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Abstract: Systemic lupus erythematosus (SLE) is a classic antibody-mediated systemic 

autoimmune disease characterised by the development of autoantibodies to ubiquitous self-

antigens (such as antinuclear antibodies and antidouble-stranded DNA antibodies) and wide-

spread deposition of immune complexes in affected tissues. Deposition of immune complexes 

in the kidney results in glomerular damage and occurs in all forms of lupus nephritis. The 

development of nephritis carries a poor prognosis and high risk of developing end-stage renal 

failure despite recent therapeutic advances. Here we review the role of DNA-anti-DNA immune 

complexes in the pathogenesis of lupus nephritis and possible new treatment strategies aimed 

at their control.
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Introduction
Systemic lupus erythematosus (SLE) is a complex, heterogeneous disease of multi-

factorial etiology where multiple genetic, environmental and sex hormonal influences 

converge to break down B cell tolerance to self-antigens normally sequestered inside the 

cell nucleus.1 Recent insights obtained from genetic mouse models and genome-wide 

association scans in large patient cohorts have enabled the identification of several key 

players in the multistep pathogenesis of lupus (Figure 1). These studies reveal a posi-

tive feedback loop whereby inefficient clearance of apoptotic blebs by macrophages 

results in positive selection of germinal center B cells, which have self-reactivity 

against nuclear antigens exposed on these blebs. These self-reactive B cells undergo 

T cell-dependent affinity maturation and isotype switching,2 and differentiate into 

long-lived plasma cells which reside in the bone marrow. The high affinity IgG anti-

DNA antibodies secreted by these cells bind to the DNA to form immune complexes 

which activate plasmacytoid dendritic cells (pDCs) via toll-like receptor- (TLR-) 9 to 

produce inflammatory cytokines such as interferon-alpha. These cytokines augment 

the humoral immune response and lead to further autoantibody production. The high 

levels of circulating DNA-anti-DNA immune complexes overwhelm the capacity of 

the reticuloendothelial system (RES) to clear them, and they are deposited in various 

tissues including glomeruli where local complement activation results in glomerular 

injury.3

Nephritis is a common complication of SLE, occurring in 14% to 55% of patients, 

with higher rates seen in Asian, African, and Hispanic populations.4 Histological 

patterns of lupus nephritis have been classified by the World Health Organization and, 

more recently, by the International Society of Nephrology/Renal Pathology Society 
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Figure 1 Model of DNA-anti-DNA immune complex generation and glomerular damage in lupus nephritis and potential therapeutic targets.
Abbreviations: Abs, antibodies; DCs, dendritic cells; GC, germinal center; ICs, immune complexes; RBCs, red blood cells; RES, reticuloendothelial system.

(ISN/RPS) (Table 1).5 These histologic patterns are predictive 

of prognosis6 and provide a basis for treatment guidelines 

to prevent end-organ damage and improve mortality and 

morbidity. Despite improvements in the long-term survival 

of patients with SLE,7 patients who develop nephritis still 

have a worse prognosis with a 10-year survival of only 88% 

compared with 94% for patients without nephritis.8

The mainstay of treatment for lupus nephritis has been 

corticosteroids, azathioprine, cyclophosphamide and, 

more recently, mycophenolate. These drugs are toxic with 

Table 1 Classification of lupus nephritis 

Class WHO (1982) ISN/RPSb (2003) 

I Normal glomeruli
  a. Nil by all techniques
  b. Normal LM, deposits by EM/IF

Minimal mesangial
  • �Normal LM. Deposits by IF ± EM. No 

longer includes those with normal IF/EM
II Pure mesangial

  a. Mesangial widening or hypercellularity
  b. Moderate hypercellularity

Mesangial proliferative 

III Focal segmentala

  a. ‘Active’ necrotizing lesions
  b. ‘Active’ and sclerosing lesions
  c. Sclerosing lesions

Focal (,50% glomeruli)c

A. Active lesions
A/C. Active and chronic lesions
C. Chronic inactive lesions with scars

IV Diffusea

  a. Without segmental lesions
  b. ‘Active’ necrotizing lesions
  c. ‘Active’ and sclerosing lesions
  d. Sclerosing lesions

Diffuse segmental (IV-S) or global (IV-G)d

($50% glomeruli segmental or global lesions).
A, A/C, C as above

V Diffuse membranous
  a. Pure membranous
  b. Assoc class IIa/b lesions
  c. Assoc class IIIa-c lesions
  d. Assoc class IVa-d lesions

Membranous
May occur in combination with class III or IV, 
in which case both will be diagnosed

VI Advanced sclerosinga Advanced sclerosing ($90% of glomeruli 
globally sclerosed without residual activity)

Notes: aPercentage was not stipulated in the 1982 modification of the WHO criteria; bIndicate and grade (mild, moderate, severe) tubular atrophy, interstitial inflammation 
and fibrosis, severity of arteriosclerosis or other vascular lesions; cIndicate the proportion of glomeruli with active and with sclerotic lesions; dIndicate the proportion of 
glomeruli with fibrinoid necrosis and cellular crescents.
Abbreviations: EM, electron microscopy; IF, immunofluorescence; ISN/RPS, International Society of Nephrology/Renal Pathology Society; LM, light microscopy; 
WHO, World Health Organization.
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significant side effects and, despite their use, up to 20% of 

patients with nephritis will still progress to end-stage renal 

failure and require renal replacement therapy. It is timely 

therefore to re-examine the role of immune complexes in 

the pathogenesis of lupus nephritis and update the current 

status of new therapeutic strategies that target immune 

complexes.

DNA-anti-DNA immune  
complexes in the pathogenesis  
of lupus nephritis
Raised serum levels of circulating immune complexes have 

long been described in lupus, and correlate with disease 

activity.9 The role of anti-DNA antibodies in lupus nephritis 

is also well documented, and the evidence for the involvement 

of complexes containing these autoantibodies is summarized 

in Table  2. Despite the evidence linking DNA-anti-DNA 

immune complexes to lupus nephritis, the precise mechanism 

of renal damage is still unknown. In the prevailing hypothesis, 

nucleosomes released from apoptotic cells bind to autoanti-

bodies and deposit in glomeruli, resulting in complement acti-

vation and thus tissue injury. An alternative hypothesis is that 

anti-DNA antibodies cross-react with non-DNA components 

in glomeruli, but this is thought to be less likely.10

Doubts about the importance of DNA-anti-DNA immune 

complexes arise because not all patients with anti-DNA 

antibodies develop lupus nephritis. Furthermore, glomerular 

immune complex deposition may be seen without clinically 

overt renal disease,11 suggesting that additional factors are 

necessary for the development of renal pathology. Particular 

characteristics of anti-DNA antibodies may make some more 

nephritogenic than others. For example, it has been postulated 

that the isotype and subclass of the antibody is important. In 

particular, the IgG isotype12 and specifically the IgG313,14 or 

IgG214 subclasses present a higher risk of clinical nephritis. 

Although there is some evidence that avidity of anti-dsDNA 

antibodies may also play a role in vitro,15,16 their role in vivo 

has been questioned.10,17

The specificity of anti-DNA antibodies is another impor-

tant factor in pathogenicity. A specificity for nucleosomes 

rather than DNA,10 the presence of cationic moieties that bind 

to negatively charged glycosaminoglycans such as heparan 

sulfate,18 and cross-reactivity of antibodies with alpha-actinin19 

are linked to an increased likelihood of renal pathology. 

Consistent with the idea of immune complex-mediated 

damage being central to the pathogenesis of lupus nephritis, 

the availability of extra-cellular chromatin17 has been identi-

fied as another factor linked to the development of nephritis. 

Abnormalities in DNA fragmentation as a result of reduced 

levels of the endonuclease DNase1 have been identified in 

mouse models of lupus nephritis, perhaps predisposing to the 

deposition of chromatin in glomeruli.20

Once DNA-anti-dsDNA immune complexes have been 

formed, they are normally cleared by the RES but defects 

of some of the clearance mechanisms have been described 

in SLE, including aberrant interactions with Fcγ receptors 

(FcγRs), complement and complement receptors, and anti-

C1q antibodies. With respect to the first of these interactions, 

a particular polymorphism in FcγRIIB is associated with SLE 

in Asian populations.21 FcγRIIB has a cytoplasmic tail which 

mediates inhibitory functions. Therefore, FcγRIIB signal-

ing is important in controlling the immune response, and 

deficiency may predispose to autoimmunity.21 The activating 

FcγRs are also involved in the pathogenesis of lupus nephritis. 

Immune complex binding to FcγRI and FcγRIII trigger mono-

cytes and macrophages to release proinflammatory mediators 

and chemokines which recruit immune effector cells that 

contribute to renal damage.22–24 Increased expression of FcγRI 

on monocytes has been found to correlate with the presence of 

active lupus nephritis.23 Secondly, genetic variations in C4 can 

Table 2 Evidence for role of DNA-containing immune complexes 
in the pathogenesis of lupus nephritis

Murine models • �Anti-DNA antibodies bind directly to non-DNA 
antigenic structures in normal glomeruli62–64

• �Immune complexes containing nucleosomes/DNA 
bind to glomerular basement membranes65 and 
glomerular capillary walls.66 These might serve  
to localize antibody-mediated injury to the 
glomerulus. Co-deposition of C3 complement 
suggests that these antibodies might initiate 
complement-mediated damage65

• �Transgenic mice expressing anti-DNA antibodies 
who are not otherwise predisposed to develop 
lupus, develop nephritis67

• �Infusion or transfer of anti-DNA antibodies causes 
nephritis68–70

Human studies • �Chromatin colocalises with autoantibodies in 
glomerular-membrane-associated electron dense 
structures in nephritic kidneys71

• �Correlation between presence11,72,73 and increasing 
levels74 of anti-dsDNA antibodies and lupus 
nephritis

• �Correlation between presence of antinucleosome 
antibodies and lupus nephritis73

• �Persistently high titers of anti-dsDNA antibodies 
are a poor prognostic factor in proliferative lupus 
nephritis75

• �Patients with sustained reductions in anti-dsDNA 
antibodies 5–7 × less likely to have nephritic flares 
in a study of treatment with abetimus76
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Table 3 Trials of induction therapies for lupus nephritis Table 3 (Continued)

Class of nephritis5 Study design Intervention 1 Intervention 2 Number of LN patients 
(intervention 1 vs 2)

Duration 
of follow-up

Outcome Reference

Trials of various cyclophosphamide  
regimens

IV RCT Prednisone (av 40 mg/d).  
Maintenance prednisone

Prednisone (av 29 mg/day) plus 
PO CYC (average 107 mg/
day) for 6 months. Maintenance 
prednisone

26 vs 24 4 years Lower relapse rate in PO CYC group 
(48% vs 14%) with steroid sparing effect 
of PO CYC

Donadio et al77

WHO III, IV, Vc, Vd RCT IV CYC 0.5 g/m2 monthly  
(increased acc to nadir WBC to max 1.5 g) 
for 6 months followed by 2 quarterly pulses. 
AZA 2 weeks after last CYC

Low dose IV CYC: 500 mg 
fortnightly × 6 doses. AZA 2 
weeks after last CYC

46 vs 44 10 years Similar outcomes for renal remissions, 
renal flares, death, doubling of creatinine 
(12%), ESRD (7%)

Houssiau et al 
(Euro-Lupus Nephritis 
Trial)78,79

Not classified RCT Monthly IV CYC 750 mg/m2 for  
6 months followed by quarterly  
IV CYC for 2 years

High dose (50 mg/kg) IV CYC for 
4 days

26 vs 21 30 months 64% vs 20% complete renal response 
(P = 0.08)

Petri et al80

Proliferative RCT IV CYC 10 mg/kg every 3 weeks for 4 
doses. Then PO CYC 5 mg/kg for 2 days 
every 4 weeks for 9 months; then every 
6 weeks for 12 months

PO CYC 2 mg/kg/day for 
3 months then AZA 
1.5 mg/kg/day

16 vs 16 3.3 years No difference in efficacy Yee et al81

Proliferative Phase I/II pilot study PO CYC 0.5 g/m2 BSA monthly with SC 
fludarabine 30 mg/m2 on days 1–3 for 
3–6 cycles

– 13 2.6 to 6.7 years Severe myelosuppression – study 
terminated

Illei et al82

Trials of mycophenolate vs  
IV cyclophosphamide

V Pooled analysis of pure class V 
nephritis from two studies83,84

MMF 2.5–3.0 g/day IV CYC as per NIH protocol 42 vs 42 6 months Similar outcomes for urine protein, 
change in urine protein, complete  
and partial remission rates

Radhakrishnan et al85

III, IV or V RCT MMF target dose 3 g/d IV CYC NIH protocol; median 
dose received 0.75 g/m2

185 vs 185 24 weeks, maintenance 
phase reported below

Similar response rate (56% vs 53%) Appel et al (ALMS group)84

III, IV or V Meta-analysis of Ginzler  
200583 and Ong 200586

MMF 1 g bid for 6 months86. MMF pushed 
up to 3 g daily if tolerated83

IV CYC 0.75–1.0 g/m2 monthly for 
6 months.86 NIH IV CYC83

90 vs 94 6 months86 Complete remission rate after induction 
therapy higher in MMF group

Zhu et al87

Miscellaneous trials of conventional  
immunosuppressant agents

Various Retrospective review  
of Hopkins Lupus Cohort

Addition of tacrolimus to MMF in those 
failing MMF

– 7 2–54 months Frequent toxicity, infrequent success 
(1 patient achieved complete renal 
remission)

Lanata et al88

WHO III, IV, Vc, Vd RCT AZA 2 mg/kg/day and pulse MP (3 × 3 
pulses of 1 g over 2 years)

IV CYC 750 mg/m2 (13 doses 
over 2 years)

37 vs 50 5.7 years Relapses more frequent in AZA group 
(RR8.8). Higher chronicity and activity 
indices on repeat biopsy in AZA group

Grootscholten (Dutch 
Working Party on SLE)89,90; 
Chan91

III or IV RCT CSA 4–5 mg/kg/d for 9 months, gradually 
decreasing (3.75–1.25 mg/kg/d) over next 
9 months

IV CYC 8 doses of 10 mg/kg IV 
over 9 months, then 4–5 × PO at 
same dose ever 6–8 weeks

19 vs 21 18 months CSA as effective as CYC Zavada et al 
(Cyclofa-Lune study)92

Trials of rituximab

III, IV, V Systematic review including 9 
uncontrolled studies and 26 
case reports (not including 
other papers listed in this table)

Various regimens of RTX. 52% had 
concomitant IV CYC

– 103 with lupus nephritis 
(188 SLE in total)

17 months Renal response 91%. CRR 67%, PRR 
33%. Higher response rate in those 
having concomitant CYC than those 
who did not. Lymphoma regimen 
(375 mg/m2 × 4 doses) appeared  
more effective

Ramos-Casals et al93

III or IV RCT RTX monotherapy. 1000 mg  
IV 2 doses 2 weeks apart

RTX + IV CYC. As for group1 but 
with IV CYC 750 mg following the 
first dose of RTX

9 vs 10 48 weeks No difference in CRR (21%)  
or PRR (58%). 
Rituximab effective as induction therapy

Li et al94

WHO IV or V Retrospective study of 
refractory LN

RTX 375 mg/m2 2 doses 2 weeks apart 
accompanied by IV CYC 500 mg each time

– 7 with refractory LN 18 months 3/7 had CRR, 4/7 had PRR. Most had  
disease flares 6–12 months after  
B cell repopulation

Lateef et al95

(Continued)
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Table 3 Trials of induction therapies for lupus nephritis Table 3 (Continued)

Class of nephritis5 Study design Intervention 1 Intervention 2 Number of LN patients 
(intervention 1 vs 2)

Duration 
of follow-up

Outcome Reference

Trials of various cyclophosphamide  
regimens

IV RCT Prednisone (av 40 mg/d).  
Maintenance prednisone

Prednisone (av 29 mg/day) plus 
PO CYC (average 107 mg/
day) for 6 months. Maintenance 
prednisone

26 vs 24 4 years Lower relapse rate in PO CYC group 
(48% vs 14%) with steroid sparing effect 
of PO CYC

Donadio et al77

WHO III, IV, Vc, Vd RCT IV CYC 0.5 g/m2 monthly  
(increased acc to nadir WBC to max 1.5 g) 
for 6 months followed by 2 quarterly pulses. 
AZA 2 weeks after last CYC

Low dose IV CYC: 500 mg 
fortnightly × 6 doses. AZA 2 
weeks after last CYC

46 vs 44 10 years Similar outcomes for renal remissions, 
renal flares, death, doubling of creatinine 
(12%), ESRD (7%)

Houssiau et al 
(Euro-Lupus Nephritis 
Trial)78,79

Not classified RCT Monthly IV CYC 750 mg/m2 for  
6 months followed by quarterly  
IV CYC for 2 years

High dose (50 mg/kg) IV CYC for 
4 days

26 vs 21 30 months 64% vs 20% complete renal response 
(P = 0.08)

Petri et al80

Proliferative RCT IV CYC 10 mg/kg every 3 weeks for 4 
doses. Then PO CYC 5 mg/kg for 2 days 
every 4 weeks for 9 months; then every 
6 weeks for 12 months

PO CYC 2 mg/kg/day for 
3 months then AZA 
1.5 mg/kg/day

16 vs 16 3.3 years No difference in efficacy Yee et al81

Proliferative Phase I/II pilot study PO CYC 0.5 g/m2 BSA monthly with SC 
fludarabine 30 mg/m2 on days 1–3 for 
3–6 cycles

– 13 2.6 to 6.7 years Severe myelosuppression – study 
terminated

Illei et al82

Trials of mycophenolate vs  
IV cyclophosphamide

V Pooled analysis of pure class V 
nephritis from two studies83,84

MMF 2.5–3.0 g/day IV CYC as per NIH protocol 42 vs 42 6 months Similar outcomes for urine protein, 
change in urine protein, complete  
and partial remission rates

Radhakrishnan et al85

III, IV or V RCT MMF target dose 3 g/d IV CYC NIH protocol; median 
dose received 0.75 g/m2

185 vs 185 24 weeks, maintenance 
phase reported below

Similar response rate (56% vs 53%) Appel et al (ALMS group)84

III, IV or V Meta-analysis of Ginzler  
200583 and Ong 200586

MMF 1 g bid for 6 months86. MMF pushed 
up to 3 g daily if tolerated83

IV CYC 0.75–1.0 g/m2 monthly for 
6 months.86 NIH IV CYC83

90 vs 94 6 months86 Complete remission rate after induction 
therapy higher in MMF group

Zhu et al87

Miscellaneous trials of conventional  
immunosuppressant agents

Various Retrospective review  
of Hopkins Lupus Cohort

Addition of tacrolimus to MMF in those 
failing MMF

– 7 2–54 months Frequent toxicity, infrequent success 
(1 patient achieved complete renal 
remission)

Lanata et al88

WHO III, IV, Vc, Vd RCT AZA 2 mg/kg/day and pulse MP (3 × 3 
pulses of 1 g over 2 years)

IV CYC 750 mg/m2 (13 doses 
over 2 years)

37 vs 50 5.7 years Relapses more frequent in AZA group 
(RR8.8). Higher chronicity and activity 
indices on repeat biopsy in AZA group

Grootscholten (Dutch 
Working Party on SLE)89,90; 
Chan91

III or IV RCT CSA 4–5 mg/kg/d for 9 months, gradually 
decreasing (3.75–1.25 mg/kg/d) over next 
9 months

IV CYC 8 doses of 10 mg/kg IV 
over 9 months, then 4–5 × PO at 
same dose ever 6–8 weeks

19 vs 21 18 months CSA as effective as CYC Zavada et al 
(Cyclofa-Lune study)92

Trials of rituximab

III, IV, V Systematic review including 9 
uncontrolled studies and 26 
case reports (not including 
other papers listed in this table)

Various regimens of RTX. 52% had 
concomitant IV CYC

– 103 with lupus nephritis 
(188 SLE in total)

17 months Renal response 91%. CRR 67%, PRR 
33%. Higher response rate in those 
having concomitant CYC than those 
who did not. Lymphoma regimen 
(375 mg/m2 × 4 doses) appeared  
more effective

Ramos-Casals et al93

III or IV RCT RTX monotherapy. 1000 mg  
IV 2 doses 2 weeks apart

RTX + IV CYC. As for group1 but 
with IV CYC 750 mg following the 
first dose of RTX

9 vs 10 48 weeks No difference in CRR (21%)  
or PRR (58%). 
Rituximab effective as induction therapy

Li et al94

WHO IV or V Retrospective study of 
refractory LN

RTX 375 mg/m2 2 doses 2 weeks apart 
accompanied by IV CYC 500 mg each time

– 7 with refractory LN 18 months 3/7 had CRR, 4/7 had PRR. Most had  
disease flares 6–12 months after  
B cell repopulation

Lateef et al95
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Table 3 (Continued) Table 3 (Continued)

Class of nephritis5 Study design Intervention 1 Intervention 2 Number of LN patients 
(intervention 1 vs 2)

Duration 
of follow-up

Outcome Reference

WHO III or IV  
(not all biopsied)

Observational RTX 1000 mg days 1 and 15. Added to 
current immunosuppressive treatment

– 13 Hispanic with active lupus 
nephritis

6 months 38% CRR, 38% PRR Garcia-Carrasco et al96

WHO III–V Retrospective RTX 275 mg/m2 weekly for 4 doses; IV CYC 
500–100 mg 3 weeks apart for 2 doses

– 28 (WHO III and IV) and 15 (WHO 
V)

12 months Membranous and proliferative LN respond 
similarly to rituximab

Jonsdottir et al97

ISN III or IV RDBPCT RTX 1000 mg on days 1 and 15; repeated at 
6 months. Background MMF target dose 3 g/day

Placebo + MMF target dose 3 g/
day

72 vs 72 – No difference in renal response despite better 
serological response in rituximab group

Furie et al (LUNAR)33; 
Looney34

ISN III-V Prospective observational registry RTX, various protocols – 42 .3 months CRR in 45%, PRR in 29% (total renal response 
rate 74%)

Terrier et al (French 
AutoImmunity and 
Rituximab Registry)36

Note: All studies are with corticosteroids in both arms, unless specified.
Abbreviations: AZA, azathioprine; bid, twice daily; CRF, chronic renal failure; CRR, complete renal response; CSA, cyclosporine A; CYC, cyclophosphamide;  
ESRD, end stage renal disease; IV, intravenous; LN, lupus nephritis; MMF, mycophenolate mofetil; PO, per oral; PRR, partial renal response; RCT, randomized controlled trial;  
RDBPCT, randomized double-blinded placebo-controlled trial; RTX, rituximab.

affect the handling of immune complexes. Deficiency in C4A 

relative to C4B is common in SLE, and has also been associ-

ated with the development of lupus nephritis. C4A prevents 

immune complex precipitation, and therefore deficiency 

could result in increased deposition. A number of other vari-

ants of C4 may promote or protect against immune complex 

damage.25 Thirdly, immune complexes that bind and activate 

complement can also be cleared by high affinity complement 

binding receptor type 1 (CR1, CD35). SLE patients have 

reduced expression of CR1 on their erythrocytes, perhaps 

contributing to defective clearance of immune complexes.26 

Fourthly, the presence of anti-C1q antibodies can influence 

the handling of immune complexes. These autoantibodies 

have been associated with the presence and activity of lupus 

nephritis.27,28 Infusion of anti-C1q antibodies results in depo-

sition in glomeruli in mice, which are not pathogenic unless 

C1q-fixing antiglomerular basement membrane antibodies 

(at subnephritogenic doses) are also present.29 It is thought 

that anti-C1q antibodies amplify the complement cascade 

by themselves fixing and activating complement, recruiting 

further anti-C1q antibodies, and thus increasing the risk of 

renal damage.

Immune complexes containing DNA signal via TLR-9 

and can activate plasmacytoid dendritic cells,30 which then 

process and present chromatin-derived peptides to costimu-

late T helper cells. Chromatin-specific T cells interact with 

dsDNA-specific B cells, facilitating the secretion of anti-DNA 

antibodies. Renal damage results from a combination of com-

plement activation and cellular inflammation. A Th1 response 

is associated with diffuse proliferative lupus nephritis, while 

a Th2 response is associated with the membranous form.31 

Thrombotic microangiopathy caused by antiphospholipid 

antibodies may also contribute to the final pathology.

Therapies of lupus nephritis 
targeting immune complex 
formation
The mainstays of treatment of lupus nephritis are corticosteroid 

therapy combined with cyclophosphamide or mycophenolate 

for induction therapy, and corticosteroids combined with 

azathioprine or mycophenolate for maintenance therapy. The 

evidence for the use of these agents is summarized in Tables 3 

and 4. These agents are not specifically targeted at the reduc-

tion of DNA-anti-DNA immune complexes per se. However, 

a reduction in autoantibody formation and hence immune 

complex generation occurs after the broad immunosuppression 

caused by these agents, and a decrease in serum anti-dsDNA 

antibody levels accompanied clinical improvement in most 

studies listed.

Specific strategies for targeting immune complex forma-

tion include: reducing autoantibody production (targeting 

B cells), reducing the binding of autoantibodies, reducing 

the availability of nucleosomal material, increasing the clear-

ance of immune complexes, and interfering in the feedback 

loop (Figure 1). This is a theoretical framework, and while 

the mechanisms of action of some of the currently used 

treatments for lupus nephritis may fall into these categories, 

further research is necessary in each of these areas to under-

stand their mechanisms and potential clinical efficacy.

Reducing autoantibody production 
(targeting B cells and plasma cells)
Theoretically, autoantibody production may be reduced by 

depletion of B cells (either by targeting B cell surface mol-

ecules or by removing factors required for B cell survival); 

interfering with the development or function of plasma cells; 

or by inducing B-cell tolerance.
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Table 3 (Continued) Table 3 (Continued)

Class of nephritis5 Study design Intervention 1 Intervention 2 Number of LN patients 
(intervention 1 vs 2)

Duration 
of follow-up

Outcome Reference

WHO III or IV  
(not all biopsied)

Observational RTX 1000 mg days 1 and 15. Added to 
current immunosuppressive treatment

– 13 Hispanic with active lupus 
nephritis

6 months 38% CRR, 38% PRR Garcia-Carrasco et al96

WHO III–V Retrospective RTX 275 mg/m2 weekly for 4 doses; IV CYC 
500–100 mg 3 weeks apart for 2 doses

– 28 (WHO III and IV) and 15 (WHO 
V)

12 months Membranous and proliferative LN respond 
similarly to rituximab

Jonsdottir et al97

ISN III or IV RDBPCT RTX 1000 mg on days 1 and 15; repeated at 
6 months. Background MMF target dose 3 g/day

Placebo + MMF target dose 3 g/
day

72 vs 72 – No difference in renal response despite better 
serological response in rituximab group

Furie et al (LUNAR)33; 
Looney34

ISN III-V Prospective observational registry RTX, various protocols – 42 .3 months CRR in 45%, PRR in 29% (total renal response 
rate 74%)

Terrier et al (French 
AutoImmunity and 
Rituximab Registry)36

Note: All studies are with corticosteroids in both arms, unless specified.
Abbreviations: AZA, azathioprine; bid, twice daily; CRF, chronic renal failure; CRR, complete renal response; CSA, cyclosporine A; CYC, cyclophosphamide;  
ESRD, end stage renal disease; IV, intravenous; LN, lupus nephritis; MMF, mycophenolate mofetil; PO, per oral; PRR, partial renal response; RCT, randomized controlled trial;  
RDBPCT, randomized double-blinded placebo-controlled trial; RTX, rituximab.

B cell depletion
Anti-nucleosome and anti-dsDNA antibodies are modestly 

reduced by anti-CD20 mAbs such as rituximab, which effect 

B cell depletion. The reduction in these titers suggests that 

these autoantibodies are produced by a B cell population with 

more rapid turnover than cells that produce anti-ENA, anti-

tetanus or antipneumococcal antibodies, which persist. How-

ever, their incomplete reduction may reflect the presence of 

longer-lived plasma cells which do not express CD20.32 Trials 

of rituximab, however, have yielded conflicting results on 

clinical endpoints (see Table 3). Uncontrolled, observational, 

and retrospective studies seemed to demonstrate benefit in 

lupus nephritis, but two major randomized trials failed to find 

benefit. The LUpus Nephritis Assessment with Rituximab 

(LUNAR) trial, which specifically included patients with 

proliferative lupus nephritis, did not demonstrate any differ-

ence in the proportion of patients obtaining a renal response 

to rituximab compared with placebo.33 However, the use of 

mycophenolate rather than cyclophosphamide as background 

therapy in this trial has been criticized, as it is thought that 

the effects of rituximab may be enhanced, or synergistic, with 

cyclophosphamide.34 Further, given that all participants were 

treated with mycophenolate, any effect of rituximab may have 

been masked. The other major trial, Rituximab in patients 

with Severe Systemic Lupus Erythematosus (EXPLORER),35 

excluded major organ threatening disease and thus ,2% of 

the patients had renal involvement. This trial found no differ-

ence in the rituximab compared with placebo-treated groups, 

but given its patient characteristics, this finding cannot be 

applied to patients with lupus nephritis. Contrary to these 

findings, prospective follow-up of 31 patients with lupus 

nephritis from a cohort of 136 patients entered in the French 

Autoimmunity and Rituximab registry,36 demonstrated renal 

response in 74% of patients, with complete response in 45%. 

Unfortunately, trials of another anti-CD20 agent, ocrelizumab 

(BELONG), for lupus nephritis have been halted due to con-

cerns over serious and opportunistic infections.37

A plethora of other anti-B cell therapies is on the horizon, 

targeting all aspects important for B cell existence and 

function, such as survival factors, differentiation factors, 

co-stimulatory factors, cell-signaling pathways, and homing 

factors.38 Most of these studies are in preliminary phases, or 

have not been evaluated in human lupus nephritis. Belimumab, 

a fully human recombinant monoclonal antibody that binds to 

and inhibits B lymphocyte stimulator (BLyS, also known as 

B cell activating factor or BAFF) has been shown to reduce 

anti-dsDNA titers by 29%, but patients with lupus nephritis 

were excluded from early trials.39,40 More recently, the large 

phase III studies, BLISS-52 and BLISS-76, have shown 

promise with improvements in the SLE responder index, 

though more information on lupus nephritis and belimumab 

is awaited. The Food and Drug Administration has granted 

this drug a priority review designation as a potential treatment 

for SLE (GSK press release August 19, 2010). Epratuzumab, 

targets CD22, a surface molecule involved in regulating B cell 

receptor signaling, and modifies B cell function. A phase II 

study has had promising results, with improvements in BILAG 

scores despite lack of reduction in anti-dsDNA levels, although 

there were too few patients with lupus nephritis to draw any 

conclusions about efficacy in this domain.41

Targeting plasma cells
If B cell depletion does indeed reduce immune complexes 

it may do so indirectly by killing the precursor germinal 

center B cells that give rise to antibody-secreting plasma 

cells. To reduce autoantibody production more effectively, 
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Table 4 Trials of maintenance therapies in lupus nephritis. All received glucocorticoids unless otherwise specified Table 4 (Continued)

Class of 
nephritis5

Study design Induction Maintenance strategy 1 Maintenance strategy 2 Number of LN patients 
(strategy 1 vs 2 vs 3)

Duration 
of follow-up

Outcome Reference

WHO III, IV, Vb RCT IV CYC 0.5–1.0 g/m2 monthly 
for 7 doses

AZA 1–3 mg/kg day MMF 1.5 g/day  
for 12 months 
then weaned

Maintenance 
strategy 3:  
IV CYC 0.5–1.0 g/m2

every 3 months

19 vs 20 vs 20 72 months Relapse free survival highest in MMF group (77%) vs 
AZA (57%) and IV CYC (43%). MMF and AZA better  
for composite endpoint of death or CRF

Contreras et al98,99

III–V Retrospective 
study

IV CYC AZA 2 mg/kg/day MMF 1.5–2.0 g/day 15 vs 17 41 months CRR similar (60% vs 58%) Sahin et al100

Proliferative RCT Eurolupus IV CYC (500 mg × 6 
fortnightly doses). Maintenance Rx 
started at week 12. Renal response 
not required prior to commencing 
maintenance

AZA 2 mg/kg/day target dose MMF 2 g/day target dose 52 vs 53 14 months Renal relapse rate similar (25% vs 19%) Houssiau et al  
(MAINTAIN trial)101

III–V RDBPCT MMF vs IV CYC. Patients who 
achieved partial or complete 
response re-randomized at week 24

AZA 2 mg/kg/day MMF 2 g/day 227 Not yet published  
in full

MMF superior to AZA in delaying time to treatment 
failure (composite of death, serious renal damage, 
renal relapse)

Wofsy et al  
(ALMS group)102

WHO IV, Vc, Vd RCT PO CYC 1–2 mg/kg/day for 3 months AZA 2 mg/kg/day for 1 month 
then optional reduction to 
1.5 mg/kg/day if well controlled

CSA 4 mg/kg/day for 1 month then 
weaned to 2.5–3.0 mg/kg/day keeping 
trough level of 75–200 ng/mL

33 vs 36 4 years Similar rates of SLE flare (13.4 vs 10.6 flares per  
100 patient years), proteinuria and creatinine clearance

Moroni et al103

Abbreviations: see Table 3.

agents targeting plasma cells specifically may be more useful. 

Indeed, corticosteroids may well exert their beneficial effect 

by this mechanism, among others. Proteasome inhibitors 

have been introduced into the therapeutic armamentarium 

for multiple myeloma due to their ability to cause apoptosis 

of plasma cells.42 The use of proteasome inhibitors in SLE 

has been promising in mouse models, eliminating autoreac-

tive plasma cells, reducing anti-dsDNA antibody levels, and 

preventing nephritis;43 human trials are underway.

Induction of B cell tolerance
Induction of tolerance would be the ultimate way to reduce 

anti-dsDNA antibody concentrations. Although murine models 

have provided hope, human trials have again been unimpres-

sive. Regular injections of nucleosomal peptide autoepitopes in 

lupus-prone mice reduced autoantibody levels and delayed the 

onset of nephritis by the induction of TGF-producing regula-

tory T cells.44 However, abetimus, a conjugate composed of 4 

identical strands of dsDNA, did not show any benefit in reducing 

renal flares in human SLE. Interestingly, abetimus did reduce the 

level of anti-dsDNA antibodies, possibly due to the formation of 

soluble complexes that were rapidly eliminated and, possibly, by 

tolerizing B cells and reducing autoantibody production.45

Reducing the binding  
of autoantibodies
The mechanism of action of the antimalarials chloroquine 

and hydroxychloroquine in SLE has recently been revisited, 

because of the recognition of their inhibition of TLR-9 

binding to DNA, by preventing acidification of the lysosome. 

However, hydroxychloroquine, as one of its many mecha-

nisms of action, also affects the affinity of binding of anti-

bodies to their targets. Hydroxychloroquine interferes with 

the binding of antiphospholipid antibodies in vitro, and 

causes a reduction in the levels of these autoantibodies as 

measured by commercially available ELISAs.46 We recently 

demonstrated that the binding of anti-dsDNA antibodies 

as measured by the modified Farr assay is reduced by the 

addition of hydroxychloroquine in vitro.47 This effect is 

likely to be due to the high protein-binding capacity of 

hydroxychloroquine,48 and intercalation of DNA (if sharing 

this property with chloroquine),49,50 potentially modifying 

critical autoepitopes. Whether this affects the pathogenesis 

of human lupus nephritis is unknown.

Reducing the availability of DNA  
and nucleosomal material
Material for anti-dsDNA and antinucleosome antibodies to 

bind may originate from tissue damage in the kidneys, result-

ing in situ formation of complexes or, alternatively, from 

damage remotely, resulting in the formation of circulating 

immune complexes, which then deposit in glomeruli 

(reviewed by Fismen et al51). A phase Ib trial of recombinant 

human DNase I (rhDNase) to hydrolyze extracellular DNA 

in patients with lupus did not reduce anti-dsDNA levels, the 

concentrations of circulating immune complexes, nor change 

other serological markers.52 No further studies of rhDNase 

have been published.
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Table 4 Trials of maintenance therapies in lupus nephritis. All received glucocorticoids unless otherwise specified Table 4 (Continued)

Class of 
nephritis5

Study design Induction Maintenance strategy 1 Maintenance strategy 2 Number of LN patients 
(strategy 1 vs 2 vs 3)

Duration 
of follow-up

Outcome Reference

WHO III, IV, Vb RCT IV CYC 0.5–1.0 g/m2 monthly 
for 7 doses

AZA 1–3 mg/kg day MMF 1.5 g/day  
for 12 months 
then weaned

Maintenance 
strategy 3:  
IV CYC 0.5–1.0 g/m2

every 3 months

19 vs 20 vs 20 72 months Relapse free survival highest in MMF group (77%) vs 
AZA (57%) and IV CYC (43%). MMF and AZA better  
for composite endpoint of death or CRF

Contreras et al98,99

III–V Retrospective 
study

IV CYC AZA 2 mg/kg/day MMF 1.5–2.0 g/day 15 vs 17 41 months CRR similar (60% vs 58%) Sahin et al100

Proliferative RCT Eurolupus IV CYC (500 mg × 6 
fortnightly doses). Maintenance Rx 
started at week 12. Renal response 
not required prior to commencing 
maintenance

AZA 2 mg/kg/day target dose MMF 2 g/day target dose 52 vs 53 14 months Renal relapse rate similar (25% vs 19%) Houssiau et al  
(MAINTAIN trial)101

III–V RDBPCT MMF vs IV CYC. Patients who 
achieved partial or complete 
response re-randomized at week 24

AZA 2 mg/kg/day MMF 2 g/day 227 Not yet published  
in full

MMF superior to AZA in delaying time to treatment 
failure (composite of death, serious renal damage, 
renal relapse)

Wofsy et al  
(ALMS group)102

WHO IV, Vc, Vd RCT PO CYC 1–2 mg/kg/day for 3 months AZA 2 mg/kg/day for 1 month 
then optional reduction to 
1.5 mg/kg/day if well controlled

CSA 4 mg/kg/day for 1 month then 
weaned to 2.5–3.0 mg/kg/day keeping 
trough level of 75–200 ng/mL

33 vs 36 4 years Similar rates of SLE flare (13.4 vs 10.6 flares per  
100 patient years), proteinuria and creatinine clearance

Moroni et al103

Abbreviations: see Table 3.

Increasing the clearance 
of immune complexes
Plasmapheresis is able to lower the titer of anti-dsDNA anti-

bodies but does not necessarily result in sustained clinical 

remission once withdrawn, possibly due to compensatory 

increased production by pathogenic B cell clones (rebound 

effect).53 Removal of pathogenic anti-dsDNA antibod-

ies physically by plasmapheresis may improve outcomes 

for those receiving intravenous (IV) cyclophosphamide. 

A combination of plasmapheresis and IV cyclophosphamide 

results in higher rates of complete renal remission than IV 

cyclophosphamide alone.54,55 However, not all trials have 

found benefit, and larger randomized trials are required to 

confirm these findings. Other small studies and case reports 

have also demonstrated benefit with immunoadsorption 

plasmapheresis,56,57 but further investigation is required to 

clarify the role of this treatment.

Breaking the feedback (amplification) 
loop
Signaling of immune complexes containing RNA and 

DNA via TLRs 7 and 9, respectively, activates plasma-

cytoid dendritic cells to produce large amounts of type I 

interferon. Type I interferons activate B cells and enhance 

antibody responses to soluble proteins, thereby completing 

a feedback loop resulting in the increased production of 

immune complexes.58 One of the mechanisms of action for 

antimalarial drugs such as hydroxychloroquine in lupus is 

thought to be the inhibition of nucleic acid interaction with 

intracellular TLRs 7 and 9, possibly as a result of an increase 

in pH in microsomal compartments.59 Novel treatments aimed 

at blocking TLR7 and TLR9 are being developed.60 A phase I 

study of an anti-interferon-α monoclonal antibody has been 

completed,61 and a phase II study is underway.

Conclusion
Immune complexes containing IgG anti-dsDNA antibodies and 

DNA play a significant role in the complex pathogenesis of lupus 

nephritis. Although strategies specifically aimed at reducing 

immune complexes in SLE are mostly novel, they provide a 

fertile area for further research. Disappointments with early trials 

of new therapeutics strengthen the argument that a combination 

of strategies aimed at different pathogenic mechanisms is likely 

to be necessary to improve the prognosis of this disease.
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