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Abstract

Endocrine resistance is a major problem with anti-estrogen treatments and how to overcome resistance is a major concern
in the clinic. Reliable measurement of cell viability, proliferation, growth inhibition and death is important in screening for
drug treatment efficacy in vitro. This report describes and compares commonly used proliferation assays for induced
estrogen-responsive MCF-7 breast cancer cell cycle arrest including: determination of cell number by direct counting of
viable cells; or fluorescence SYBRHGreen (SYBR) DNA labeling; determination of mitochondrial metabolic activity by 3-(4,5-
dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay; assessment of newly
synthesized DNA using 5-ethynyl-29-deoxyuridine (EdU) nucleoside analog binding and Alexa FluorH azide visualization
by fluorescence microscopy; cell-cycle phase measurement by flow cytometry. Treatment of MCF-7 cells with ICI 182780
(Faslodex), FTY720, serum deprivation or induction of the tumor suppressor p14ARF showed inhibition of cell proliferation
determined by the Trypan Blue exclusion assay and SYBR DNA labeling assay. In contrast, the effects of treatment with ICI
182780 or p14ARF-induction were not confirmed using the MTS assay. Cell cycle inhibition by ICI 182780 and p14ARF-
induction was further confirmed by flow cytometric analysis and EdU-DNA incorporation. To explore this discrepancy
further, we showed that ICI 182780 and p14ARF-induction increased MCF-7 cell mitochondrial activity by MTS assay in
individual cells compared to control cells thereby providing a misleading proliferation readout. Interrogation of p14ARF-
induction on MCF-7 metabolic activity using TMRE assays and high content image analysis showed that increased
mitochondrial activity was concomitant with increased mitochondrial biomass with no loss of mitochondrial membrane
potential, or cell death. We conclude that, whilst p14ARF and ICI 182780 stop cell cycle progression, the cells are still viable
and potential treatments utilizing these pathways may contribute to drug resistant cells. These experiments demonstrate
how the combined measurement of metabolic activity and DNA labeling provides a more reliable interpretation of cancer
cell response to treatment regimens.
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Introduction

Drug resistance is a major problem in cancer research. As a

result there is an increasing emphasis on understanding the

mechanism of drug metabolism in the control of cancer cell

proliferation, viability and death to enable improved drug

therapies for patients. A major interest in our laboratory is to

understand anti-estrogen treatment resistance in breast cancer.

We have been using three methods to inhibit estrogen action:

anti-estrogen ICI 182780 (Faslodex); inhibition of sphingosine

kinase activation of the estrogen receptor using the immunosup-

pressive drug FTY720; re-activation of the tumor suppressor

p14ARF-p53 pathway. Faslodex is currently in clinical use as an

anti-hormone therapy and also commonly used in the laboratory

to study estrogen action [1]. This compound binds and down-

regulates the estrogen receptor (ER) and induces quiescence by

stopping cell cycle progression from G0/G1 into S-phase [2].

The drug FTY720 is a sphingosine analogue and is currently in

clinical use as an immunosuppressant for multiple sclerosis [3].

FTY720 acts by inhibiting sphingosine kinase (SK) activity [4].

SK1 is causally associated with endocrine resistance, in part, by

enhancing estrogenic proliferative activity [5]. FTY720 has been

shown to directly affect mitochondria and trigger apoptosis [6].

Mimetics of p14ARF, such as nutlin 3, which activate the p53

pathway, are now in clinical trial for cancer therapy [7]. It is well

documented that p14ARF binds to hdm2 (homolog of mouse

mdm2) and stabilizes p53 protein thus inhibiting cell cycle

progression [8]. Importantly for our research, p14ARF is
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associated with anti-estrogen action whereby both mdm2 and

p53 bind to the estrogen receptor (ER) and inhibit estrogen

activity in breast cancer cells [9,10,11]. In our hands p14ARF

inhibits cell proliferation and induces hypertrophy in MCF-7

cells.

Assays commonly used by cancer researchers to assess cell

number, cell viability and cytotoxicity in response to drug

treatment include the metabolic MTT [12] or MTS [13] assays

that measure mitochondrial enzymatic activity that occurs only in

viable, proliferating cells. However, cell cycle arrest does not

necessarily result in metabolic dysfunction. In some instances a

perturbation of cellular processes resulting in increased metabolic

activity can provide a false positive readout of cell response to

treatment [14]. Alkylators and anthracyclines, for example,

damage proteins as well as DNA, resulting in energy-dependent

protein degradation and resynthesis. An alternative approach to

determining cell cycle arrest utilizes DNA labeling with SYBRH
Green I (SYBR) or other dyes such as CyQuant, whereby DNA

content can be accurately measured by fluorescence spectrometry

[15,16,17,18]. This assay more accurately measures cell number,

proliferation and cell cycle arrest as analyzed by DNA content.

The EdU click-IT assay is designed to measure only proliferating

cells in live cell culture. Newly synthesized DNA incorporates

5-ethynyl-29-deoxyuridine (EdU) nucleoside analog, similar to the

BrdU assay, but less toxic.

In this study we examine the reliability of MTS, SYBR-DNA

labeling and EdU in vitro assays to determine cell cycle arrest in

estrogen sensitive MCF-7 cells following treatment with ICI

182780, FTY720 or following the induction of p14ARF. We

discuss the practical advantages/disadvantages of using mitochon-

drial activity assays and DNA labeling assays in parallel as fast,

effective methods of screening anti-proliferative effects following

drug intervention to determine cell fate. Furthermore, under-

standing the mechanism of drug action at the cellular or nuclear

level will aid in the design of combinatorial drug therapies for

patients with unmet needs.

Results

Comparative analysis of Cell counts, MTS and SYBR-DNA
labeling assays

In this study we analyzed the anti-proliferative effects of the

pure anti-estrogen ICI 182780, p14ARF-p53 induction, FTY720

drug treatment and serum starvation in MCF-7 cells. These

experiments were conducted with MCF-7 cells showing p14ARF

induction with IPTG. Without IPTG induction, these MCF-7 cells

retained all the characteristics of native breast cancer cells

including their responsiveness to anti-estrogen treatment (unpub-

lished data). We compared viability of cells post-treatment using

the Trypan Blue exclusion assay measured by direct cell counts,

the MTS assay by colorimetric measurement, and SYBR-DNA

assay measured by cell fluorescence. For simplicity we expressed

the results as a mean percentage of control 6 SE to allow for

direct comparison of all assays (Fig. 1).

Induction of p14ARF with IPTG. As shown in Figure 1

(IPTG), induction of p14ARF with IPTG dramatically inhibited

cell proliferation by 60–80% (cell counts) within the first 2 days

compared to control cells when a 20–50% reduction was

observed by SYBR green fluorescent assay. Interestingly, the

MTS assay showed an increase in mitochondrial activity at 24 h

(115%) and the activity was only suppressed by 10% at day 2

despite a significant reduction in cell number. The SYBR assay

showed an 85% inhibition in proliferation by day 3, yet the MTS

assay showed only 20% suppression in metabolic activity. The

trypan blue count confirmed that viable cell numbers did not

increase in the IPTG condition when compared to the controls

(Fig. 1, IPTG).

ICI 182780 treatment. Upon treatment with the anti-estrogen ICI

182780 the SYBR green assay showed a deficit of 20% and MTS

assay showed little change within the first 2 days despite a 30–

50% reduction in cell number (Fig. 1, ICI 182780). Similar to

IPTG results, when cells were treated with ICI 182780 the SYBR

assay showed a marked inhibition of proliferation (60%) by day 3,

whereby the MTS assay only showed 20% suppression in

mitochondrial activity. The trypan blue count confirmed the

number of viable cells did not increase compared to control

(Fig. 1, ICI 182780).

FTY720 treatment. When cells were treated with FTY720, all

three assays, Trypan blue counts, SYBR and MTS assays showed

70–80% suppression in proliferation by day 3 (Fig. 1, FTY720).

However, in contrast, the FTY720 treatment significantly reduced

mitochondrial activity (MTS) on day 1 (40% of control) with little

impact on SYBR DNA content (Fig. 1, FTY720). This result is

consistent with previous reports showing FTY720 directly slows

mitochondrial activity [6].

Serum free treatment. When cells were deprived of serum

there was no difference in results yielded from the Trypan Blue,

MTS or SYBR assays (Fig. 1, Serum free).

Comparatively, when assessing the different treatment regimes,

our results showed that the MTS and SYBR assays might not be as

reliable a measure of cell proliferation as cell counts.

Flow cytometric analysis of ICI 182780 or p14ARF
anti-proliferative effects

The above observations showed distinct discrepancies between

the MTS and SYBR-DNA assay readouts and cell counts when

cells were treated with ICI 182780 and IPTG (induction of

p14ARF) at days 1 and 2. Flow cytometric analysis confirmed cell

cycle inhibition post treatment with ICI 182780 or IPTG (Fig. 2),

concordant with the cell count results (Fig. 1). Flow cytometric

results presented additional information on cell behaviour post

drug treatment; IPTG induction of p14ARF significantly reduced

the S-phase peak with an accumulation of cells in the G1 and

G2/M cell-cycle phases whereas ICI 182780-treated cells accu-

mulated in the G1/GO phase (Fig. 2A). These experiments were

repeated with three different p14ARF-clonal cell lines with

similar results to ensure that G2/M accumulation post-IPTG

treatment was not due to aberrant clonal variation (Fig. 2B). Our

results are consistent with the published literature, which

demonstrate ICI 182780 induces quiescence (G1/G0) in MCF-7

cells [2], and p14ARF-p53 arrests cells in both G1 and G2/M

cell-cycle phases [19].

EdU-DNA incorporation post-treatment with ICI 182780
and IPTG (p14ARF)

To measure DNA synthesis, in particular the percentage of

cells in S-phase, EdU was added directly to the MCF-7p14ARF

cell culture medium 24 h and 96 h post-treatment with IPTG or

ICI 182780 and cells were incubated for a further 20 h. This

allowed the visualization of individual cell proliferation captured

over a 20-hour window. At 24 h post-IPTG treatment, 5% of

IPTG-treated cells synthesized DNA (Fig. 3), suggesting rapid

repression of DNA synthesis upon reactivation of the p14ARF

pathway in MCF-7 cells, which is consistent with the cell count

data, but not with MTS or SYBR green assays (Fig. 1). Reduced

proliferation was maintained for 96 h–116 h (Fig. 3). These

later-day results were in agreement with the cell counts and

Interpretation of Proliferation Assays in MCF-7
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SYBR-DNA assay as shown in Figure 1, but not with the MTS

assay. ICI 182780-treated cells showed a significant inhibition in

DNA synthesis by day 4–5 post-treatment when only 20% of

these cells incorporated EdU when compared to control cells

(P,0.0001; Fig. 3). Interestingly, ICI 182780 treatment showed

a delayed cell cycle arrest mechanism when compared to

p14ARF induction with IPTG, which showed an early inhibition

of DNA synthesis by day 1–2 (P,0.0001; Fig. 3). This is

consistent with the Flow analysis data and previously reported

literature where ICI 182780 effective blocks the cell cycle only in

G1/G0 phase [2].

P14ARF and ICI 182780 increase mitochondrial activity in
MCF-7 cells

We have shown significant differences between the MTS and

SYBR assay readouts when investigating the anti-proliferative effect

of ICI 182780 and p14ARF-induction. We therefore determined

mitochondrial activity on a cell-cell basis using the MTS assay. On

day 3 post-treatment with ICI 182780, IPTG or control, cells were

harvested and equal numbers of treated and untreated cells were

seeded into 96 well plates and mitochondrial activity determined by

MTS assay (Fig. 4). On a comparative cell-cell basis IPTG-treated

Figure 1. Comparative analysis of MCF-7 cell viability, cell number and mitochondrial activity. Cells were treated with 5 mM IPTG, 10 nM
ICI 182780, 5 mM FTY720, or serum deprived (serum free) 48 h post-seeding. Using the Trypan Blue exclusion method cells were harvested and viable
cells counted using a haemocytometer at days indicated. MTS and SYBR-DNA assays were performed, as detailed in materials and methods, at days
indicated. The treatment results are shown as a percentage of the uninduced vehicle control (6SE) correlating with viable cell number (Trypan blue
counts), colorimetric measurement (MTS), and fluorescent intensity (SYBR assay). Each experiment was performed in triplicate at least 3 times with
similar results.
doi:10.1371/journal.pone.0020623.g001
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cells showed a significant (2.6 fold) increase in mitochondrial activity

compared to untreated cells (P,0.0001; Fig. 4B). ICI 182780 also

resulted in a significantly increased mitochondrial activity (1.6 fold)

per cell (P,0.0001; Fig. 4A).

Induction of p14ARF increases mitochondrial biomass
with no loss of mitochondrial membrane potential

To understand the mechanism underlying the increased

metabolic activity in MCF-7 cells with p14ARF induction,

mitochondrial content and the mitochondrial membrane potential

in treated and untreated cells were analysed. At day 3 post-IPTG-

treatment, MitoTrackerTM red, CellTrackerTM green, and

Hoechst 33342 was added to the cell cultures and live cells were

imaged (Fig. 5A). A noticeable increase in cell size by day 3 was

observed concomitant with an increase in mitochondria density

per cell; this increase in cell size is consistent with the senescence-

phenotype. Mitochondria cell number was quantified using the

BD pathway Bioimager and Attovision software (Fig. 5B). A 3-fold

increase (P,0.001) in mitochondrial counts post-p14ARF induc-

tion compared to control cells was observed.

Measurement of mitochondrial membrane potentiality

(DYmt). Tetramethylrhodamine ethyl ester (TMRE) is a red-

orange fluorescent dye, which is readily taken up by active

mitochondria. The amount of orange/red fluorescence is

indicative of DYmt. To determine whether the mitochondria in

our studies were functional we used TMRE uptake as a measure of

DYmt. IPTG treated cells showing an increased TMRE

incorporation at day 3 compared to untreated (TMRE-control)

cells (P,0.001), confirmed that DYmt was significantly increased

in p14ARF expressing cells (Fig. 5 C and D), consistent with an

increased biomass of functional mitochondria. These results

strongly support the conclusion that the increase in metabolic

activity, as demonstrated by MTS assays, was due to an increase in

the numbers of functional mitochondria.

Discussion

Large scale screening of drug effects on cell fate in cell culture

is an important initial step to determine their potential efficacy in

clinical application. Two screening assays commonly used to

assess cell proliferation are the MTS assay, which measures

dehydrogenase enzyme activity found in metabolically active

cells, and SYBR-DNA labelling to determine DNA content. This

study highlights the pitfalls researchers encounter by relying on

one or both methods to determine cell viability or proliferation.

Although we showed that SYBR-DNA is generally a more

reliable, reproducible method to assess the anti-proliferative

activity of drugs compared to the MTS assay over time, there are

distinct discrepancies at early time points (days 1–2) between

SYBR-green assay readouts and cell counts. In contrast, we

clearly showed that the MTS assay is not always a reliable

method to detect cell proliferation and is dependent on the drug

of interest mode of action.

Nevertheless, each method can provide valuable information on

drug efficacy. Here we show that initial screening using both

methodologies offers some insight in cell behavior and presents a

more informative picture of cell fate post drug treatment.

Specifically, in this report we showed that the MTS assay is not

on its own trustworthy as a method to measure the anti-

proliferative activity of ICI 182780 which is clinically used for

the treatment of advanced breast cancer [20], nor is it a reliable

method to assess the anti-proliferative capacity of p14ARF-p53, an

important tumor suppressor pathway. Although both treatments

inhibit cell proliferation, we showed that the cells do not die and,

indeed, showed increased metabolic activity.

Using p14ARF-induction as an example, SYBR-DNA labeling

correlates favorably over time with viable cell number estimation

by the Trypan Blue exclusion viable cell assay. Parallel studies

using the MTS assay again indicated that although cells expressing

p14ARF cells stopped proliferating, the viability of the cells was

not strongly impacted. In fact, as with ICI 182780 treatment there

was a clear increase in the metabolic activity of these cells.

Information gained from Flow cytometric analyses of the cell-

cycle-parameters and EDU live cell labeling provides additional

insight on cell behaviour dependent on drug treatments. Inhibition

of cell proliferation by p14ARF and ICI 182780 clearly showed

different modes of action of cell-cycle phase repression, potentially

contributing to latent recurrence or irreversible inhibition of cell

proliferation post-drug treatment.

One of the major problems with current breast cancer

treatments is the high rate of resistance to current therapy. For

example, hormone therapies such as ICI 182780 used to treat

Figure 2. Flow cytometric analysis of cell cycle phases post ICI 182780 and IPTG treatment. Cells were treated with 10 nM ICI 182780 or
5 mM IPTG (p14ARF-induction) 48 h post seeding. At 48 h post-treatment cells were harvested, stained with propidium iodide solution as described
in materials and methods and analysed for cell cycle distribution by flow cytometry using Modfit software. A. Fluorescence histograms showing cell
cycle distribution of control, IPTG and ICI 182780 treated MCF-7 cells (representative experiment). B. Representative column graph showing the
percentage of cells (6 SD) in each cell cycle. This experiment was performed three times with three different cell lines showed similar results.
doi:10.1371/journal.pone.0020623.g002
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breast cancer could also be called cytostatic therapy. Drug

treatments such as ICI 182780 potentially contribute to latent

resistant breast cancer, as we have shown cells retain viability and

are metabolically active post-treatment. Further support for this

idea is provided by our previous results showing that estrogen and

progestins can reverse the anti-estrogenic effects of ICI 182780 in

culture [21]. Drugs that target alternative signaling pathways, such

as FTY720, may prove to be more effective alone, or in

combinational therapies, in obtaining controlled cell death and

tumor regression. Initial high throughput screening combining

metabolic activity assays with DNA-labeling and Flow cytometric

analyses would provide more reliable preliminary interpretation of

Figure 3. EdU incorporation post ICI 182780 and IPTG (p14ARF) treatment. Cells were seeded on cover slips and treated with 5 mM IPTG or
10 nM ICI 182780 24 h post-seeding. EdU was added to the medium on days 1 and 4 and cells were incubated for a further 20 h. EdU incorporation
was visualized by staining with Alexafluor 488 (green). The nucleus was stained with Hoechst 33342 (blue) and images were taken on a Nikon
fluorescence microscope (magnification 6200). Column graph shows % cells staining for EdU compared to Hoechst 33342 stained nuclei (6 SE).
Experiments were performed in triplicate (duplicate biological experiments). A minimum of 500 cells was counted for each treatment.
doi:10.1371/journal.pone.0020623.g003
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cell reactions to drug regimens and also benefit the identification

and design of novel therapeutic drug combination therapies.

Materials and Methods

Cell lines and culture conditions
MCF-7 epithelial breast cancer cells (ATCC 30–4500K) were

maintained in complete medium: DMEM supplemented with 10%

fetal bovine serum and penicillin/streptomycin. MCF-7 cells were

stably transfected with p14ARF (MCF-7p14ARF) using the IPTG

inducible system (Stratagene) as previously described [22]. Cells

were maintained in hygomycin B (200 mg/mL and geneticin

(200 mg/mL). Expression of p14ARF was induced by adding

5 mM IPTG to the cell medium and incubated at 37uC. Addition

of 10 nM ICI 182780 (Faslodex) (Santa Cruz Biotechnology, Inc)

and 5 mM FTY720 (Cayman Chemicals, Michigan, USA) were

used to induce cell cycle arrest. All cells were tested mycoplasma

free using the mycoAlert Kit (Lonza, Australia).

Cell proliferation assays
MTS assay 1. Cells were seeded in 96-well plates at a density

of 500 cells/well (dependent on the cell line) in 50 mL medium and

left to attach for 48 h at 37uC. Subsequently, cells were exposed to

drugs in an additional 50 mL medium. The first lane and column

contained medium only to negate edge effects due to evaporation

of the medium, the second lane was untreated controls (no drug).

Cultures were further incubated at 37uC after which cells were

assayed with MTS at time intervals 1–3 days as indicated.

Measurements were made in accordance with the manufacturers

instructions (Promega Corp., Madison, WI). In brief, 100 mL MTS

reagent was added directly to the wells and cells incubated at 37uC
for a minimum of 2 h. Assessment of metabolic activity was

recorded as relative colorimetric changes measured at 492 nm.

The data was transferred to Microsoft Excel and analyzed.

Background absorbance was corrected using triplicate sets of wells

containing medium only (no cells) and MTS reagent as per

experimental well. The results represent the mean 6 SE of

quadruple samples, expressed as a percentage of control. Each

experiment was performed at least three times.

MTS assay 2. Cells were seeded in 6-well plates at a density of

105 cells/well and treated with drug concentrations as indicated or

5 mM IPTG (to induce p14ARF expression). At time intervals, as

indicated, cells were trypsinized, counted using a haemocytometer

and an equal number of cells were added to a 96-well plate. MTS

reagent was added to the cells and incubated at 37uC for a

minimum of 2 h and analyzed as described above.

SYBR-DNA-labeling assay. The SYBR-DNA-labeling ex-

periment was performed as described for the MTS assay 1. Assays

were stopped at time intervals 1–3 days post treatment as indicated,

by flicking off the medium and freezing the plate. Relative cell

numbers were determined in a similar manner to the CyQuant

assay (Invitrogen); cells were stained with 200 mL/well of SYBRH
Green I (Invitrogen) 1:4000 in a hypotonic lysis buffer (10 mM Tris

HCl pH 8, 5 mM EDTA, 0.1% Triton X-100) for 4–7 days in the

dark at 4uC and then quantified by flourimetry at 535 nm with

485 nm excitation, measured using a Wallac VICTOR3V plate

reader (Perkin Elmer P/L Melbourne Vic, Australia). Treated cell

fluorescence intensity was presented as a percentage of intensity of

control cells.

Trypan Blue exclusion viable cell assay. Cells were tryp-

sinized and resuspended in equal volumes of medium and Trypan

blue (0.05% solution) and counted using a haemocytometer.

Trypan blue dye (Invitrogen) exclusion was used to assess cell

viability.

Click iTTM EdU Imaging Kit. The EdU (5-ethynyl-29

-deoxyuridine) is a nucleoside analog of thymidine that is

incorporated into DNA only during DNA synthesis allowing the

visualization of newly synthesized DNA [23]. This imaging

technology is a less toxic alternative to the BrdU incorporation

assay. To perform the assay cells were plated on cover slips in 6-

well plates and incubated at 37uC for 24 h before treatment with

5 mM IPTG, 10 nM ICI 182780, or 5 mM FTY720. At time

intervals indicated cells were treated with 2.5 mM EdU, directly

added to the culture medium, and incubated for a further 20 h at

Figure 4. ICI 182780 and p14ARF increase mitochondria activity. Cells were treated with 10 nM ICI 182780 (A) or 5 mM IPTG (B), 48 h post
seeding. At 72 h post treatment cells were counted (see inset) and equal number of cells plated in 96 well plates. Mitochondrial activity was
measured using the MTS assay. Treatment results were presented as percentage of control (6 SE) in column graphs. Each experiment was performed
in duplicate at least 3 times.
doi:10.1371/journal.pone.0020623.g004
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37uC to ensure capture of the majority of proliferating cells.

Following EdU addition for 20 h, cells were fixed with 4%

paraformaldehyde and permeabilised using acetone for 5 min at

220uC. Incorporation of EdU was observed by incubating fixed

cells with 2% BSA in PBS for 30 m and Alexa fluor 488 for a

further 30 min under Cu(I)-catalyzed click reaction conditions, as

described by the manufacturer. Cells were washed with PBS, and

counterstained with Hoechst 33342 (1:1000) in PBS before

mounting on slides using Fluor mount (Sigma) for fluorescent

microscopy.
Cell kinetic studies. Cells were seeded at 105 per well in 6

well plates and treated with 10 nM ICI 182780, 5 mM IPTG or

vehicle, 24 h post-seeding. Cell cycle distribution was assessed

using flow cytometry as described previously [21]. Briefly, at 48 h

post-treatment cells were harvested, washed with PBS, fixed in

cold ethanol and stained with propidium iodide solution

containing RnaseA. A. Flow cytometric analysis was performed

on a FACSCalibur (Becton Dickinson) using Modfit LT analysis

software (Verity Software House, Inc., Topsham, ME). A

minimum of 20,000 cells was counted for each sample. Analysis

was done with ModFit software.
Mitochondria detection. Cells were treated with IPTG or

vehicle over a period of 3 days. Live cell cultures were incubated

with MitoTrackerH 50 nM (Invitrogen) as per manufacturer

instructions Cells were imaged using phase contrast and

fluorescence microscopy using an Eclipse Ti-U inverted

fluorescent microscope (Nikon, Tokyo, Japan) with a 5 mega-

pixel cooled camera (6400 magnification). Mitochondrial counts,

size, and distribution were measured using Pathway BioimagerTM

analyzed with Attovision software (6200 magnification).

Mitochondrial membrane potential. The DYmt was mea-

sured by flow cytometry using with 488 nm excitation and 670 nm

emission. Log scale fluorescence histograms were analyzed for

median relative fluorescent unit (RFU) intensity using Flow Jo

software.

Statistical analyses. All data were analysed by the Students

t-test using Microsoft Excel, unless otherwise stated.
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was performed at least twice in triplicate.
doi:10.1371/journal.pone.0020623.g005
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