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Abstract
Manganese(II) chloride reacts with trimethylsilyl triflate (TMS(OTf) where OTf = -OSO2CF3) in a
1:1 mixture of acetonitrile and tetrahydrofuran, and after recrystallization affords the linear
coordination polymer [MnII(CH3CN)2(OTf)2]n. Each distorted octahedral manganese(II) center in
the polymeric chain has trans-acetonitriles and the remaining equatorial coordination positions are
occupied by the bridging triflate anions. Dissolving [MnII(CH3CN)2(OTf)2]n in equal volumes of
acetonitrile and pyridine followed by recrystallization with diethyl ether yields trans-
[MnII(C5H5N)4(OTf)2]. The distorted octahedral geometry of the manganese center features
monodentate trans-triflate anions and four equatorial pyridines. Exposure of either
[MnII(CH3CN)2(OTf)2]n or [MnII(C5H5N)4(OTf)2] to water readily gives [MnII(H2O)6](OTf)2.
XRD reveals hydrogen-bonding interactions between the [MnII(H2O)6]2+ cation and the triflate
anion. All three of these species are easily crystallized and provide convenient sources of
manganese(II) for further synthetic elaboration.
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In recent years, the metal salts of weakly coordinating anions have been used to great effect
in the preparation of coordination complexes.[1, 2] The thermal stability, high lability, and
chemical inertness to most conditions of trifluoromethane sulfonate anions (or triflate,
CF3SO3

- = OTf) has led to their wide use in inorganic chemistry; particularly in catalytic
applications.[1-3] Metal triflates have been touted as a means to avoid the explosive hazards
associated with metal perchlorates,[4, 5] and a wide variety of transition metal triflates have
now been reported.[3] In spite of several detailed reports, the acetonitrile complex of
manganese(II) triflate has been reported with a variety of constitutions: [Mn(CH3CN)4]
(OTf)2,[6] Mn(OTf)2·2CH3CN,[7] Mn(OTf)2·1CH3CN,[8] and Mn(OTf)2.[3, 9, 10] In each
of these preparations of manganese triflate complexes, the characterization data provided are
insufficient to ascertain the exact constitution. Furthermore, the most frequently cited
reference for the preparation of Mn(OTf)2·1CH3CN admits to inconsistent combustion
analyses,[8] and most preparations do not report the characteristic triflate vibrational modes.
[11] In this communication, we report easily reproducible methods for the preparation[12]
and crystallization[13] of three manganese(II) triflate complexes of known constitution.
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Manganese(II) chloride reacts rapidly with trimethylsilyl triflate with loss of trimethylsilyl
chloride to afford a colorless solution. A slight excess of TMS(OTf) ensures anhydrous
reaction conditions and this reagent has been employed previously for the generation of
metal triflates.[14-16] Recrystallization from a concentrated acetonitrile solution with
diethyl ether over one day yields colorless crystals of [Mn(CH3CN)2(OTf)2]n (1) in high
yield. The crystallinity is lost when dried under vacuum for an extended period of time
affording a white powder. The vibrational features of the powder are identical to those of the
crystalline solid.

The structure of the acetonitrile complex 1 determined by X-ray diffraction (Figure 1, Table
1), shows that the manganese center in this coordination polymer exhibits a distorted
octahedral geometry. The manganese atom lies on an inversion center and only one of the
triflates and one of the acetonitrile ligands are crystallographically distinct. The bridging
triflate anion brings the two manganese centers of the polymer to a distance of 5.1333 Å.
The two distinct Mn-O bond distances show only slight variation (2.1673(8) and 2.1755(7)
Å) and are comparable to those observed in other high-spin manganese(II) triflate
complexes.[17-28] The axial Mn-N bond distances of 2.2076(9) Å are similar to values one
might expect for nitrile coordinated high-spin manganese(II) centers.[29-32] The Mn1-N1-
C1 bond angle (153.68(9)°) exhibits significant distortion as observed in
Fe(CH3CN)4(OTf)2 (158.8°).[33] We observe no hydrogen-bonding interactions between
the bound acetonitrile and triflate. The distortion of the Mn-NCCH3 bond angle may be due
to the tight packing of the linear coordination polymer chains which are only 2.774 Å apart
(refer to Supplementary Material Figure S1 for a packing diagram illustrating the ‘inter-
chain’ F⋯F distance). This distance is only slightly longer than the sum of the van der
Waals radii of the associated F atoms (2.70 Å).

Interestingly, a KBr pellet of crystals of 1 displays IR-active vibrational features at 2310,
2281, 1312, 1188 and 1039 cm-1 (Figure S2.A and Table S1). These bands are comparable
to those reported for the previously reported [Mn(CH3CN)4](OTf)2[6] at 2311, 2281 and
1043 cm-1. Vibrational data were not reported in the other acetonitrile complexes of
manganese triflate.[3, 7, 8] Therefore on the basis of nitrile-ligated high-spin manganese(II)
spectra,[29, 30] we assign the two features at 2310 and 2281 cm-1 to modes of the bound
acetonitriles. On the basis of the vibrational features of other metal triflate complexes,[1, 11]
we assign the bands at 1312 and 1039 cm-1 to the asymmetric and symmetric vibration of
the SO3 fragment respectively and the 1188 cm-1 band to the symmetric CF3 vibrational
mode.

Many of the early studies of metal complexes of weakly coordinating anions examined
pyridine complexes.[34, 35] Recrystallization of 1 in the presence of excess pyridine affords
the pyridine complex, trans-[MnII(C5H5N)4(OTf)2], (2) (Figure 2, Table 1). The axially
compressed octahedral configuration is reminiscent of that observed for trans-MnCl2(py)4.
[36] The Mn-N bond distances (averaging 2.268(1) Å) are consistent with other high-spin
octahedral manganese(II) pyridine distances reported.[36-40] Only here the opposing
pyridine ligands are not eclipsed but in a propeller-like configuration with each pair of
adjacent pyridyl rings forming dihedral angles of 67.62(7), 72.29(5), 56.51(7) and 79.07(6)°.
The axial monodentate triflate anions complete the coordination sphere of the manganese(II)
center. Assignment of the vibrational features is complicated by the presence of multiple
pyridine ring vibrational modes for 2 (Fig. S2B).

Both the acetonitrile and the pyridine complexes are exceedingly hygroscopic.
Recrystallization in the presence of water affords colorless crystals of the
hexaaquamanganese(II) salt, [MnII(H2O)6](OTf)2. Multiple formulations for the aquo
adduct can be found in the literature (i.e., Mn(H2O)x(OTf)2 where x = 6, 4, or 0).[3, 6, 9, 23]
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We have heated this salt to 140 °C under vacuum, because earlier reports suggested
decomposition at high temperatures.[3, 6] While several equivalents of water are readily
removed from this aquated manganese salt, we consistently retain two broad vibrational
bands at 3435 and 1626 cm-1 (Fig. S2 C and D) which we interpret as the retention of at
least one water rather than the anhydrous Mn(OTf)2 salt.

[MnII(H2O)6]2+ has been encountered in a number of structures with other complex cations
and anions, but this is the first structure of the triflate salt (Figure 3, Table 1). The
manganese center is located on a crystallographic inversion center. Furthermore, one of the
coordinated waters is also bisected by a plane of symmetry. The other is on a general
position. The distorted octahedral manganese center exhibits Mn-O bond distances (avg.
2.163 Å) which are entirely consistent with the average Mn-O bond distance of 2.17(4) Å
observed in previously reported [Mn(H2O)6]2+ dications (Table S2 and accompanying
references). The bond distances between the bound water molecules and the neighboring
triflate anions are consistent with hydrogen-bonding interactions. These extensive hydrogen-
bonding interactions order the manganese cations.

The vibrational spectrum of the aqua complex 3 exhibits easily observed features at 1261,
1179, and 1034 cm-1 which are attributed to the triflate (Figure S2 C). The feature at 1261
cm-1 is typical of an ionic triflate.[1, 11] Furthermore, the vibrational features mentioned
earlier in the putative [Mn(CH3CN)4](OTf)2 do not support an outer-sphere triflate but are
consistent with an inner-sphere triflate as observed in 1 and 2. The feature at 1626 cm-1 is
attributed to the bending mode of coordinated water on the basis of literature precedent.[41,
42]

In summary, we have presented data on the facile preparation of three manganese(II) triflate
starting materials as well as the structural characterization of each complex. Each complex is
easily crystallized in high yield providing a starting material with known constitution for the
many groups that utilize this material.[7, 43-45] It is also vital to protect this complex from
water as hexaaquamanganese(II) triflate forms readily. IR spectra of these materials provide
an inexpensive means to measure the composition of these substances. The different triflate
coordination modes (whether bidentate bridging, monodentate, or outer-sphere) give rise to
distinct vibrational features.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
ORTEP plot of several complete coordination spheres of the coordination polymer
[Mn(CH3CN)2(OTf)2]n showing 50% probability thermal ellipsoids and the labeling scheme
for unique atoms. All hydrogen atoms are omitted for clarity.
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Figure 2.
ORTEP plot of [Mn(Pyr)4(OTf)2] showing 50% probability thermal ellipsoids and the
labeling scheme for unique atoms.
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Figure 3.
ORTEP plot of [Mn(H2O)6](OTf)2 showing 50% probability thermal ellipsoids and the
labeling scheme for unique atoms. Dashed lines indicate selected hydrogen-bonding
interactions.
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