated by the suite of local alignment search tools of
BLAST(Altschul et al. 1990) and more global search tools such
as FASTA (Pearson and Lipman 1988). Recent reviews in this
area include Agarwal and States (1998), Marcotte et al. (1999),
and Pearson (1995).

In the GASP experiment, two groups specializing in func-
tional protein domain or motif identification in genomic
DNA submitted annotations. The Henikoff group found hits
to the BLOCKS+database (http://blocks.fhcrc.org), a database
consisting of conserved protein motifs (Henikoff and Heni-
koff 1994; Henikoff et al. 1999a). The second group in this
category submitted results from the GeneWise program (Bir-
ney 1999). This program searches genomic DNA against a
comprehensive hidden Markov model (HMM)-based library
(PFAM; Sonnhammer et al. 1997, 1998; Bateman et al. 2000) of
protein domains. Both programs look for conserved regions
by searching translated DNA against a representation of mul-
tiple aligned sequences. Whereas in BLOCKS+the multiple
protein alignments consist of sets of ungapped regions, the
GeneWise program searches against a gapped alignment.
Both methods will turn up distantly related sequences.

EST/cDNA Alignment
Computational predictions of gene location and structure go
hand in hand with EST/cDNA sequencing and alignment
techniques for building transcript annotations in genomic se-
quence. Either can be used as a discovery tool, with the other
held in reserve for verification. A researcher can verify the
existence and structure of predicted genes by sequencing the
corresponding mRNA molecules and aligning their sequences
to the original genomic sequence. Alternatively, one can start
with an EST or cDNA sequence and build an alignment to the
genomic sequence that has been guided and/or verified by
tools from the gene prediction arsenal, for example, using
likely splice site locations and checking for long ORFs and
potential frame shifts.

There are many tools for aligning sequences. Although
they have generally been specialized for aligning sequences
that are evolutionarily related, some are designed for niche
applications such as recognizing overlaps among sequencing
runs. Aligning EST/cDNA sequences to the original genomic
sequence also presents a unique set of tradeoffs and issues. In
some cases (interspecies EST/genomic alignments), these tools
must model evolutionary changes in the sequence. Some-
times (e.g., for low-quality EST sequences), they need to
model errors in the sequence generated by the sequencing
process. For multiexon genes, they need to model the intron
regions as cost-free gaps tied to a model for recognizing splice
sites. Several tools have been developed for this task: Mott
(1997) and Birney and Durbin (1997) describe dynamic pro-
gramming approaches that include models of splice sites and

intron gaps. Florea et al. (1998) describe sim4 , a heuristic tool
that performs as well as the dynamic programming ap-
proaches and is efficient enough to support searching of large
databases of genomic sequence.

Using cDNA clones and their sequences to build tran-
script annotations requires a variety of operations. The tools
discussed above align the cDNA sequences to the genomic
sequence, but steps must be taken to filter out clones that are
merely paralogs of genes in the sequence and to recognize and
handle various laboratory artifacts. If the clones represent
short ESTs, then a likely annotation can be built by assem-
bling a consistent model from their individual alignments.
Longer ESTs or cDNAs might generate several similar align-
ments, and an automated tool must be able to select the most
biologically meaningful variant. Although there are some
gene prediction tools that can use information about homolo-
gies to known genes or ESTs, and most large-scale sequencing
centers have some automated sanity checking for their data-
base search results, there are not any tools that automate the
production of transcript annotations from cDNA sequences.

Gene Function
Gene function predictions are the most difficult annotations
to produce and to evaluate. Current technologies use similar-
ity to proteins (or protein domains) with known function to
predict functional domains in genomic sequence. Although
some tools use simple sequence alignments, more powerful
tools have developed significantly more sensitive models.

It quickly became apparent that a consistent and correct
assessment of function predictions as part of the GASP experi-
ment was not possible because of the incomplete understand-
ing of the protein products encoded by the 222 genes in the
Adh region.

Evaluating Gene Predictions
An ideal gene prediction tool would produce annotations that
were exactly correct and entirely complete. The fact that no
existing tool has these characteristics reflects our incomplete
understanding of the underlying biology as well as the diffi-
culty to build adequate gene models in a computer. Although
no tool is perfect, each tool has particular strengths and weak-
nesses, and any performance evaluation should be in the con-
text of an intended use. For example, researchers who are
interested in identifying gene-rich regions of a genome for
sequencing would be happy with a tool that successfully rec-
ognizes a gene’s approximate location, even if it incorrectly
described splice site boundaries. On the other hand, someone
trying to predict protein structures is more interested in get-
ting a gene’s structure exactly right than in a tool’s ability to
predict every gene in the genome.

When assessing the accuracy of predictions, each predic-
tion falls into one of four categories. A true-positive (TP) pre-
diction is one that correctly predicts the presence of a feature.
A false-positive (FP) prediction incorrectly predicts the pres-
ence of a feature. A true-negative (TN) prediction is correct in
not predicting the presence of a feature when it isn’t there. A
false-negative (FN) prediction fails to predict the existence of
a feature that actually exists. The sensitivity (Sn) of a tool is
defined as TP / (TP + FN) and can be thought of as a measure
of how successful the tool is at finding things that are really
there. The specificity (Sp) of a tool is defined as TP / (TP + FP)
and can be thought of as a measure of how careful a tool is
about not predicting things that aren’t really there. Burset and
Guigó (1996) also use a correlation coefficient and an average
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correlation coefficient. We chose not to use these measures
because they depend on predictors’ TN information, and we
recognize that our evaluation sets were constructed in such a
way that the TN information is not trustworthy. These Sn and
Sp metrics are used for evaluating the submissions in the
gene-finding, promoter recognition, and gene identification
using protein homology categories. In the gene finding cat-
egory, they are used for all three levels: base level, exon level,
and gene level. In the protein homology category, they are
used for base level and gene level only.

In one of the first reviews of gene prediction accuracy,
Fickett and Tung (1992) developed a method that measured
predictors’ ability to correctly recognize coding regions in ge-
nomic sequence. They used their method to compare pub-
lished techniques and concluded that in-frame hexamer
counts were the most accurate measure of a region’s coding
potential. Burset and Guigó (1996) recognized that there are a
wide variety of uses for gene predictions and developed mea-
sures—including base level, exon level, and gene level Sp and
Sn—that describe a predictor’s suitability for a particular task.

Base Level
The base level score measures whether a predictor is able to
correctly label a base in the genomic sequence as being part of
some gene. It rewards predictors that get the broad sweeps of
a gene correct, even if they don’t get the details such as the
splice site boundaries entirely correct. It penalizes predictors
that miss a significant portion of the coding sequence, even if
they get the details correct for the genes they do predict. We
used the Sn and Sp measures defined above as the measures of
success in this category.

Exon Level
Exon level scores measure whether a predictor is able to iden-
tify exons and correctly recognize their boundaries. Being off
by a single base at either end of the exon makes the prediction
incorrect. Because we only considered coding exons in our
assessment, the first exon is bracketed by the start codon and
a 58 splice site, the last exon is bracketed by a 38 splice site and
the stop codon, and the interior exons are bracketed by a pair
of splice sites. As measures of success in this category, we used
two statistics in addition to Sn and Sp. The missed exon (ME)
score is a measure of how frequently a predictor completely
failed to identify an exon (no prediction overlap at all),
whereas the wrong exon (WE) score is a measure of how fre-
quently a predictor identifies an exon that has no overlap
with any exon in the standard sets. The ME score is the per-
centage of exons in the standard set for which there were no
overlapping exons in the predicted set. Similarly, the WE
score is the percentage of exons in the predicted set for which
there were no overlapping exons in the standard set.

Gene Level
Gene level Sn and Sp measure whether a predictor is able to
correctly identify and assemble all of a gene’s exons. For a
prediction to be counted as a TP, all of the coding exons must
be identified, every intron–exon boundary must be exactly
correct, and all of the exons must be included in the proper
gene. This is a very strict measure that addresses a tool’s ability
to perfectly identify a gene. In addition to the Sn and Sp
measures based on absolute accuracy, we used the missed
genes (MG) score as a measure of how frequently a predictor
completely missed a gene (a standard gene is considered
missed if none of its exons are overlapped by a predicted

coding gene) and the wrong genes (WG) score as a measure of
how frequently a predictor incorrectly identified a gene (a
prediction is considered wrong if none of its exons are over-
lapped by a gene from the standard set).

Split and Joined Genes
The exon level scores discussed above measure how well a
predictor recognizes exons and gets their boundaries exactly
correct. The gene level scores measure how well a predictor
can recognize exons and assemble them into complete genes.
Neither of these scores directly measures a predictor’s ten-
dency to incorrectly assemble a set of predicted exons into
more or fewer genes than it should. We developed two new
measures, split genes (SG) and joined genes (JG), which de-
scribe how frequently a predictor incorrectly splits a gene’s
exons into multiple genes and how frequently a predictor
incorrectly assembles multiple genes’ exons into a single
gene. Because the coverage of the std1 data set is so incom-
plete, we have only included SG and JG scores from the com-
parison with std3. A gene from the standard set is considered
split if it overlaps more than one predicted gene. Similarly, a
predicted gene is considered joined if it overlaps more than
one gene in the standard set. The SG measure is defined as the
sum of the number of predicted genes that overlap each stan-
dard gene divided by the number of standard genes that were
split. Similarly, the JG measure is the sum of the number of
standard genes that overlap each predicted gene divided by
the number of predicted genes that were joined. A score of 1
is perfect and means that all of the genes from one set overlap
exactly one gene from the other set.

Application of These Measures to Correct Answer Data Sets std1/std3
We built the std1 data set in such a way that we believe it is
correct in the details of the genes that it describes, though we
know that it only includes a small portion of the genes in the
region. The std3 data set, on the other hand, is as complete as
was possible but does not have rigorous independent evi-
dence for all of its annotations. For the std1 data set, we be-
lieve that the TP count (it was predicted, and it exists in the
standard) and FN count (it was not predicted, but it does exist
in the standard) are reliable because of the confidence that we
have in the correctness of the predictions in the set. On the
other hand, we do not believe that the TN count (it was not
predicted, and it is not in the standard set) and FP count (it
was predicted, but is not in the standard set) are reliable be-
cause they both assume that the standard correctly describes
the absence of a feature and we know that there are genes
missing from std1. It follows that we believe that Sn is mean-
ingful for std1 because it only depends on TP and FN but that
we are less confident about the Sp score because it depends on
TP and FP. A similar logic applies to the std3 data set, where
our confidence in the set’s completeness but not its fine de-
tails suggests that the TP and FP scores are usable but that the
TN and FN scores are not. This means that for std3, we believe
that the Sp measure can be used to describe a predictor’s per-
formance but that Sn is likely to be misleading.

Evaluation of Promoter Predictions
We adopted the measures proposed by Fickett and Hatzigeor-
giou (1997). They evaluated the success of promoter predic-
tions by giving the percentage of correctly identified TSSs ver-
sus the FP rate. A TSS is regarded as identified if a program
makes one or more predictions within a certain “likely” re-
gion around the annotated site. The FP rate is defined as the
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number of predictions within the “unlikely” regions outside
the likely regions divided by the total number of bases con-
tained in the unlikely set. As our annotation of the TSS is only
preliminary and not experimentally confirmed, we chose a
rather large region of 500 bases upstream and 50 bases down-
stream of the annotated TSS as the likely region. The upstream
region is always taken as the likely region, even if it overlaps
with a neighboring gene annotation on the same strand. The
unlikely region for each gene then consists of the rest of the
gene annotation, from base 51 downstream of the TSS to the
end of the final exon.

Visualization of the Annotations
Generating “good” annotations generally requires integrating
multiple sources of information, such as the results of various
sequence analysis tools plus supporting biological informa-
tion. Visualization tools that display sequence annotations in
a browsable graphical framework make this process much
more efficient. In this experiment we found that visualization
tools are essential to evaluate the genome annotation submis-
sions. When annotations are displayed visually, overall trends
become apparent, for example, gene-rich versus gene-poor re-
gions, genes that were predicted by most participants versus
those that were predicted by few. Additionally, as we discuss
below, a visualization tool that is capable of displaying anno-
tations at multiple levels of detail provides a way to examine
individual predictions in detail.

Building genome annotation visualization tools is a
daunting task. Many such tools have been developed, starting
with ACeDB (Eeckman and Durbin 1995; Stein and Thierry-
Mieg 1998). We were fortunate in that the BDGP has built a
flexible suite of genome visualization tools (Helt et al. 1999)
that could be extended to display the GASP submissions. We
adapted the BDGP’s annotated clone display and editing tool,
CloneCurator (Harris et al. 1999), which is based on a ge-
nomic visualization toolkit (Helt et al. 1999), to read the an-
notation submissions in GFF format and display each team’s
predictions in a unique color and location.

CloneCurator (see Fig. 1) displays features on a se-
quence as colored rectangles. Features on the forward strand
appear above the axis, whereas those on the reverse strand
appear below the axis. The display can be zoomed and
scrolled to view areas of interest in more detail. A configura-
tion file identifies the feature types that are to be displayed
and assigns colors and offsets to each one. For example, the
std1 and std3 exons appear in yellow and orange close to the
central axis.

RESULTS
The results of an experiment such as GASP are only
meaningful if enough groups participate. We were for-
tunate to have 12 diverse groups involved, and we were
very grateful for the speed with which they were able
to submit their predictions. We believe that these 12
groups provide a fair representation of the state of the
art in annotation system technology. We collected
submissions by electronic mail and evaluated them us-
ing the std1 and std3 data sets as described above. Be-
fore releasing our results at the Intelligent Systems in
Molecular Biology conference in August 1999 in
Heidelberg, Germany, we assembled a team of inde-
pendent assessors (Ashburner et al. 1999a) to review

our techniques and conclusions. As discussed in the
introduction, the accuracy of the various measures dis-
cussed below depends heavily on how well our stan-
dard sets capture the true set of features in the region.
These values should only be considered in the context
of the standard data sets.

A detailed description of the results and the evalu-
ation techniques we used can be accessed through the
GASP homepage at http://www.fruitfly.org/GASP/.

Gene Finding
Table 3 summarizes the performance of the gene-
finding tools using the measures defined above. Three
groups submitted multiple submissions. The first
group, Fgenes1 , Fgenes2 , and Fgenes3 , submitted
three predictions at varying stringency (for details, see
Salamov and Solovyev 2000). For the GeneID program,
two submitted versions are presented, version 1 (Ge-
neID v1 ) being the original submission and version 2
(GeneID v2 ) being a newer submission from a cor-
rected version of the original program (for details, see
Parra et al. 2000). The third group with multiple sub-
missions used three versions of the Genie program:
the first a pure statistical approach (Genie ), the second
including EST alignment information (GenieEST ), and
the third using protein homology information (Ge-
nieESTHOM) (for details, see Reese et al. 2000). For all
other groups from Table 2, only one submission was
evaluated. The following sections discuss the base
level, exon level, and gene level performance of these
submissions.

Base Level Results
Several gene prediction tools had a Sn of >0.95 at the
base level. This suggests that current technology is able
to correctly identify >95% of the D. melanogaster pro-
teome. A few tools demonstrated a specificity of >0.90
at the base level, only infrequently labeling a noncod-
ing base as coding. Generally, the tools have a higher
Sn than Sp. Two programs, Fgenes2 and GeneID , were
designed to be conservative about their predictions
and do not follow this trend.

Exon Level Results
There was a great deal of variability in the exon level
scores. Several tools had Sn scores ∼0.75, correctly
identifying both exon boundaries ∼75% of the time.
Their Sps were generally much lower (the highest was
0.68), probably a reflection of the strict definition of
exon level scores both splice sites had to be predicted
correctly and possible inaccuracies in the std3 data set.
The low ME scores (several <0.05) combined with the
fairly high Sn suggest that several tools were successful
at identifying exons but had trouble finding the cor-
rect exon boundaries. Programs that incorporate EST
alignment information, such as GenieEST and HM-
MGene, had sensitivity scores that were up to 10% bet-
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ter than the other tools. The high WE scores suggest
either that the tools are overpredicting or that there are
genes that are missing even from std3.

Gene Level Results
All of the predictors had considerable difficulty cor-
rectly assembling complete genes. The best tools were
able to achieve Sns between 0.33 and 0.44, meaning
that they are incorrect over half of the time. This value
seems to be very similar in Drosophila and human se-
quences, based on a recent analysis of the BRCA2 re-
gion in human (T.J. Hubbard, pers. comm.). Even on
the more complete std3 data set, the programs tended
to incorrectly predict many genes. The very low MG
score (as low as 4.6%) is reassuring because it suggests
that several tools are able to recognize a gene, even if
they have difficulty figuring out the exact details of its
structure. Comparing the WG and MG measures sug-
gests that existing tools tend to predict genes that do
not exist more often than they miss genes that do exist.
Because it is almost certain that there are real genes
that are missing from both standard sets, this conclu-
sion must be viewed with some skepticism. Although
there were several tools with good SG or JG scores,
none of them performed well in both categories.

Promoter Prediction
Table 4 shows the performance of the promoter pre-

diction systems, grouped by approach: search-by-
signal, search-by-region, and gene prediction pro-
grams.

Gene-finding programs that include a prediction
of the TSS obtained the best results. The number of
false predictions made by the region-based programs is
very high (giving them a low Sp), and because the sig-
nal-specific programs only identify one promoter, their
Sn is very low. The high Sp of the gene finders is ob-
viously due to the context information: All promoter
predictions within gene predictions are ruled out in
advance, and the location of the possible start codon
provides the system with a good initial guess of where
to look for a promoter. The MAGPIEsystem also uses
EST alignments to obtain information on 58 UTRs,
which mirrors the way the std sets were constructed:
Roughly one-third of the putative TSS assignments rely
on cDNAs that were publicly available in GenBank. A
closer look at the results reveals that the region-based
programs have a Sn that is comparable with the gene
finders and the signal based program had only a single
FP, showing that both types of tools can be used for
different applications.

Our data set, and the evaluation based on it, relies
on the assumption that the 58 ends of the full-length
cDNAs are reasonably close to the TSS. This makes it
very hard to draw strong conclusions from the pre-

Program identifier Color Reference

TRF seafoam Benson (1999)
Calypso lightblue D. Field (unpubl.)
std1 yellow unpublished conservative alignment of cDNAs
std3 orange Ashburner et al. (1999b)
Grailexp red-orange Uberbacher and Mural (1991)
GeneMarkHMM red Besemer and Borodovsky (1999)
GeneID hotpink Guigó et al. (1992)
FGenesCGG1 pink Solovyev et al. (1995)
FGenesCGG2 magenta Solovyev et al. (1995)
FGenesCGG3 purple Solovyev et al. (1995)
HMMGene cornflower Krogh (1997)
MAGPIEexon blue Gaasterland and Sensen (1996)
MAGPIE turquoise Gaasterland and Sensen (1996)
Genie seagreen Reese et al. (1997)
GenieEST green Kupl et al. (1997)
GenieESTHOM chartreuse Kulp et al. (1997)
GeneWise red Birney (1999)
BLOCKS pink Henikoff et al. (1999b)
MAGPIEProm purple T. Gaasterland, (unpubl.)
LMEIMC blue Ohler et al. (1999)
LMESSM dark green Ohler et al. (2000)
GeniePROM chartreuse Reese (2000)

Figure 1 (See facing page.) Screen shot from the CloneCurator program (Harris et al. 1999), featuring the genome annotations
of all 12 groups for the 2.9-Mb Adh region. The main panel shows the computational annotations on the forward (above axis) and
reverse sequence strands (below axis). Genes located on the top half of each map are transcribed from distal to proximal (with
respect to the telomere of chromosome are 2L); those on the bottom are transcribed from proximal to distal. Right below the axis
are the two repeat finding results displayed, followed by reference sets from Ashburner et al. (1999b; std1 and std3), followed by
the 12 submissions of gene-finding programs, followed by the two protein homology programs, and eventually, farthest away from
the axis, the four promoter recognition programs. (Left) The color-coded legend for the program and the number of predictions
made by the programs.
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sented results. Even the most sensitive systems could
identify only roughly one third of the start sites. This
could of course be caused by the fact that the existing
annotation is only an approximation and some of the
true TSSs may be located further upstream. It also hints
at the diversity of promoter regions that mirrors the
possibilities for gene regulation and at the existing bias
toward housekeeping genes in the current data sets
used for the training of the models.

Gene Identification Using Protein Homology
Gene-finding evaluation statistics, such as those de-
scribed above, can be used to summarize the ability of

a program to identify complete and accurate gene
structures in genomic DNA. In Table 5 we have applied
the same evaluation statistics to the homology-based
search programs GeneWise and BLOCKS+. Because
these programs are not optimized to deal with exact
exon boundary assignments, Table 5 only shows the
performance for the base level and the MG and WG.

The very low Sns at the base level are not surpris-
ing, because the programs identify only conserved pro-
tein motifs or particular domains and make no effort to
predict complete genes. Sp, which should be high
given that only conserved protein motifs are scored,
was lower than expected. Detailed studies of these pre-

Table 3. Evaluation of Gene-Finding Systems

FGenes
1

FGenes
2

FGenes
3

GeneID
v1

GeneID
v2 Genie

Genie
EST

Genie
ESTHOM HMMGene

MAGPIE
exon GRAIL

Base
level

Sn
std1

0.89 0.49 0.93 0.48 0.86 0.96 0.97 0.97 0.97 0.96 0.81

Sp
std3

0.77 0.86 0.60 0.84 0.83 0.92 0.91 0.83 0.91 0.63 0.86

Exon
level

Sn
std1

0.65 0.44 0.75 0.27 0.58 0.70 0.77 0.79 0.68 0.63 0.42

Sp
std3

0.49 0.68 0.24 0.29 0.34 0.57 0.55 0.52 0.53 0.41 0.41

ME (%)
std1

10.5 45.5 5.6 54.4 21.1 8.1 4.8 3.2 4.8 12.1 24.3

WE (%)
std3

31.6 17.2 53.3 47.9 47.4 17.4 20.1 22.8 20.2 50.2 28.7

Gene
level

Sn
std1

0.30 0.09 0.37 0.02 0.26 0.40 0.44 0.44 0.35 0.33 0.14

Sp
std3

0.27 0.18 0.10 0.05 0.10 0.29 0.28 0.26 0.30 0.21 0.12

MG (%)
std1

9.3 34.8 9.3 44.1 13.9 4.6 4.6 4.6 6.9 4.6 16.2

WG (%)
std3

24.3 24.8 52.3 22.2 30.5 10.7 13.0 15.5 14.9 55.0 23.7

SG 1.10 1.10 2.11 1.06 1.06 1.17 1.15 1.16 1.04 1.22 1.23
JG 1.06 1.09 1.08 1.62 1.11 1.08 1.09 1.09 1.12 1.06 1.08

The evaluation is divided into three categories: base level, exon level, and gene level. The different statistical features reported are Sn,
Sp, ME, WE, MG, WG, SG, and JG. std1 and std3 indicate against which standard set the statistics are reported.

Table 4. Evaluation of Promoter Prediction Systems

System name Sensitivity

Rate of false-positive
predictions in regiona

(853,180 bases)

Rate of predictions
in regionb

(2,570,232 bases)

CoreInspector 1 (1%) 1/853,180 1/514,046
MCPromoter v1.1 26 (28.2%) 1/2,633 1/2,537
MCPromoter v2.0 31 (33.6%) 1/2,437 1/2,323
GeniePROM 25 (27.1%) 1/14,710 1/28,879
GenieESTPROM 30 (32.6%) 1/16,729 1/29,542
MAGPIE 33 (35.8%) 1/14,968 1/16,370

We show the Sn for identified TSSs in comparison with the FP rate for non-TSS regions and general gene regions: athe unlikely region
defined as the rest of the gene starting 51 bases downstream from its annotated TSS; bthe general gene region, spanning from half
the distance to the previous and next annotated genes including the annotated TSS (taken from the std3 annotation).
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dictions (see Birney and Durbin 2000; Henikoff and
Henikoff 2000) show that most of the FP predictions
were hits to transposable elements or to possible genes
that are missing in the standard sets. Both programs
use a database of protein domains or conserved pro-
tein motifs. Both databases are large and are believed
to contain at least 50% of the existing protein do-
mains. The high number of MG, 62.7% for BLOCKS
and 69.7% for GeneWise , means that these programs
will miss a significant number of Drosophila genes
when used to search genomic DNA directly. The WG
scores of 12.9% BLOCKSand 14.1% for GeneWise are
lower than the gene finding programs discussed in the
previous section.

Gene Identification Using EST/cDNA Alignments
It is believed that some cDNA information exists for
approximately half of the genes in the D. melanogaster
genome. This cDNA database (available as the EST
data set at the GASP web site) was used as a basis for
the cDNA/EST alignment category. The Sn of 31% for
MAGPIEESTand GrailSimilarity (Table 5) implies
that the coding portion of the available EST data cur-
rently covers one-third of the genome’s coding se-
quence. The low Sp is very surprising and suggests that
the EST/cDNA alignment problem is not a trivial one.
The only program that tried to align complete cDNAs
to genomic DNA, MAGPIEcDNA, could find complete
cDNAs for only 2.4% of the genes. EST alignments also
resulted in high numbers of missed genes, suggesting
that the EST libraries are biased toward highly ex-
pressed genes. The high WG scores suggest that some
genes are missing even from std3.

Selected Gene Annotations
The summary statistics discussed above only provide a
global view of the predicting programs’ characteris-
tics. A much better understanding of how the various
approaches behave can be obtained by looking at in-
dividual gene annotations. Such a detailed examina-
tion can also help identify issues that are not ad-
dressed by current systems.

In the following paragraphs we will discuss a few

interesting examples. Figure 1 shows the color codes of
the participating groups that are used throughout this
section. Genes located on the top of each map are tran-
scribed from distal to proximal (with respect to the
telomere of chromosome arm 2L); those on the bottom
are transcribed from proximal to distal. std1 and std3
are the expert annotations described in Ashburner et
al.(1999b). Just below the axis, you can see the anno-
tations for the two repeat finding programs. These
have no sequence orientation and are therefore only
shown on one side. Farther away from the axis, after
std1 and std3, we grouped all of the ab initio gene-
finding programs together. Next to the gene finders are
the homology-based annotations. On the bottom and
the top of the figure we show the three promoter an-
notations, but for clarity we did not include these an-
notations in the subsequent figures. (On the front page
and in the legend of Fig. 1, you can see the full set of
annotations of all programs, which are also accessible
from the GASP web site.)

Our first example is a “busy” region with 12 com-
plete genes and 1 partial gene in a stretch of only 40 kb
(Fig. 2A). This region is located at the 38 end of the Adh
region from base 2,735,000 to base 2,775,000. Genes
exist on both strands, and it is striking that in this
region the genes tend to alternate between the forward
and the reverse strands. We selected this region for its
gene density and because it has characteristics that are
typical of the complete Adh region. Figure 2A vividly
demonstrates that all of the gene-finding programs’
predictions are highly correlated with the annotated
genes from std1/std3. In the past, gene finders had of-
ten mistakenly predicted a gene on the noncoding
strand opposite of a real gene, leading to FP predictions
known as “shadow exons.” Figure 2A makes it clear
that gene finders have overcome this problem, because
there are almost no shadow exon predictions for any of
the genes in std3. Another characteristic, captured in
the high base level sensitivity and the low missing
genes statistics, is that every gene in the std3 set was
predicted by at least a few groups and that most of
these predictions agree with each other. Except for the
second and third genes [DS02740.5, I(2)35Fb] on the
forward strand (2,740,000–2,745,000), which seem to

Table 5. Evaluation of Similarity Searching

BLOCKS GeneWise
MAGPIE

cDNA
MAGPIE

EST
Grail

Similarity

Base level Sn std1 0.04 0.12 0.02 0.31 0.31
Sp std3 0.80 0.82 0.55 0.32 0.81

Gene level MG (%) std1 62.7 69.7 95.3 27.9 41.8
WG (%) std3 12.9 14.1 0.0 44.3 7.4

Base and gene level statistics are shown. The base level is described using Sn and Sp, and the statistics for the gene level are given as
MG and WG.
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be single exon genes, all of the genes in this region are
multiexon genes with between two and eight exons.
The exon size varies widely. There are genes that con-
sist of only two large exons, some that consist of a mix
of large and small exons, and some that are made up
exclusively of many small exons. The distribution
seems to be almost random. Except for the long final
intron in the last gene on the reverse strand (cact), the
region consists exclusively of short introns.

Predictions on the reverse strand indicate a pos-
sible gene from base 2,741,000 to base 2,745,000. Most
of the gene finders agree on this prediction, but neither
std1 nor std3 describes a gene at this location. This
could be a real gene that was missed by the expert
annotation pathway described in Ashburner et al

(1999b). Neither BLOCKS+nor GeneWise found any
homologies in this region, but we can see from the
table in the previous section that many real genes do
not have any homology annotations. Interestingly,
this is the only area in the region where two gene find-
ers predicted a possible gene that likely consists of
shadow exons.

The fifth gene on the forward strand (DS02740.10,
bases 2,752,500–2,755,000) shows that long genes
with multiple exons are much harder to predict than
single exon genes or genes with only a few exons. In
this region splitting and joining genes does not seem
to be a problem. Repeats occur sparsely and mostly in
noncoding regions, predominantly in introns.

In contrast to the busy region in Figure 2A, Figure

Figure 2 (A) Annotations for the following known genes described in Ashburner et al. (1999b) are shown for the region from 2,735,000
to 2,775,000 (from the left to the right of the map): crp (partial, reverse (r)), DS02740.4 (forward (f)), DS02740.5 (f), I(2)35Fb (f), heix (r),
DS02740.8 (f), DS02740.9 (r), DS02740.10 (f), anon-35Fa (r), Sed5 (f), cni (r), fzy (f), cact (r). (B) Annotations for the following known gene
described in Ashburner et al. (1999b) are shown for the region from 600,000 to 635,000 (left to right): DS01759.1 (r).
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2B highlights a region of almost equal size in which
only one gene (DS01759.1) is present in both std1 and
std3. There are very few FP predictions by any group,
but there is one case where the “false” predictions by
different programs are located at very similar positions
(on the reverse strand near base 620,000). This suggests
a real gene that is missing from both standard sets.

Figure 3, A–D, depicts selected genes that illustrate
some interesting challenges in gene finding. Figure 3A
shows the Adh and the Adhr genes that occur as gene
duplicates. The encoded proteins have a sequence
identity of 33%. The positions of the two introns in-
terrupting the coding regions are conserved and give
additional evidence to tandem duplication. Both genes
are under the control of the same regulatory promoter,
the Adhr gene does not have a TSS of its own, and its
transcript is always found as part of an Adh–Adhr dic-
istronic mRNA. Gene duplications occur very fre-
quently in the Drosophila genome—estimates show
that at least 20% of all genes occur in gene family du-
plications. In an additional twist, Adh and Adhr are
located within an intron of another gene, outspread
(osp), that is found on the opposite strand (for details,
see Fig. 3B). The Adh gene is correctly predicted by
most of the programs, although one erroneously pre-
dicts an additional first exon. Most of the programs
also predict the structure of Adhr correctly; one pro-
gram misses the initial exon and shortens the second
exon. Both Adh and Adhr show hits to the protein mo-
tifs in BLOCKS+as well as alignments to a PFAM pro-
tein domain family through GeneWise . Both genes hit
two different PFAM families, and the order of these two
domains is conserved in the gene structure.

Figure 3B highlights the osp gene region. This is an
example of a gene with exceptionally long (>20 kb)
introns, making it hard for any gene finder to predict
the entire structure correctly. In addition, there are a
number of smaller genes [including the Adh and Adhr
genes discussed above, DS09219.1 (r.) and DS07721.1
(f.)] within the introns of osp. No current gene finder
includes overlapping gene structures in its model; as a
consequence, none of the GASP gene finders were able
to predict the osp structure without disruption. This is
clearly a shortcoming of the programs because genes
containing other genes are often observed in Dro-
sophila (Ashburner et al. 1999b report 17 cases for the
Adh region). However, it should be noted that most of
the gene finders predict the 38 end of osp correctly and
therefore get most of the coding region right. The re-
gion that includes the 58 end of osp shows a lot of gene
prediction activity, but there is no consistency among
the predictions. One program (FGenesCCG3) does cor-
rectly predict the DS09219.1 gene.

Figure 3C shows the entire gene structure of the
Ca-a1D gene. This gene is the most complex gene in
the Adh region, with >30 exons. This is a very good

example for studying gene splitting. Several predictors
break the gene up into several genes, but some groups
make surprisingly close predictions. This shows the
complex structure that genes can exhibit and that ex-
tent to which this complexity has been captured in the
state-of-the-art prediction models. It is interesting to
note that most of the larger exons are predicted,
whereas the shorter exons are missed. Such a large
complex gene is a good candidate for alternative splic-
ing, which can ultimately be detected only by exten-
sive cDNA sequencing.

Figure 3D shows the triple duplication of the idgf
gene (idgf1, idgf2, and idgf3) on the forward strand.
Two programs mistakenly join the first two genes into
a single gene; all the others correctly predict all three
genes.

DISCUSSION
The goal of the GASP experiment was to review and
assess the state of the art in genome annotation tools.
We believe that the noncompetitive framework and
the community’s enthusiastic participation helped us
achieve that goal. By providing all of the participants
with an unprecedented set of D. melanogaster training
data and using unreleased information about the re-
gion as our gold standard, we were able to establish the
level playing field that made it possible to compare the
performance of the various techniques. The large size
of the Adh contig and the diversity of its gene struc-
tures provided us with an opportunity to compare the
capabilities of the annotation tools in a setting that
models the genome-wide annotations currently being
attempted. However, the lack of a completely correct
standard set means that our results should only be con-
sidered in the context of the std1 and std3 data sets.

Assessing the Results
The most difficult part of the assessment was develop-
ing a benchmark for the predicted annotations. By di-
viding the predictions into different classes and devel-
oping class-specific metrics that were based on the best
available standards, we feel that we were able to make
a meaningful evaluation of the submissions. Although
most of the information that was used to evaluate the
submissions was unreleased, some cDNA sequences
from the region were in the public databases. As se-
quencing projects move forward, it will become in-
creasingly difficult for future experiments to find simi-
larly unexplored regions. This makes it very different
from the CASP protein structure prediction contests,
which can use the three-dimensional structure of a
novel target protein that is unknown to the predictors.

As discussed in the introduction, the lack of an
absolutely correct standard against which to evaluate
the various predictions is a troubling issue. Although
we believe that the standard sets sufficiently represent
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Figure 3 (A) Annotations for the following known genes described in Ashburner et al. (1999b) are shown for the region from 1,109,500
to 1,112,500 (forward strand only) (left to right): Adh, Adhr. (B) Annotations for the following known genes described in Ashburner et al.
(1999b) are shown for the region from 1,090,000 to 1,180,000 (left to right): osp (r), Adh (f), Adhr (f), DS09219.1 (r), DS07721.1 (f). (C)
Annotations for the following known gene described in Ashburner et al. (1999b) are shown for the region from 2,617,500 to 2,640,000
(forward strand only) (left to right): Ca-a1D. (D) Annotations for the following known genes described in Ashburner et al. (1999b) are
shown for the region from 2,894,000 to 2,904,000 (forward strand only) (left to right): idgf1, idgf2, idgf3.
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the true nature of the region and that conclusions
based on them are interesting, it must be remembered
that the various results can only be evaluated in the
context of these incomplete data sets. This also makes
GASP more difficult and less clear cut than CASP, where
the three-dimensional protein structure is experimen-
tally solved at least to some degree of resolution.

It should also be noted that the gene-finding tools
with the highest Sp have a great deal in common with
GENSCAN, the gene prediction tool used in the devel-
opment of the std3 data set. This suggests that std3’s
origins might have led to a bias favoring GENSCAN-like
predictors. Because std1 was exclusively created using
full-length cDNA alignments, this set might be biased
towards highly expressed genes, because the cDNA li-
braries were not normalized.

Progress in Genome-Wide Annotation
The rapid release of completed genomes, including the
imminent release of the D. melanogaster and human
genomes, has driven significant developments in ge-
nome annotation and gene-finding tools. Problems
that have plagued gene-finding programs, such as pre-
dicting shadow exons, restricting predictions to a
single strand, recognizing repeats, and accurately iden-
tifying splice sites, have been overcome by the current
state of the art. In this section, we discuss some of the
remaining issues in genome annotation that the GASP
experiment highlighted.

Successful gene prediction programs use complex
models that integrate information from statistical fea-
tures that are driven by the three-dimensional protein–
DNA/RNA interactions. They make integrated predic-
tions on both strands and have been tuned to predict
all the genes in gene-rich regions and avoid overpre-
dicting genes in gene-poor regions (Fig. 2A,B). Al-
though most of the programs identify almost all the
existing genes (as evidenced by the Sn and MG statis-
tics), there is significant variation in their ability to
accurately predict precise gene structures (see the Sp
statistics, particularly at the exon level). If any global
performance conclusion can be drawn, it is that the
probabilistic gene finders (mostly HMM based) seem to
be more reliable. The integration of EST/cDNA se-
quence information into the ab initio gene finders [see
HMMGene, GenieEST , and GRAIL (Fig. 2A,B and Fig.
3A–D)] significantly improves gene predictions, par-
ticularly the recognition of intron–exon boundaries.
Some groups submitted multiple annotations of the
Adh region using programs that were tuned for differ-
ent tasks. The suite of Fgenes programs shows very
nicely the results of such a three-part submission. The
first Fgenes submission (Fgenes1 ) is a version ad-
justed to weight Sn and Sp equally. The second sub-
mission (Fgenes2 ) is very conservative and only an-
notates high-scoring genes. This results in a high Sp

but a low Sn. The third submission (Fgenes3 ) tries to
maximize Sn and to avoid missing any genes, at the
cost of a loss in Sp. These differently tuned variants
may be useful for different types of tasks.

A comparison (data not shown) to a gene-finding
system that was trained on human data showed that it
did not perform as well as the programs that were
trained on Drosophila data.

None of the gene predictors screened for transpos-
able elements, which have a protein-like structure. As
described in Ashburner et al. (1999b), the Adh region
has 17 transposable element sequences. Eliminating
transposons from the predictions or adding them to
the standard sets would have reduced the FP counts,
raising the Sp and lowering the WE and WG scores.
Although this accounts for a portion of the high FP
scores, we believe that there may also be additional
genes in this region not annotated in std3. Future bio-
logical experiments (Rubin 2000) to identify and se-
quence the predicted genes that were not included in
std3 should improve the completeness and accuracy of
the final annotations.

There were fewer submissions of homology-based
annotations than those by ab initio gene finders, and
their results were significantly affected by their FP
rates. A significant portion of those FPs were matches
to transposable elements, some appear to be matches
to pseudogenes, and others are likely to be real, but as
yet unannotated, genes. The homology-based ap-
proaches seem to be the most promising techniques for
inferring functions for newly predicted genes.

Even using EST/cDNA alignments to predict gene
structures is not as simple as expected. Paralogs, low
sequence quality of mRNAs, and the difficulty of clon-
ing infrequently expressed mRNAs make this method
of gene finding more complex than believed, and it is
difficult to guarantee completeness with this method.
Normalized cDNA libraries and other more sophisti-
cated technologies to purify genes with low expression
levels, along with improved alignment and annotation
technologies, should improve predictions based on
EST/cDNA alignments.

Lessons for the Future
To fully assess the submitted annotations, the correct
answer must be improved. Only extensive full-length
cDNA sequencing can accomplish this. A possible ap-
proach would be to design primers from predicted ex-
ons and/or genes in the genomic sequence and then
use hybridization technologies to fish out the corre-
sponding cDNA from cDNA libraries. For promoter
predictions, another way to improve the correct an-
swer is to make genome-to-genome alignments with
the DNA of related species (e.g., Caenorhabditis briggsae
vs. Caenorhabditis elegans; D. melanogaster vs. D. virilis).
More detailed guidelines, including how to handle am-
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biguous features such as pseudogenes and transposons,
will make the results of future experiments even more
useful.

A successful system to identify all genes in a ge-
nome should consist of a combination of ab initio gene
finding, EST/cDNA alignments, protein homology
methods, promoter recognition, and repeat finding.
All of the various technologies have advantages and
disadvantages, and an automated method for integrat-
ing their predictions seems ideal.

Beyond the identification of gene structure is the
determination of gene functions. Most of the existing
prototypes of such systems are based on sequence ho-
mologies. Although this is a good starting point, it is
definitely not sufficient. The state of the art for pre-
dicting function in protein sequences uses the pro-
tein’s three-dimensional structure, but the difficulty of
accurately predicting three-dimensional structure from
primary sequences makes applying these techniques
on complete genomes problematic. The new field of
structural genomics will hopefully give more answers
in these areas.

Another approach to function classification is the
analysis of gene expression data. Improvements in TSS
annotations, along with correlation in expression pro-
files, should be very helpful in identifying regulatory
regions.

Conclusions
The GASP experiment succeeded in providing an objec-
tive assessment of current approaches to gene prediction.
The main conclusions from this experiment are that cur-
rent methods of gene predictions are tremendously im-
proved and that they are very useful for genome scale
annotations but that high-quality annotations also de-
pend on a solid understanding of the organism in ques-
tion (e.g., recognizing and handling transposons).

Experiments like GASP are essential for the contin-
ued progress of automated annotation methods. They
provide benchmarks with which new technologies can
be evaluated and selected.

The predictions collected in GASP showed that for
most of the genes, overlapping predictions from differ-
ent programs existed. Whether or not a combination
of overlapping predictions would do better than the
best performing individual program was not explicitly
tested in this experiment. For such a test, additional
experiments such as cDNA library screening and sub-
sequent full-length cDNA sequencing in this selected
Adh test bed region would be necessary. These experi-
ments are currently under way, and it would be inter-
esting to perform a second GASP experiment when
more cDNAs have been sequenced.

We believe that existing automated annotation
methods are scalable and that the ultimate test will
occur when the complete sequence of the D. melano-

gaster genome becomes available. This experiment will
set standards for the accuracy of genome-wide annota-
tion and improve the credibility of the annotations
done in other regions of the genome.

URLs

Gene Finding
HMMGene, http://www.cbs.dtu.dk/services/HMMGene/;
GRAIL, http://compbio/ornl.gov/droso; Fgenes , http://
genomic/sanger.ac.uk/gf/gf.shtml; GeneID , http://www1/
imim.es/∼rguigo/AnnotationExperiment/index.html; Genie ,
http://www.neomorphic. com/genie.

Promoter Prediction
MCPromoter , http://www5.informatik.uni-erlangen.de/HTML/
English/Research/Promoter; CoreInspector , http://
www.gsf.de/biodv.

Protein Homology
BLOCKS+, http://blocks.fhcrc.org and http:/blocks.fhcrc.org/
blocks-bin/getblock.sh?<block name>; GeneWise , http://
www.sanger.ac.uk/Software/Wise2/.

Repeat Finders
TRF, http://c3.biomath.mssm.edu/trf.test.html.
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