
Gapped Spectral Dictionaries and Their
Applications for Database Searches of Tandem
Mass Spectra*□S

Kyowon Jeong‡, Sangtae Kim§, Nuno Bandeira§, and Pavel A. Pevzner§¶

Generating all plausible de novo interpretations of a pep-
tide tandem mass (MS/MS) spectrum (Spectral Dictionary)
and quickly matching them against the database repre-
sent a recently emerged alternative approach to peptide
identification. However, the sizes of the Spectral Diction-
aries quickly grow with the peptide length making their
generation impractical for long peptides. We introduce
Gapped Spectral Dictionaries (all plausible de novo inter-
pretations with gaps) that can be easily generated for any
peptide length thus addressing the limitation of the Spec-
tral Dictionary approach. We show that Gapped Spectral
Dictionaries are small thus opening a possibility of using
them to speed-up MS/MS searches. Our MS-Gapped-
Dictionary algorithm (based on Gapped Spectral Diction-
aries) enables proteogenomics applications (such as
searches in the six-frame translation of the human ge-
nome) that are prohibitively time consuming with existing
approaches. MS-GappedDictionary generates gapped
peptides that occupy a niche between accurate but short
peptide sequence tags and long but inaccurate full length
peptide reconstructions. We show that, contrary to con-
ventional wisdom, some high-quality spectra do not have
good peptide sequence tags and introduce gapped tags
that have advantages over the conventional peptide se-
quence tags in MS/MS database searches. Molecular &
Cellular Proteomics 10: 10.1074/mcp.M110.002220, 1–13,
2011.

Most peptide identification tools are rather slow because
they match every tandem mass (MS/MS)1 spectrum against
all peptides in a database (subject to constraints on the pre-
cursor mass, the enzyme specificity, and the number of
missed cleavages). A faster approach would be to generate a
full-length de novo reconstruction of a spectrum and to match
the resulting peptide against a database. The fundamental
algorithmic advantage of the latter approach is that one can
preprocess the database (e.g. by constructing its suffix tree)
so that matching becomes instantaneous. The only reason

why most MS/MS database search tools still use the former
approach is because full-length de novo peptide sequenc-
ing remains inaccurate. Even the most advanced de novo
peptide sequencing tools (1–3) correctly reconstruct only
30–45% of the complete peptides identified in MS/MS data-
base searches. After decades of algorithmic developments, it
seems that de novo peptide sequencing “hits a wall” and that
accurate full-length peptide reconstruction is nearly impossi-
ble because of the limited information content of MS/MS
spectra (other reasons include limited understanding of frag-
mentation rules, co-eluted peptides, etc.). We argue that re-
gions with low information content should be represented as
mass gaps (that represent two or more amino acids) and
advocate use of gapped peptides as spectral interpretations.

Kim et al., 2009 (4) recently proposed to generate multiple
de novo reconstructions (rather than a single one) and to
match them against a database (MS-Dictionary approach).
Because matching peptides against a preprocessed database
is very fast, generating thousands of reconstructions still has
advantages over the traditional approaches in which spectra are
matched against large databases. Given an MS/MS spectrum,
MS-Dictionary generates the Spectral Dictionary (4) that con-
tains all plausible de novo reconstructions of the spectrum (i.e.
with scores exceeding a given threshold) and further matches
them against a database. The running time of MS-Dictionary is
almost independent of the database size making it a tool of
choice for peptide identification in large databases (4).

Although MS-Dictionary was proved to be useful for pep-
tides shorter than 15 amino acids (aa), it has limitations for
longer peptides with large Spectral Dictionaries. For example,
the size of the Spectral Dictionary for a typical 15-aa long
peptide may exceed a billion peptides making it too large for
a MS/MS database search. We introduce MS-Gapped-
Dictionary that generates rather small Gapped Spectral Dic-
tionaries (even for long peptides) thus addressing the key
limitation of the Spectral Dictionaries. Gapped Spectral Dic-
tionary is the set of gapped peptides (see (5)) that are derived
from the full-length peptides in the Spectral Dictionary. Al-
though the concept of a gapped peptide is not new (1, 2,
6–8), constructing dictionaries of gapped peptides that ac-
count for all plausible de novo interpretations was not ad-
dressed before. Gapped peptides occupy a niche between
accurate but short peptide sequence tags (9) and long but
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inaccurate full-length peptide reconstructions. The gapped
peptides are both long and accurate making them well suited
for de novo-based MS/MS database searches. In difference
from short peptide sequence tags, a gapped peptide typically
has a single match in a database reducing peptide identifica-
tion to a single database look-up. For a typical 20-aa long
peptide, the size of the Spectral Dictionary exceeds 1017,
whereas the size of the Gapped Spectral Dictionary is only
�104. Moreover, we show that even smaller Gapped Spectral
Dictionaries with only 20–100 peptides are sufficient for most
applications. At the same time, gapped peptides are suffi-
ciently long for efficient database matching. For example, for
a spectrum of 15-aa long peptide, the average length (The
total number of gaps and amino acids in the gapped peptide.
For example, the length of [186]DK[246]FK is 6.) of gapped
peptides in its Gapped Spectral Dictionary exceeds nine. For
all practical purposes, (gapped) peptides of length nine are as
informative as (full-length) peptides of length 15 for matching
databases (unless the database size approaches 209). Table I
(a) shows the Gapped Spectral Dictionary of a spectrum of
peptide LNRVSQGK shown in Fig. 1A, consisting of seven
gapped peptides (as compared with its Spectral Dictionary
consisting of 92 peptides shown in supplemental Table S1).
We describe an efficient algorithm for constructing the
Gapped Spectral Dictionaries that also computes coverage of
each gapped peptide, reflecting the portion of plausible de
novo reconstructions represented by a gapped peptide (see
below for the definition of coverage).

Recent proteogenomics studies highlighted the importance
of MS/MS searches against the six-frame translation of ge-
nomes (10–17). However, until recently, searches against the
six-frame translations of large genomes were impractical even
with the fastest MS/MS search tools, let alone with traditional
tools like SEQUEST and Mascot. Although MS-Dictionary
enabled searches in the six-frame translation of the human
genome with 40� speed-up over InsPecT (4), it loses many
peptide identifications (compared with InsPecT) because
Spectral Dictionaries of long peptides have to be truncated
(leading to truncating the correct peptides in some cases).
Gapped Spectral Dictionaries remedy this shortcoming of
Spectral Dictionaries and nearly double the number of iden-
tified peptides in the six-frame translation of the human ge-
nome (as compared with MS-Dictionary (4)).

Table I (b) illustrates how gapped peptides and their cov-
erage can be used for constructing the peptide sequence
tags (9). Tanner et al., 2005 (18) introduced covering sets of
tags (set of tags containing at least one correct tag) and
demonstrated how such sets can greatly speed-up MS/MS
database searches. However, although the sizes of covering
sets may vary between spectra, Tanner et al., 2005 (18) did
not describe an approach for selecting (the varying number
of) tags for every spectrum and did not assign rigorous
probabilities to tags. Although Gapped Spectral Dictionaries
can be used for generating (varying number of) conventional

peptide sequence tags along with their probabilities, Table
I (c) illustrates that “good“ peptide sequence tags (repre-
senting all peptides in the Gapped Spectral Dictionary) may
be difficult to find. We show that, contrary to conventional
wisdom, some high quality spectra do not have good pep-
tide sequence tags. We therefore advocate generating
gapped tags representing sequences of mass gaps (like
[186]LK derived from the first peptide in Table I (c)) and
demonstrate that gapped tags improve the filtration effi-
ciency of peptide sequence tags in tag-based MS/MS da-
tabase searches.

Fig. 2 illustrates different modules of MS-GappedDictionary
that are described below.

EXPERIMENTAL PROCEDURES

Path Dictionary Problem—Most de novo peptide sequencing algo-
rithms interpret spectra by analyzing paths in spectrum graphs (19).
We start by discussing the problem of finding suboptimal paths in
arbitrary graphs and later describe how it relates to finding paths in
the spectrum graphs.

Let G(V,E,score,probability) be a directed acyclic graph with vertex
set V, edge set E, and functions score and probability defined on its
edges (Fig. 3 A, left panel). (At this point, the score and probability
should be viewed as arbitrary numbers assigned to the edges.) Later,
we will describe what score and probability mean in the context of de
novo peptide sequencing. Given a path in G, the score of the path is
defined as the sum of scores of its edges, whereas the probability of
the path is defined as the product of probabilities of its edges. Given
a graph G with selected vertices s (source) and t (sink), and a thresh-
old MinScore, the Path Dictionary (denoted as PD(G,MinScore)) is
defined as the set of all paths from s to t with scores exceeding
MinScore (along with their probabilities). The following Path Diction-
ary Problem can be solved using standard algorithms for finding
suboptimal paths (20).

Path Dictionary Problem. Given a directed acyclic graph G and a
threshold MinScore, construct PD(G,MinScore).

Define the generating function p(x) as the total probability of all
paths of score x from the source s to the sink t in the graph G. The
generating function can be efficiently computed as the probability of
node (t,x) in the dynamic programming graph as described in (4, 21)
(Fig. 3, left). PD(G,MinLength) is constructed by standard backtrack-
ing in the dynamic programming graph.

For the spectrum graph of a tandem mass spectrum (19), the Path
Dictionary Problem corresponds to a de novo peptide sequencing
problem when multiple (suboptimal) de novo reconstructions (rather
than a single one) are generated. (In the spectrum graph of a spec-
trum, vertices represent all (integer) masses from 0 to parent mass of
the spectrum, and vertices v and v� are connected by a directed edge
(v,v�) if and only if there is an amino acid with (integer) mass (v�-v). The
score of the edge (v,v�) is given by the PRM score (18) of the peak
represented by the vertex v�, and the probability is given by the
probability that the amino acid represented by the edge (v,v�) appears
in a random database (a database with identically and independently
distributed amino acids with probability 1/20).) Kim et al., 2008 (21)
applied the generating function approach (Fig. 3, left) to analyze
MS/MS spectra and further demonstrated (4) how to generate the
Path Dictionary (termed Spectral Dictionary) that contains all plau-
sible de novo reconstructions for a given spectrum. Each path in the
Path Dictionary corresponds to a full-length peptide reconstruction
in the Spectral Dictionary, and �

x�MinScore
p� x� corresponds to the

spectral probability (p value) defined in (4). To generate the Spectral

Gapped Spectral Dictionaries

10.1074/mcp.M110.002220–2 Molecular & Cellular Proteomics 10.6

http://www.mcponline.org/cgi/content/full/M110.002220/DC1


FIG. 1. Spectra for the peptide LNRVSQGK (A) and AIIDAIVSGELK (B) identified by InsPecT (release 20090910) database search.
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Dictionaries, a spectral probability Threshold is fixed and MinScore
is selected in such a way that the spectral probability does not
exceed Threshold.

This Spectral Dictionary approach, whereas useful, is not practical
for long peptides (15 amino acids and longer) with large dictionaries.
We bypass this problem by solving the Gapped Path Dictionary
Problem defined below.

Gapped Path Dictionary Problem—Let H be a subset of vertices of
a graph G containing the source s and the sink t (vertices of H are
called hubs). We remark that every path on vertices in G induces a
hub path on vertices in H by simply retaining only vertices from H in
the original path. For example, a path s3v13v23v33v43v53v6-3t

that contains hubs s, v2, v3, v5, t induces a hub path s3v23v33v53t.
We define the probability of a hub path as the total probability of
all paths inducing this hub path. The Gapped Path Dictionary
GPD(G,H,MinScore) is defined as the set of all hub paths induced
by the paths in PD(G,MinScore) (along with their probabilities).

Gapped Path Dictionary Problem. Given a directed acyclic graph
G, a subset of its vertices H, and a threshold MinScore, construct
GPD(G,H,MinScore).

The brute-force algorithm for constructing GPD(G,H,MinScore) (by
constructing PD(G,MinScore) and generating all hub paths induced
by the paths in PD(G,MinScore)) is impractical for large PD(G,
MinScore). Below we describe an efficient algorithm for solving the

FIG. 2. Different modules of
MS-gappeddictionary.
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Gapped Path Dictionary Problem that does not require the construc-
tion of PD(G,MinScore).

Given hubs h and h�, we define Path(h,h�) as the set of all paths in
G between h and h� that do not pass through other hubs. Each path
in Path(h,h�) is characterized by its score and probability. Let X(h,h�)
be the set of scores of all paths from Path(h,h�) and Prob(h,h�) be the
total probability of all paths in Path(h,h�). If Prob(h,h�,x) is defined as

the total probability of all paths of score x from the set Path(h,h�), then
Prob�h,h�� � �

x���h,h��
Prob�h,h�,x�.

We define the hub graph GH as a multigraph on the set of
vertices H (Fig. 3, right). For every x�X(h,h�), there exists an edge
between h and h� with score x and probability Prob(h,h�,x). (There
exists X(h,h�) edges between vertices h and h� in the multigraph

FIG. 3. Left panel: Illustration of the dynamic programming algorithm for computing the generating function of graph G shown in (A).
The nodes of the dynamic programming (DP) graph (B) are defined as pairs (v,x), where v is a vertex of G and x is a score. Two nodes (v,x) and
(v�,x�) are connected by an edge if and only if there exists an edge between vertices v and v� in G with score x�-x. The probability of an edge
between (v,x) and (v�,x�) in the DP graph equals to the probability of the edge (v,v�) in G. A source s in graph G corresponds to a single node
(s,0) in the DP graph. A node (v,x) is present in the DP graph if and only if there exist a path from (s,0) to (v,x). In this example, red (blue) edges
of the DP graph in (B) are from the red (blue) edges of the graph G in (A). All edge probabilities in (B) are 0.5 as the probabilities of edges of
G are 0.5. The node probability of node (v,x) (shown inside nodes in (B) and (C)) is the total probability of the paths from the source s to v with
the score x. The node probability of the source of the DP graph is initialized by 1, and the node probability of a node (v,x) is obtained by the
weighted summation of the node probabilities of its predecessors (see (21)). The generating function is represented by the probabilities of the
sink nodes in the DP graph. To find all paths of score x from the source to the sink in graph G one has to backtrack all paths from the node
(t,x) in the DP graph. For example, if x � 2, two such paths are found: {s, v2, v4, v7, t} and {s, v3, v6, t} as in (C). Right panel: Path Dictionary
and Gapped Path Dictionary. (A) PD(G,1) and the generating function of G. (B) The construction of GH using edges between hubs v2 and t
(shown as solid blue and red edges) as examples. Solid blue and red edges in GH are induced by dashed blue and red paths in G. All paths
that use only nonhub vertices in G are collapsed into edges in GH. (C) The hub graph GH, GPD(G,H,1), and the generating function of GH.
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GH.) The score and the probability of a path in GH is defined as the
sum of scores and the product of probabilities of its edges,
respectively.

As the hub paths (on vertices in H) are induced by the paths in G,
GPD(G,H,MinScore) is the same as PD(GH, MinScore). Therefore, the
Gapped Path Dictionary Problem in G is essentially the Path Diction-
ary Problem in the hub graph GH, and we only need to compute the
scores and the probabilities of the edges in GH to solve the Gapped
Path Dictionary Problem. Below, we show how to compute Prob-
(h,h�,x) for all edges of the hub graph.

Given a hub h in the graph G(V,E,score,probability), we modify the
score function by assigning score -� to all edges originating at all
hubs other than h. Denote the resulting score function (parameterized
by h) as score(h). The family of score functions score(h) for all hubs
h�H can be used to compute Prob(h,h�,x) for all pairs of hub vertices
h and h�. One can prove that computing Prob(h,h�,x) (for all x�X(h,h�))
is equivalent to computing the generating function for a graph G(V,
E,score(h),probability) with source h and sink h�. Note that a single
computation of the generating function from h to the sink t for the
graph G(V,E,score(h),probability) gives us Prob(h,h�,x) for all h��H and
all x�X(h,h�).

After constructing the hub graph GH, GPD(G,H,MinScore) can be
constructed by computing generating function for the graph GH and
generating all paths with score exceeding MinScore. Fig. 3 (right) shows
an example of the Path Dictionary and the Gapped Path Dictionary.

Gapped Spectral Dictionaries—So far, we represented each path in
the Gapped Path Dictionary as the sequence of edges (rather than
vertices) the path traverses. Because the hub graph GH is a multi-
graph (that may have multiple edges of various scores between the
same vertices), there can be many paths (with different scores) with
identical vertex-sets (Fig. 3, right panel (C)). We define the Compact
Gapped Path Dictionary, denoted by CGPD(G,H,MinScore), as the set
of vertex-sets of paths in the Gapped Path Dictionary GPD(G,H,Min-
Score), along with their probabilities, where the probability of each
vertex-set in CGPD(G,H,MinScore) is defined as the total probabil-
ity of the paths in GPD(G,H,MinScore) with the same vertex-set
(see supplemental Table S1). The algorithm for efficient generation
of Compact Gapped Path Dictionaries is described in the
Supplement S2.

For each spectrum, we construct its spectrum graph and generate a
set of hubs (prefix masses). Given a spectrum graph G and a set of hubs
H, paths in G correspond to peptides whereas vertex-sets in GH corre-
spond to gapped peptides introduced in (5). Gapped Spectral Dictionary
is defined as Compact Gapped Path Dictionary of the spectrum graph.

Although we described an algorithm for constructing the Gapped
Spectral Dictionary for a given hub set H, it remains unclear how to
select hubs. The hub selection has to achieve two conflicting goals: (i)
minimize the number of selected hubs to ensure that the Gapped
Spectral Dictionary is small, and (ii) maximize the average length of
peptides in the Compact Gapped Spectral Dictionary to ensure that
the reconstructed gapped peptides are sufficiently informative.

Therefore, the goal is to select k hubs that maximize the average
number of vertices per path in the Gapped Path Dictionary (weighted
by their probabilities). We select hubs as k most “popular” vertices in
paths from PD(G,MinScore). Such ranking of vertices of the graph G
can be computed by generating Spectral Profiles introduced in (5).
(The Spectral Profiles provide a better hub selection than peak inten-
sities and PRMs (18) (see Supplement Fig. S1).)

RESULTS

Data Sets—We used the previously published Shewanella,
HEK, and Standard data sets to benchmark MS-Gapped-
Dictionary (see (22, 14, 23), and (24) for the details of the

generation of spectra in Shewanella, HEK, and Standard data
sets, respectively).

Shewanella Data Set—To benchmark the performance of
MS-GappedDictionary, we adopted the Shewanella data set
composed of 18,468 charge two spectra from Shewanella
oneidensis MR-1, each representing a distinct tryptic peptide
(22). (Although this paper focuses on doubly charged spectra,
the same generating function approach works for spectra with
higher charges as shown in (25).) The spectra in this data set
were acquired on an ion trap MS (LCQ, ThermoFinnigan, San
Jose, CA) using ESI and were identified with InsPecT 197
MS-GeneratingFunction (18, 21) to ensure that all Peptide
Spectrum Matches (PSMs) have spectral probabilities below
10–9. Note that MS-GeneratingFunction was shown to im-
prove upon other MS/MS identification tools (InsPecT, X!
Tandem, and SEQUEST/PeptideProphet (21)) and in most
applications, peptide identifications with spectral probabil-
ities above 10–9 are of little use because they result in high
FDR. (The Supplement Material Figs. S2, S3, S4 presents
analysis of the same data set for spectral probabilities be-
low 10–10 and 10–11.) The analysis below is based on She-
wanella data set unless noted otherwise.

Standard Data Set—Shewanella data set is inadequate for
benchmarking the (gapped) tag generation accuracy, be-
cause the tag-based tool InsPecT was used to identify the
spectra in Shewanella data set (i.e. a correct InsPecT tag was
generated for every spectrum). We obtained the data set
reported in (5) collected from the Standard Protein Mix data-
base (24). For this study, we considered only the charge-two
spectra generated by LTQ, where the spectra were identified
by SEQUEST (26) and PeptideProphet (27) that do not use
tags for identifications. We further selected PSMs with spec-
tral probabilities below 10–9 and formed the data set (denoted
Standard) with 990 charge-two spectra of distinct peptides.

HEK Data Set—To benchmark MS-GappedDictionary, MS-
Dictionary (4), InsPecT (18), and OMSSA (28) in MS/MS
searches of huge databases, we analyzed the previously pub-
lished spectral data set from the human HEK293 cell line
generated in Steve Briggs’ laboratory (see (14, 23) for a de-
tailed description of this data set). The spectra were acquired
on an LTQ linear ion trap tandem mass spectrometer.

InsPecT and OMMSA were chosen for benchmarking be-
cause they represent some of the fastest MS/MS database
search tools. (Sequest was shown to be 60 times slower than
InsPecT 4 making it impractical for large proteogenomic
searches.) We selected 1 million spectra from HEK293 data
set (described in (14)) for analyzing proteogenomics applica-
tions of MS-GappedDictionary (see Supplement S16). Be-
cause analyzing 1 million spectra even with fast tools like
InsPecT is very time consuming (estimated CPU time in the
search against the 6-frame translated human genome is 9
million seconds) we further selected a single run of this data
set (�30,000 spectra) for benchmarking. We further pro-
cessed this data set with PepNovo	 (Release 20091029) (3)

Gapped Spectral Dictionaries
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to correct charges and parent masses and limited our analysis
to 14,000 charge-two spectra (denoted HEK data set). The
HEK data set was searched against the six-frame translation
of the repeat-masked human genome (version GRCh37 re-
leased on March 2, 2009) using MS-GappedDictionary, MS-
Dictionary, InsPecT, and OMSSA. (see supplemental Table S2
for search parameters)

To generate the Gapped Spectral Dictionaries, the spectral
probability threshold is set to 10–9 for Shewanella and Stan-
dard data sets and 10–11 for HEK data set (assuming that the
precursor mass is known). The spectral probability thresholds
vary for different data sets to maintain roughly 1% FDR (see
29 for selection of the spectral probability threshold). The
spectral hubs are selected based on k maximal peaks in its
Spectral Profile with k varying from 20 to 40.

From Gapped Spectral Dictionaries to Pocket Dictionar-
ies—Because multiple peptides often induce the same
gapped peptide, Gapped Spectral Dictionaries are typically
much smaller than Spectral Dictionaries. Fig. 4 shows the
sizes of Gapped Spectral Dictionaries and Spectral Diction-
aries for various peptide lengths. Although the size of Spectral
Dictionary grows as 20peptide length, the size of the Gapped
Spectral Dictionary is limited by 2 H , where H is the number of
hubs. In practice, the size of Gapped Spectral Dictionaries is
much smaller than 2 H for sensible values of spectral probabil-
ities. For example, for peptides of length 20, the size of the
Spectral Dictionary exceeds 1017 whereas the size of the
Gapped Spectral Dictionary is on the order of 104 (for H � 20).

Fig. 5 shows the distribution of the lengths of the gapped
peptides that are induced by the correct peptides (correct
gapped peptides). The high average length of the correct
gapped peptides (10–13) indicates that Gapped Spectral Dic-
tionaries have the potential to speed up database searches.
(The fraction of short gapped peptides (length less than 5) is
less than 0.01 regardless of the peptide length.) Gapped
peptides are classified into short (with length shorter than �)
and long (with length equal to or longer than �), where � is

the minimum gapped peptide length threshold. Discarding
short gapped peptides results in �-reduced Gapped Spec-
tral Dictionary.

A spectrum is �-identifiable if its �-reduced Gapped Spec-
tral Dictionary contains at least one correct gapped peptide.
Fig. 6 shows the identifiability of spectra in the Shewanella
data set. For � � 5, the identifiability is higher than 99% for all
peptide lengths. Fig. 6 illustrates that there exists a tradeoff
between the identifiability and efficiency of the database
search controlled by the minimum length of the gapped pep-
tide � (increase in � reduces the identifiability but improves the
efficiency of the database search).

After generating the �-reduced Gapped Spectral Dictionar-
ies, we order all gapped peptides by their coverages, and
analyze the rank of the first correct gapped peptides in this
ranked list. The coverage of a gapped peptide is defined as
the probability of the gapped peptide divided by the total
probability of the peptides in the Spectral Dictionary. Fig. 7
shows that the average rank of the best ranked correct
gapped peptides does not exceed 100 even for long gapped
peptides (� � 5,7,9). In fact, only 20–100 gapped peptides are
typically sufficient to generate a correct peptide (Fig. 8). As
such, it suffices to generate a small subset of the Gapped
Spectral Dictionary called Pocket Dictionary by choosing the
k best-ranked gapped peptides in the �-reduced Gapped
Spectral Dictionary (k is typically 20–100). Fig. 9 shows the
identifiability of the Pocket Dictionaries compared with the
identifiability in the (full-size) �-reduced Gapped Spectral Dic-
tionaries. (It turns out that selecting gapped peptides based
on their coverage yields better results than selecting based on
their scores (see Supplement S5).) Throughout the paper we
generate Pocket Dictionaries of size 100 with � � 5 and 20
hubs that results in high identifiability.

Although we showed how to generate the highest-scoring
gapped peptides, generation of the highest-probability ver-
tex-sets (gapped peptides) in the �-reduced Gapped Path
Dictionary is described in Supplement S3.

FIG. 4. Gapped Spectral Dictionary size versus Spectral Dic-
tionary size (for varying peptide length and number of hubs) for
the Shewanella data set.

FIG. 5. Distribution of the lengths of the gapped peptides in-
duced by correct peptides (for 20 hubs) for the Shewanella data
set. (see Supplement Fig. S2 for different parameters).

Gapped Spectral Dictionaries

Molecular & Cellular Proteomics 10.6 10.1074/mcp.M110.002220–7

http://www.mcponline.org/cgi/content/full/M110.002220/DC1


From Gapped Spectral Dictionaries to Gapped Tags—Once
the Pocket Dictionary is generated, one still needs to match
gapped peptides in the Pocket Dictionary against the pro-
tein database. The current version of MS-GappedDictionary
uses gapped tags of length three (see below) instead of
gapped peptides to speed-up searches in huge databases.
This is conceptually similar to InsPecT search with the only
difference that InsPecT uses 3-aa long peptide sequence

tags whereas MS-GappedDictionary uses gapped tags of
length three for filtering the database. In Supplement S15
we sketch a more efficient algorithm (based on matching the
entire gapped peptides).

Table I (C) demonstrates that many gapped peptides in the
Gapped Spectral Dictionary may not contain peptide se-
quence tags. In contrast, allowing a single gap in tags
(gapped tags) reveals a covering set of only six tags of length
three: [273]LK, G[242]K, S[299]K, [250]SG, ELK, and [186]LK.
In contrast with peptide sequence tags, gapped tags include
both gaps and amino acid masses. Below we limit our anal-
ysis to gapped tags with gaps below 500 Da (We limit the
mass of the largest gap to limit the memory requirements of
MS-GappedDictionary (see Supplement S12).) and analyze
gapped tags of length three with at most one gap (i.e. gapped
tags with at least two amino acids). Such tags are called
proper gapped tags. We demonstrate that the proper gapped
tags have better filtration efficiency (defined below) than pep-
tide sequence tags.

FIG. 6. Identifiability of the �-reduced Gapped Spectral Diction-
aries from the Shewanella data set for � � 5 (A), � � 7 (B), and
� � 9 (C).

FIG. 7. Average rank of (the best ranked) correct gapped pep-
tides. The average ranking does not exceed 80 regardless of the
peptide length (for � � 5,7,9). The number of hubs is 20. The dotted
lines with open circles at the ends represent the range that the
rankings fall into 90% of the time.

FIG. 8. The probability that a correct gapped peptide is found
within k top-ranked peptides in the �-reduced Gapped Spectral
Dictionary. The number of hubs is 20, and � � 5 (see Supplement Fig.
S3 for different parameters).
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Some masses in a gapped peptide may represent either an
amino acid or a gap because 5 amino acids (N, Q, K, R, and
W with masses 114, 128, 128, 156, and 186, respectively)
have composite masses equal to the (integer) sum of two
amino acid masses. (In this article, we focus on ion-trap
spectra and thus limit our analysis to integer amino acid

masses. However, the generating function approach can be
easily adjusted to more accurate mass measurements (see
21).) For example, the composite mass 114 Da could repre-
sent either N or GG. Therefore, to generate a set of proper
gapped tags, one has to decide whether a composite mass in
the gapped tag corresponds to a single amino acid (see
Supplement section S10 for the explanation on how it is
done).

To generate the set of proper gapped tags, we select at
most one proper gapped tag from each gapped peptide in the
Pocket Dictionary. The greedy algorithm for selecting proper
gapped tags is described in Supplement section S11. Fig. 10
compares the gapped tags generated by MS-GappedDiction-
ary with peptide sequence tags generated by InsPecT (release
20090910). With 15 (on average) proper gapped tags gener-
ated by MS-GappedDictionary (see supplemental Table S4),
the average accuracy is 94.8% whereas the accuracy of In-
sPecT tags is only 87.2% with 15 peptide sequence tags and
94.7% even with 50 tags. (The accuracy of tag generation is
defined as the percentage of cases when the set of generated
tags contains a correct tag.) MS-GappedDictionary con-
structs a table of proper gapped tags as described in the
Supplement. Once the Table is built, finding peptides
matched to a proper gapped tag is fast, and the search space
for further analysis is limited to only those matched peptides.
We define the filtration efficiency of a peptide sequence tag/
gapped tag/peptide as the ratio of the number of its matches
in the random database over the database size. Although the
filtration efficiency of a peptide (i.e. an amino acid sequence)
is 1/20peptide length (and the filtration efficiency of amino acid is
1/20), it is easy to see that the filtration efficiency of a gap of
mass m is the sum of filtration efficiencies of all amino acid
sequences with mass m. It turns out that large masses typi-
cally have better filtration efficiencies than amino acids. (For
example, gap mass 57 (integer mass of Gly) appears in N/20
positions in a random database of size N whereas gap mass
[400] appears in �N/121 positions. There are 1,102 combina-
tions of amino acids for the gap mass [400]: 42 combinations of
3 amino acids, 664 combinations of 4 amino acids, 300 com-
binations of 5 amino acids, and 96 combinations of 6 amino
acids. Thus, the filtration efficiency of the gap mass [400] is 42 �

(1/20)3 	 664 � (1/20)4 	 300 � (1/20)5 	 96 �(1/20)6 � 0.0095.
supplemental Fig. S6 shows the filtration efficiency of masses
as compared to an amino acid, and supplemental Table S3
shows the possible aa (amino acid) combinations for each
mass (from 114 Da to 250 Da). This improvement translates
into a superior filtration efficiency of gapped tags as com-
pared with peptide sequence tags (compare with (31) where
database searches with similar gapped tags were introduced).

For each spectrum in Standard data set, we generated tags
using MS-GappedDictionary (15 proper gapped tags per
spectrum on average) and InsPecT (50 peptide sequence tags
per spectrum), and measured the number of matches against
the Swiss-Prot database. Although InsPecT reported �2

FIG. 9. Identifiability of the Pocket Dictionaries from the She-
wanella data set for � � 5 (A), � � 7 (B), and � � 9 (C). The number
of hubs is 20. Even for long peptides, Pocket Dictionaries with 50
gapped peptides are sufficient to ensure the identifiability higher than
97% when � is 5. When � is large, larger Pocket Dictionaries are needed.
(see Fig S4 in Supplemental).
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TABLE I
(A) The Gapped Spectral Dictionary for the spectrum of peptide LNRVSQGK (consisting of seven gapped peptides) is much smaller than

the Spectral Dictionary (consisting of 92 full-length peptides). For simplicity, LNRVSQGK is represented by its integer amino acid masses
as follows: 
113�
114�
156�
99�
87�
128�
57�
128�. Each gapped peptide is represented by amino acids and mass gaps that represent
combinations of amino acids (for example, 
128� can be Q, K, GA, or AG). Either Q or K is used instead of 
128� when 
128� occupies the
same position as Q or K on the peptide LNRVSQGK. The gapped peptides that match the correct peptide are called correct gapped
peptides (like gapped peptides 1 and 6 marked with †). For example, the gapped peptides 
113 	 114�RVSQGK or LN
156 	 99�SQGK
match peptide LNRVSQGK. The second column represents the coverage of the gapped peptide (see Results section for the definition of
coverage), reflecting the portion of the total probability of all full-length peptides represented by the gapped peptide (see
Supplement Table S1 for an example of the calculation of the coverage of the gapped peptide 
227�RVSQGK).

(B) Peptide sequence tags of length 3 derived from the Gapped Spectral Dictionary. Masses over left (right) arrows are the prefix (suffix)
masses of the tags. The third column shows the coverage of each tag, where the coverage of a tag is defined by the summation of the coverages
of gapped peptides covered by the tag. The fourth column shows the gapped peptides (specified by the numbers in the first column of (A))
covered by each tag. For example, a tag VRV covers two gapped peptides 3 and 5 in (A) with coverages of 13.71% and 5.71%, respectively.
The coverage of the tag VRV is, thus, 13.71 	 5.71�19.4%. Overall, only two tags (e.g. QGK and VRV) cover all gapped peptides in the Gapped
Spectral Dictionary.

(C) The Gapped Spectral Dictionary for the spectrum of peptide AIIDAIVSGELK shown in Fig. 2B (16 gapped peptides represent 24,034 full
length peptides). The correct gapped peptides are marked by †. The Gapped Spectral Dictionary for the peptide AIIDAIVSGELK reveals only
three tags (GEL, ELK, and SGE), together covering only 18.59% of the Spectral Dictionary. In contrast, six (gapped tags) 
273�LK, G
242�K,
S
299�K, 
250�SG, ELK, and 
186�LK cover the entire Spectral Dictionary.

(A)

No. Gapped Peptide (GP) Coverage of GP * # of peptides represented by GP

1† 
227�RVSQGK 45.69 12
2 
128� 
255�VSQGK 15.99 32
3 
128�VRVSQGK 13.71 20
4 
128�VR
186�QGK 11.42 4
5 
128�VRV
215�GK 5.71 2
6† 
383�VSQGK 5.71 2
7 
128�G
198�VSQGK 1.77 20
Total · 100 92

(B)

No. Tag Coverage of tag (%) Covered GP

1
4™™
569 QGK

3
0 94.3 1,2,3,4,6,7

2
4™™
383 VSQ

™™3
185 82.9 1,2,3,6,7

3
4™™
482 SQG

™™3
128 82.9 1,2,3,6,7

4
4™™
227 RVS

™™3
313 59.4 1,3

5
4™™
128 VRV

™™3
400 19.4 3,5

(C)

No. Gapped Peptide (GP) Coverage of GP * # of peptides represented by GP

1 
445�
250�S
186�LK 33.81 3286
2† 
695�S
186�LK 19.18 1703
3 
445�
337�
186�LK 13.28 255
4 
445�
250�
273�LK 7.67 178
5† 
782�GELK 6.10 684
6† 
695�SGELK 5.55 5563
7 
445�
250�S
299�K 4.20 901
8 
445�
250�SGELK 3.78 3437
9 
445�
337�GELK 1.98 1072
10 
445�
250�SG
242�K 1.61 3942
11† 
695�SG
242�K 0.91 1614
12 
445�
394�ELK 0.91 507
13 
445�
250�SG
370� 0.66 604
14 
445�
250�
144�ELK 0.20 91
15† 
695�
144�ELK 0.07 35
16 
445�
337�G
242�K 0.09 162
Total · 100.00 24034
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thousand peptide sequence tag matches per spectrum on
average, MS-GappedDictionary reported only �420 gapped
tag matches. (The number of peptide matches reported by
MS-GappedDictionary is only about 4–6 when the gapped
peptides (not gapped tags) in the Pocket Dictionaries (with
size 100) are used for the same experiment. The filtration
efficiency of a gapped peptide, therefore, is 106 to 107 times
better than that of gapped tags or peptide sequence tags.)
The running time to search the Swiss-Prot database was
0.36 s for MS-GappedDictionary (including the generation of
the Gapped Spectral Dictionary and the gapped tags) and
0.51 s for InsPecT per spectrum on a desktop machine with a
2.67-GHz Intel processor.

Database Search with Gapped Spectral Dictionaries—To
compare MS-GappedDictionary with other database search
tools (for searches in huge databases), the HEK data set was
searched against the six-frame translation of the human ge-
nome (2.8 billion amino acid residues) using MS-Gapped-
Dictionary, MS-Dictionary (ver. 20100415) (4), InsPecT (re-
lease 20090910) (18), and OMSSA (ver. 2.1.7) (28). The search
parameters used in these searches are specified in the Sup-
plement. We plotted the peptide level FDR curve of each tool
in this search using the target-decoy database approach as
described in (32). In the case of MS-GappedDictionary, two
different methods to search in the database are used: the
search with gapped tags and the search with gapped pep-
tides. We use a brute-force scanning algorithm for matching
gapped peptides against the database. Searching gapped
peptides against a database can be done by simply scanning
each gapped peptide in the Pocket Dictionary against the
database. Because a more efficient search with gapped pep-
tides will be described elsewhere, the goal of this search with
gapped peptides is to study FDR rather than to establish the
running time of this primitive approach.

To measure the FDR of each tool, we first generated the
reversed decoy database of the six-frame translation of the
human genome. The spectra in HEK data set were searched

against both the target and decoy databases. Fig. 11 shows
the FDR curve of each tool and illustrates that MS-Gapped-
Dictionary significantly improves on all other tools in the num-
ber of reliably identified peptides for all levels of FDR (�30%
improvement in the case of 1% FDR). InsPecT is shown to
improve on OMSSA and MS-Dictionary. However, MS-
GappedDictionary is �20 times faster than InsPecT (0.8 s
versus 17 s per spectrum, respectively). (All tools used in this
benchmarking preprocess the protein database. Because
preprocessing time is negligible (compared to the search
time), we do not report the database preprocessing times.
The running times include both target and decoy database
search times. Except OMSSA, the six-frame translation of the
human genome should be divided into small subdatabases
because of the memory overhead (in MS-Dictionary and
MS-GappedDictionary) or unexpected errors (in InsPecT).
The running time of each tool is measured by summing the
search times on the subdatabases. MS-GappedDictionary
filters out poor quality spectra [23] and does not generate
their Gapped Spectral Dictionaries.) OMSSA and MS-Dic-
tionary are also fast (1.2 s and 0.8 s per spectrum, respec-
tively) but their FDRs deteriorate significantly in comparison
with MS-GappedDictionary.

Fig. 12 shows the length distribution of peptide identifica-
tions in the HEK data set identified with MS-Dictionary and
MS-GappedDictionary (in searches against the six-frame
translation of the human genome). Although Both tools iden-
tified roughly the same number of short peptides (length less
than 14 aa), MS-GappedDictionary significantly improves on
MS-Dictionary in identifying long peptides (14 aa and longer).
This is a consequence of the fact that MS-Dictionary has to
truncate the (large) spectral dictionaries of long peptides re-
sulting in loosing many peptide identifications.

In contrast to MS-Dictionary, peptides matched to gapped
peptides or gapped tags generated by MS-GappedDictionary
may not belong to the Spectral Dictionary. For example, a
gapped peptide AT[144]GG may match to ATSGGG (in the

FIG. 10. Comparison of gapped tags generated from the Pocket
Dictionaries and the peptide sequence tags generated by In-
sPecT (on spectra from the Standard data set).

FIG. 11. The FDR curves for MS-GappedDictionary (using either
gapped tag or gapped peptides), OMSSA, InsPecT, and MS-
Dictionary (peptide-level FDR is reported (32)). For each spectrum,
only the single best matching peptide is reported.
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Spectral Dictionary) and ATGSGG (not in the Spectral Diction-
ary). Thus, all peptides matched by MS-GappedDictionary
have to be scored to remove those that are not in the Spectral
Dictionary. (There may be multiple peptides in the database
matched to the gapped peptides or gapped tags (see Table
S6 in Supplement). However, MS-GappedDictionary never
accept a PSM (Peptide-Spectrum Match) without scoring the
entire spectrum against the full length peptide using MS-GF
scoring function. This additional scoring step applies to all
found PSMs (gapped peptides in the Pocket Dictionary are
only used to filter the database). After MS-GF scoring, MS-
GappedDictionary assigns p-values (spectral probability) to
each PSM.) Because the number of peptides matched by
MS-GappedDictionary before scoring is typically small
(supplemental Table S5), the time required for removing low-
scoring peptides is negligible (less than 0.01 s per spectrum).

DISCUSSION

Gapped peptides occupy a niche between accurate but
short peptide sequence tags and long but inaccurate full-
length peptide reconstructions. The gapped peptides are
both long and accurate making them an ideal choice for de
novo-based MS/MS database searches. In difference from
peptide sequence tags, they typically have a few matches in
a database often reducing peptide identification to a single
look-up in the database. Although future work will focus on
efficient matching of gapped peptides against large data-
bases, we show how gapped tags can be generated from
gapped peptides to effectively filter indexed databases.
Furthermore, we show how the concept of coverage can be
instrumental for ranking sparse representations of spectral
dictionaries, here limited to gapped tags and gapped pep-
tides but conceptually generalizable to any sparse repre-
sentation of all plausible peptide reconstructions. We em-
phasize that every gapped peptide search must be

complemented by rigorous scoring of all found peptide-
spectrum matches (i.e. with MS-GF (21) as described
above) to ensure that only statistically significant PSMs are
reported. MS-GappedDictionary enables proteogenomics
(e.g. searches against the six-frame translation of large
genomes) and metagenomics (e.g. searches against 1000	

already sequenced bacterial genomes) analysis that is pro-
hibitively slow for traditional MS/MS database search tools.

Although this paper focuses on nonmodified gapped pep-
tides (proteogenomics studies are typically based on non-
modified peptides, (We remark that many modified peptides
identified in typical MS/MS searches are also identified as
nonmodified peptides. For example, although oxidation of
Met is very common, as observed in Gupta et al. 2007 [22], for
a great majority of identified peptides with Met	16, there
exists also a nonmodified version of the same peptide (that is
sufficient for proteogenomics applications). This observation
applies to most chemical adducts and even some biological
modifications.) MS-GappedDictionary is applicable to spectra
of modified peptides as well (see Supplement Table S7). If the
set of modifications is given in advance (like in traditional
MS/MS search approaches), one can generate the set of
modified gapped peptides by simply extending the set of
masses to accommodate masses of modified amino acids.
Nevertheless, the probability that the Pocket Dictionary con-
tains a correct gapped peptide may start decreasing if diverse
modifications are added to the analysis. Moreover, gapped
peptides with modifications should be converted into those
without modification when they are used for the database
search. The algorithms that address these issues are under
development.

Although MS-GappedDictionary has a potential to
speed-up database searches by orders of magnitude as com-
pared with other widely used tools such as SEQUEST and
InsPecT, its performance deteriorates in the case of highly
charged spectra (charge 4 and higher). This is a bottleneck for
all MS/MS database search approaches based on full length
peptides or peptide sequence tags (18). Further advances in
design of scoring functions for highly charged spectra are
needed to address this bottleneck (25).

We emphasize that the benefits of a preprocessed data-
base are best used when the database does not need to be
re-processed to reflect changes in enzyme specificity, num-
ber of missed cleavages, etc. Our approach assumes a stan-
dard combinatorial pattern matching (CPM) database prepro-
cessing (e.g. hash tables, keyword trees, suffix trees, etc (33).)
rather than a specialized MS/MS database preprocessing that
may account for different search parameters such as the
precursor mass or the enzyme specificity. Thus, we assume
that applications of MS-GappedDictionary do not require da-
tabase re-processing when the search parameters change.
Although traditional MS/MS database preprocessing (e.g. by
parent mass) may be more specific than a CPM preprocess-
ing, this benefit is being offset by the universal nature of CPM

FIG. 12. The length distribution of peptides with the spectral
probability less than 10–13 (corresponding FDR �1%) in HEK data
set identified by MS-GappedDictionary and MS-Dictionary in the
six-frame translation of the human genome. MS-Dictionary iden-
tifies less peptides than MS-GappedDictionary when the peptide
length is longer than 13.
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preprocessing and by the fact that gapped peptide searches
are much faster than the traditional database searchs (even
with universal rather than specialized database indexing). In
the case when the search changes to include an additional
post-translational modification, we suggest to change the
gapped peptide generation (i.e. to transform gapped peptides
with modifications into gapped peptides without modifica-
tions) rather than to reprocess the database.
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