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Purpose: Insulin stimulates eye growth in chicks and this effect is greatly enhanced if the retinal image is degraded by
the defocus of either sign. However, it is unclear whether the insulin receptor (IR) is expressed at all in the chicken retina
in animals 1–2 weeks post-hatching. We have investigated IR expression and whether IR transcript abundance varies in
the fundal layers. To elucidate the possible role of insulin and insulin-like growth factor (IGF)-1 signaling in eye growth
regulation, mRNA (mRNA) levels were measured for insulin, IGF-1, IR, and IGF-1 receptor (IGF-1R) during imposed
negative or positive defocus.
Methods: Chicks were treated binocularly with positive or negative spectacle lenses for 4 or 24 h, or they remained
untreated (n=6, for each treatment group). Northern blot analyses were performed to screen for transcription variants in
the different fundal layers of untreated animals. Real-time PCR was used to quantify IR, IGF-1R, IGF-1, and insulin
mRNA levels in the different fundal layers of the chick eye in the three treatment groups.
Results: IR mRNA was found in all the studied tissues, although there is evidence of tissue-specific transcript variations.
Three major transcripts were detected for IR. The brain, retina, and choroid showed the longest transcript (4.3 kb), which
was not present in the liver. Nevertheless, the liver and brain showed a second transcript (2.6 kb) not present in the retina
and choroid. A short transcript (1.3 kb) was the predominant form in the liver and choroid, and it seems to be present in
the retinal pigment epithelium (RPE) and sclera as well. In the retina, no significant gene expression changes were found
when defocus was imposed. Interestingly, in the RPE, both IR and IGF-1R were already downregulated after short periods
(4 h) of positive lens wear. In contrast, IR and IGF-1R were upregulated in the choroid and fibrous sclera during treatment
with negative, but not positive, lenses.
Conclusions: Differences observed in the IR transcript length in different tissues suggest possibly different functions.
The differential regulation of IR and IGF-1R in the RPE, choroid, and fibrous sclera is consistent with their involvement
in a signaling cascade for emmetropization.

The prevalence of myopia in the human population has
dramatically increased in developed regions of Asia [1], but
also in Western societies [2] during the last decades. It is
estimated that approximately 30% of the worldwide
population is currently myopic [3]. Genetic, as well as
environmental, factors have been implicated in the
development of myopia, but the relative importance of genes
versus environment remains controversial [4]. Myopia can be
artificially induced in animal models like chicks [5], tree
shrews [6], monkeys [7,8], and guinea pigs [9] by placing
negative lenses, which induce hyperopic defocus [10], in front
of the animal’s eye. The shift of the focal plane behind the
photoreceptor layer triggers substantially increased eye
growth. Furthermore, the choroid thins. In contrast, positive
lenses, imposing myopic defocus, slow the rate of ocular
elongation and the choroid thickens by up to a factor of 3 in
chicks [11].
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Among the retinal transmitters and modulators
implicated in eye growth regulation are vasoactive intestinal
polypeptide [12,13], dopamine [14–16], retinoic acid [17–
19], glucagon [20–22], insulin [23,24], γ-aminobutyric acid
[25], and growth factors, such as transforming growth factor
and basic fibroblast growth factor [26,27]. In addition, it has
been shown that the transcription factor Egr-1 (called ZENK
in chicks) may be involved [28–30].

It was previously found that glucagon and insulin have
opposite effects on cell proliferation in the retina [31] and on
axial eye growth [24,32]. While intravitreal glucagon
injections inhibit growth toward myopia in chicks, by slowing
axial eye growth rates, insulin not only blocks hyperopia
development, which is normally induced by positive lenses,
but also induces high amounts of axial myopia that is further
increased when negative lenses are worn [32]. In addition,
insulin and insulin-like growth factor (IGF)-1 both increase
the rate of ocular elongation in eyes not wearing any lenses
[24]. Glucagon agonist injections prevent deprivation myopia
in a dose-dependent manner [20,33], largely by increasing
choroidal thickness [24]. On the contrary, insulin injections
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cause choroidal thinning in chicks wearing positive lenses, but
have no effect on choroidal thickness in animals that have
normal vision [32]. When both glucagon and insulin are
injected as a cocktail, the growth-promoting effect of insulin
is blocked, while the effects of glucagon on choroidal
thickness are also suppressed [32]. Interestingly, a very recent
study [34] demonstrated a genetic association between IGF-1
and high-grade myopia in an international family cohort.
These findings are in line with experimental data from the
chicken model of myopia, showing that IGF-1 can promote
ocular growth and axial myopia.

So far, only a few studies have targeted IGF-1 and insulin
in the eye, apart from those related to their roles in
embryogenesis. The human interphotoreceptor matrix
displays IGF-1 immunoreactivity, while cultured human
retinal pigment epithelium (RPE) cells synthesize and release
IGF-1, raising the possibility that the RPE may serve as a
source of IGF-1 in vivo [35]. Moreover, cultured embryonic
retinal chicken explants contain, synthesize, and release
appreciable amounts of IGF-1, which can stimulate the DNA
synthesis of retinal explants [36]. Insulin-like
immunoreactivity was demonstrated in glial cell culture, but
it remains unclear whether this immunoreactivity was due to
the binding of circulating pancreatic insulin to insulin
receptors (IRs) and/or uptake and storage in these cells, or if
insulin is indeed locally synthesized. In situ hybridization
studies showed that Müller cells contain mRNA (mRNA)
necessary for de novo synthesis of insulin or a closely
homologous peptide [37]. Because Müller cells contain
glycolytic enzymes and can synthesize and store glycogen
[38], it has been suggested that insulin produced in the retina
may play a role in glucose or amino acid metabolism. There
is evidence that retinal cells are capable of synthesizing
preproinsulin mRNA, raising the possibility that insulin is
involved in intracellular (autocrine) and intercellular
(paracrine) signaling [39]. Moreover, it has been speculated
that insulin acts like a growth hormone during development
to control retinal differentiation. Later, it may act as a
modulator of neurotransmission within the retina [39]. The
presence of insulin in the developing retina before pancreatic
insulin synthesis is initiated [40] suggests an important role
of insulin in the retina, perhaps as a growth or trophic factor.
From the rat brain, it is already known that insulin can
modulate neurotransmission by increasing the efficiency of
neuroactive amino acid reuptake [41]. In addition, insulin has
been shown to affect brain monoamine metabolism [42] and
dopamine release [43].

The polypeptide hormones insulin and IGF-1 exert their
biologic effects by binding to distinct transmembrane
receptors on the surface of the target cells. Although the
receptors for insulin and IGF-1 are, like their ligands, highly
homologous [44,45], they are known to have different, but
partially overlapping, physiologic functions [46]. While
insulin is known to be a key regulator of physiologic processes

such as glucose transport and glycogen and fat biosynthesis
[47], IGF-1 is believed to mediate the effects of growth
hormone and play a role as a paracrine growth factor [48]. The
levels of the IR are regulated during development, and it is
likely that changing the receptor level while keeping the level
of insulin constant may be a regulatory mechanism [49].
Analysis of the protein structure has revealed that receptors
for IGF-1 and insulin belong to a family of cell surface
glycoproteins that share a cytoplasmic tyrosine-kinase
function [50,51]. Both are oligomers composed of two types
of subunits: α-subunits containing the hormone-binding site,
and β-subunits, which are phosphorylated after binding of the
ligand. The alpha and beta subunits are encoded by a single
gene. Ligand interaction with the extracellular portions of
these receptors activates intracellular tyrosine-kinase activity,
and generates a biologic signal that is thought to be specified
by structural determinants in the cytoplasmic domain. The
presence of IR/IGF receptor hybrids was demonstrated in
proliferative neuroretina. These receptors were considered to
be physiologically relevant for the action of the locally
produced proinsulin found in early neurogenesis [52]. Two
types of IGF receptors on nerve cell membranes from the
murine and human central nervous system (CNS) were
identified based on their binding specificity, subunit structure,
kinase activity, and interaction with antibodies to insulin
receptor [53]. In the CNS, insulin receptors are also composed
of two types of subunit, but the size of the α-subunit is
significantly smaller, whereas the β-subunit is similar to that
of other cell types [54–56]. The differences in the composition
of IR in neuronal and nonneuronal cells suggest a unique
function for IR in neural networks [57].

Because of these fundamental differences between IR
molecules in the brain and peripheral target tissues [54], the
first objective of this study was to investigate which transcript
variants of IR exist in the fundal layers of the eye, compared
to the liver and brain, to learn more about which variants might
be involved in eye-growth regulation. The second objective
was to study changes in mRNA levels for insulin, IGF-1, IR,
and IGF-1 receptor (IGF-1R), after defocus was imposed in
the retinal image for 4 or 24 h, a condition that is known to
induce axial refractive errors.

METHODS
Treatment of animals: Ten-day-old male White Leghorn
chickens were raised under a 12 h:12 h light-dark cycle, and
treated binocularly either with plus (+7D) or minus (−7D)
lenses for 4 (n=6) and 24 h (n=9), respectively. In addition, a
separate control group was used for each treatment duration.
To attach the lenses, Velcro rings were glued onto the feathers
around the eyes a few hours before the lens treatment was
started. The experimental treatment was in accordance with
the ARVO Statement for Care and Use of Animals in
Ophthalmic and Vision Research and was approved by the
university commission for animal welfare.
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Tissue preparation: The chicks were sacrificed by an
overdose of diethyl ether between 1 and 3 PM Eyes were
enucleated and vertically cut with a razor blade, discarding
the anterior part containing the lens. The vitreous body was
removed and the pecten was cut out. From the posterior part
of the eye, a biopsy punch of 8 mm was made and placed in a
Petri dish that was filled with ice-chilled saline. The different
fundal layers were carefully separated under visual control of
a dissecting microscope. In addition, forebrain and liver
samples were dissected from four untreated animals. All the
tissues were immediately collected in RNAlater (Qiagen,
Hilden, Germany), immediately frozen in liquid nitrogen, and
stored at −80 °C until RNA extraction. In general, the right
eyes were taken for further analysis. Only when the separation
of the fundal layers was not optimal was the left eye studied
instead.

Total RNA extraction and cDNA synthesis: Different RNA
extraction methods were used for northern blot and real-time
PCR analyses. For northern blot analysis, total RNA from the
liver, brain, retina, RPE, choroid, and sclera was isolated using
TRIzol (Invitrogen, Karlsruhe, Germany) according to the
manufacturer’s instructions. For real-time PCR analyses, the
RNeasy Mini kit (RNeasy Mini Kit; Qiagen, Hilden,
Germany) was used following the manufacturer’s
instructions. All tissues were homogenized in the respective
lysis buffer for 1 min, at a range of speed that increased in four
steps from 11,000 to 20,000 rpm (Diax 900 Homogenizer;
Heidolph, Ketheim, Germany). All RNA samples were treated

with DNase I (DNA-free Ambion, Darmstadt, Germany) and
the respective yield was measured by spectrophotometry at
260 and 280 nm. The optical density (OD260/OD280) ratios were
calculated to ensure the quality of the isolated RNA, and
samples with a ratio between 1.8 and 2.0 were used for further
analysis. The integrity of the RNA samples was confirmed by
agarose-gel electrophoresis. Thereafter, 1 µg of brain, liver,
retina, RPE, and choroid, and 0.5 µg of both sclera layers were
reversed transcribed by Moloney Murine Leukemia Virus (M-
MLV) reverse transcriptase (Promega, Mannheim, Germany)
using 0.25 µg oligo(dT)15 and 0.025 µg random hexamer
primers (Invitrogen) in a final volume of 15 µl.
Semiquantitative real-time polymerase chain reaction: Table
1 shows all of the specific primer sequences used for
semiquantitative real-time PCR, the respective amplicon size,
and the NCBI accession number. Primer design was
performed using the web-based program Oligo Explorer 1.4
(Gene Link, Hawthorne, NY). The specificity of the PCR
reactions was verified by melting-curve analysis and agarose-
gel electrophoresis, and the PCR products were sequenced to
verify their identity. The PCR reactions were performed in a
thermocycler (iCycler iQ Real-Time PCR System; Bio-Rad,
Hercules, CA) using a fluorescence detection kit (QuantiTect
SYBR Green PCR kit, Qiagen). Primer annealing was
executed at 59 °C for 30 s and elongation at 72 °C for 20 s.
Every single reaction, with a final volume of 15 μl, contained
a primer concentration of 0.6 μM, a template amount
corresponding to 2 ng of RNA, and the master mix of the

TABLE 1. SEQUENCES OF THE SPECIFIC PRIMERS USED FOR REAL TIME-PCR AMPLIFICATION

Gene Forward primer (5′-3′) Reverse primer (5′-3′) Amplicon size NCBI accession
β-actin CTGAACCCCAAAGCCAAC CACCATCACCAGAGTCCATCAC 147 bp NM_205518
HPRT TGGCGATGATGAACAAGGT GCTACAATGTGGTGTCCTCCC 162 bp NM_204848
Insulin CTTCTGGCTCTCCTTGTCTTTT CAAGGGACTGCTCACTAGGGGC 172 bp NM_205222.2
Insulin Receptor CGCTGAGAATAACCCTGGTC GCTGCCATCTGGATCATTTC 60 bp XM_001233398.1
IGF-1 CTTCAGTTCGTATGTGGAGACA GATTTAGGTGGCTTTATTGGAG 167 bp NM_001004384.1
IGF-1 Receptor TCCAACACAACACTGAAGAATC ACCATATTCCAGCTATTGGAGC 167 bp NM_205032.1
Insulin
(hydrolysis
probe primers)

GGCTCTCTACCTGGTGTGTG CTCGCTTGACTTTCTCGTATTCC 149 bp NM_205222.2

Insulin-
hydrolysis-
probe

CACTCCTGCCTCGCCACGC          

            IR – insulin receptor; IGF-1 – insulin-like growth factor-1; IGF-1R – IGF-1 receptor

TABLE 2. PRIMER SEQUENCES USED TO COMPARE THE AMPLIFICATION OF DIFFERENT REGIONS OF THE INSULIN RECEPTOR MRNA

Gene Region on the sequence Primer (5′-3′) Amplicon size
IR-LD L2-(binding) domain GGTCGTATGCCTTGGTTTC 118 bp
    AGCTGGCGAAGATTCTGG  
IR-TK Tyrosine kinase domain CGTCCACCACCAACACTG 58 bp
  TGCCATCAGCGATCTCTG  
IR-TK2 Tyrosine kinase domain GTTCACAGAGACCTGGCA 103 bp
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fluorescence kit. Each sample was analyzed in triplicate and
the fluorescence signal was measured with every cycle at
72 °C. In addition, but only for insulin, a hydrolysis probe and
primers designed by Biomers (Ulm, Germany) were used to
verify the specificity of insulin mRNA expression (Table 1).
To compare the amplification of different regions from the
IR mRNA sequence, different pairs of primers comprising
different exons were designed based on the sequence provided
by the Entrez and Ensembl databases (Table 2).

Northern blot analysis: Differences in transcript size were
analyzed by northern blotting. Biotin-labeled antisense probes
were designed using Oligo Explorer 1.4 based on the
published mRNA chicken sequences in the Entrez and
Ensembl databases. Two specific probes for IR were used for
northern blot analysis (Table 3). Approximately 1 μg of RNA
was run in a 0.8% formaldehyde-agarose gel, blotted
overnight onto a positively charged nylon membrane (Roche,
Mannheim, Germany), and crosslinked upon exposure to
ultraviolet light. Blots were hybridized overnight with 100 ng/
ml of biotin-labeled IR probe at 50 °C. The next day, the
membranes were washed twice for 5 min each with 2× Saline-
Sodium-Citrate buffer (SSC)/0.1% sodium dodecyl sulfate

(SDS) at 42 °C, followed by two additional washes, for 15 min
each, with 0.5× SSC/0.1% SDS, at the same temperature (1×
SSC buffer contains 0.15 M NaCl and 15 mM Na3-citrate*2
H2O, pH 7.0). Chemiluminescence detection was performed
with the Chemiluminescent Nucleic Acid Detection Mode kit
(Thermo Scientific GmbH, Ulm, Germany). Blots were
exposed to X-ray films Curix HT1 (AGFA, Leverkusen,
Germany) and the time of exposure was adjusted as needed to
obtain the desired signal strength. Liver RNA was used as a
positive control for IR expression, and the brain was used as
a nervous tissue control. Two to four samples per tissue were
used for northern blot analysis with probe 1 (Table 4), but only
one retina, brain, and liver sample was used for northern blot
analysis with probe 2.

Statistics and data analysis: Statistical analysis was done
based on the quantification cycle (Cq) values of the PCR
products. To test the primers’ efficiency, a dilution curve was
created using template amounts ranging from 0.5 to 16.0 ng
per well. The efficiency (E) for each primer was calculated
according to the formula: E=10(−1/slope), giving a value between
1 and 2, whereby 1 corresponds to 0% efficiency and 2 to
100%. The slope (m) was determined by plotting the mean of

TABLE 3. SEQUENCES OF THE SPECIFIC PROBES USED FOR NORTHERN BLOT ANALYSIS.

Gene Probe Probe sequence Region
Insulin
receptor

1 AGCCATCTGGATCATTTCTCTCAGTGTTGGTGGTGGACG Tyrosine kinase domain

 
2 TTCCTCCACGGATATTTATAACCAAGCTCCCATTAACAACTGTGCAGCCA L2-binding domain

TABLE 4. SUMMARY OF TREATMENT GROUPS.

Title of the experiment Lens treatment Duration of
treatment

Tissues n

Northern blot analysis of IR expression Without lenses1 - Liver 4
  - Brain 4
  - Retina 4
  - RPE 2
  - Choroid 4
  - Sclera (both layers) 2
Comparison of amplification of different
regions of IR

Without lenses1 - Liver 4

  - Brain 4
  - Retina 4
  - RPE 4
  - Choroid 4
  - Fibrous sclera 4
  - Cartilaginous sclera 4
Insulin, IGF-1, IR and IGF-1R mRNA
expression in the ocular fundal layers

Without lenses 4 h Retina 6

 
Plus lenses 4 h RPE 4

 
Minus lenses 4 h Choroid 4

 
Without lenses1 24 h Retina 9

 
Plus lenses 24 h RPE2 9

 
Minus lenses 24 h Choroid 9

 
 24 h Fibrous sclera 9

 
 24 h Cartilaginous sclera 9

        1Same animals. 2The RPE tissues from both eyes were analyzed separately for all 24 h treatment groups. We then calculated the
       mean of both eyes before calculating the grand mean (See section “Tissue preparation”).
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Cq of each of the cDNA dilution samples versus the logarithm
of the sample concentration. The efficiencies were 2.03 for
β-actin, 2.11 for hypoxanthin-guanin-phosphoribosyl-
transferase (HPRT) 2.02 for IR, 1.97 for IGF-1, and 1.98 for
IGF-1R. The mean normalized expression (MNE) [58] was
used to compare relative expression levels among different
groups and was calculated according to the following formula,
where E is the primer efficiency, reference corresponds to β-
actin, and the targets are IR, IGF-1, and IGF-1R:

MNE =
(Ereference)

Cqreference, mean

(Etarget)
Cqtarget,mean

MNE values were first analyzed using an outlier calculator
(GraphPad, La Jolla, CA). Then, one-way ANOVA
(ANOVA) was applied for statistical comparison between the
different treatment groups. A significant ANOVA (p<0.05)
was followed by a Student's t-test for post hoc analysis.
Statistical tests were performed using JMP version 7 software
(SAS Institute, Cary, NC).

RESULTS
Northern blot analysis of insulin receptor expression in
untreated tissues: Northern blots were used to compare the
transcript length of the IR (Figure 1) in neuronal and
nonneuronal tissues. The emphasis in the northern blot
analyses was placed on the investigation of transcript variants
among different tissues and not on the quantification of the
IR mRNA levels in those tissues. Therefore, a loading control
was not used. Figure 1 shows a northern blot result for IR
expression in the liver, brain, retina, choroid, and RPE.

With probe 1, the brain and the retina showed two
transcripts, approximately 4.3 kb and 1.3 kb long, with the
longer transcript being more abundant. In addition, the brain
showed a third band of about 2.6 kb. This transcript was also
found in the liver, together with the more abundant 1.3 kb

transcript and a small transcript of 0.4 kb, which might be a
degradation product (not shown). The choroid, like the brain
and retina, also expressed two transcripts of 4.3 and 1.3 kb,
but in this tissue, the shorter transcript was more prominent
than the longer one. The RPE contained only very small
amounts of IR mRNA, and mainly the shorter variant. In
addition, we analyzed two scleral samples (combined fibrous
and cartilaginous layer). They expressed the 1.3 kb transcript
and two smaller transcripts of approximately 0.8 kb and 0.4
kb (results not shown). With probe 2, which was
complementary to a part of the L2-binding domain, the retina
and the brain only showed one very strong band,
corresponding to 5.3 kb. The same band was found in the liver,
although it was very faint, in combination with a 2.0 kb band.

Comparison of amplification of different regions of the insulin
receptor mRNA sequence, by real-time PCR: Three pairs of
primers were designed to amplify different parts of the IR
sequence. The first primer pair, called insulin receptor ligand-
binding domain (IR-LD), amplified a part of the sequence
corresponding to the L2 domain in the receptor protein. The
leucine-rich L2 domain is involved in the ligand binding and
is encoded by exon numbers 4 and 5. The second primer pair,
IR-tyrosine kinase (TK), was designed to amplify a fragment
that after translation belongs to the tyrosine-kinase domain,
which is a catalytic domain with phosphotransferase activity,
and comprises exons 16 and 17. The mentioned exons are
localized on the longest transcript sequence for the IR mRNA
based on the Ensembl database. Based on the results (Figure
2), all tissues expressed mRNA for the tyrosine-kinase domain
and the L2 (binding domain), although in different amounts.
For both the IR-TK and IR-LD, the retina and brain showed
the highest amounts, followed by the choroid, RPE, liver, and
cartilaginous and fibrous sclera. The third primer pair also
amplified a part of the tyrosine-kinase domain and comprised
exons 17 and 18. Concerning the IR-TK2 region, no specific
PCR product was obtained in most tissues; only the retina and
liver showed a very low expression (data not shown).

Figure 1. Northern blot showing the
expression pattern of the insulin
receptor mRNA (probe 1) in the liver
(L), brain (B), and different fundal
ocular layers: the retina (R), choroid
(Ch), and retinal pigment epithelium
(RPE). Three major transcripts with 4.3,
2.6, and 1.3 kb were found, although the
pattern was different among the studied
tissues.
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Insulin receptor, IGF-1 receptor, IGF-1, and insulin mRNA
expression in ocular fundal layers of untreated animals: The
expression levels of IR, IGF-1R, IGF-1, and insulin were
measured and compared in all fundal layers of untreated
chicks. The results are shown in Figure 3, with a higher
quantification cycle threshold corresponding to a lower
amount of mRNA. Both receptors and IGF-1 were detected
in all tissues, but besides the retina, the amount of IGF-1
mRNA was very low. In addition, insulin mRNA was detected
in the retina, but at very low concentrations, and in the choroid
with even lower levels than in the retina. Retinal insulin
expression was confirmed when an insulin-specific hydrolysis
probe was used. The usage of a hydrolysis probe offers a high
specificity, because hybridization and fluorescence will only

occur if the target DNA sequence exactly matches the
hydrolysis probe sequence (for further information, see
reference [59]). The results for insulin mRNA quantification
are not shown in detail, since the expression level was too low
to be precisely quantified.

Comparing the mRNA amount between different fundal
layers, it turned out that the mRNA for both receptors was
most abundant in the retina, followed by the RPE, choroid,
and cartilaginous and fibrous sclera. In the fibrous sclera, the
Cq values for all the genes were higher, and therefore, mRNA
levels were lower for the reference genes (β-actin and
HPRT), as well as for all the other genes.
Insulin mRNA expression in the retina, retinal pigment
epithelium, and choroid after lens treatment: Although only

Figure 2. Quantification cycle values for
two   different  regions  of   the   insulin
receptor  sequence  in  different  tissues
are  shown.   All  tissues  expressed  the
insulin  receptor tyrosine kinase domain
mRNA  as  well  as  the insulin receptor
L2-rich  binding  domain  mRNA.   The
sample  size  is  4   animals  per  tissues.
Error  bars  represent the standard error
of the mean.

Figure 3. Quantification cycle values
for  all  genes  in  all  fundal  layers are
shown.   The   mRNA   for  the   insulin 
receptor and  insulin-like  growth factor
receptors is most abundant in the retina,
followed by the RPE, choroid,  cartilag-
inous  and  fibrous  sclera.  The  sample
size is 6  animals per  tissues. Error bars
represent the standard error of the mean.
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very low amounts of insulin mRNA were detectable in the
retina and choroid of untreated animals, lens treatment might
upregulate this amount. The expression level of insulin was
therefore measured and compared in the retina, RPE, and
choroid after 4 and 24 h of lens treatment. However, no
significant increase in insulin mRNA levels was detected
under any of these conditions.
Insulin receptor, IGF-1 receptor, and IGF-1 mRNA levels in
the retina after lens treatment: Treatment with negative and
positive lenses did not significantly alter IR or IGF-1R mRNA
expression levels after 4 or 24 h of lens treatment compared
with the appropriate control group (Figure 4). In addition,
neither 4 h nor 24 h of lens treatment had a significant
influence on IGF-1 mRNA expression levels.

Insulin receptor, IGF-1 receptor, and IGF-1 mRNA levels in
the retinal pigment epithelium after lens treatment: Four
hours of myopic defocus induced a twofold downregulation
of IR and an approximately fourfold downregulation of
IGF-1R mRNA levels, compared to the respective control
groups (Figure 5, ANOVA, IR, plus lens versus control
p=0.03; IGF-1R, plus lens versus control p=0.03). This effect
disappeared when the animals were treated with lenses for 24
h. In comparison to the levels in control animals, lens
treatment did not significantly influence IGF-1 mRNA levels
after 4 or 24 h. Nevertheless, IGF-1 mRNA levels were
significantly lower after 4 h of positive lens wear compared
to 4 h of negative lens wear (ANOVA, minus versus plus
p=0.05).

Insulin receptor, IGF-1 receptor, and IGF-1 mRNA levels in
the choroid after lens treatment: In the choroid, treatment with
negative lenses for 4 h resulted in an initial threefold increase
of IR mRNA concentration compared to the control group
(Figure 6, ANOVA, minus lens versus control p=0.03). These
changes in the minus lens–treated group remained after 24 h,
compared with both the control and plus groups (ANOVA,

minus lens versus control p=0.004; minus lens versus plus lens
p=0.01; Figure 6). IGF-1R was also increased in the minus
lens–treated group compared to the plus lens group, but only
after 24 h of lens treatment. This effect was not as strong as
for IR (ANOVA, minus lens versus plus lens p=0.05).
IGF-1 mRNA expression in the choroid was very low and
difficult to quantify. Within this limitation, no significant
changes in IGF-1 mRNA expression were detected.
Insulin receptor, IGF-1 receptor, and IGF-1 mRNA levels in
both scleral layers after lens treatment: In the cartilaginous
sclera, lens treatment influenced neither IR nor IGF-1R
mRNA levels after 24 h of lens treatment (Figure 7A).
However, in the fibrous sclera (Figure 7B), 24 h of positive-
imposed defocus induced a threefold upregulation of IR
mRNA levels compared with the control group, and a fourfold
upregulation for IGF-1R at the same time point (ANOVA,
IR, minus lens versus control p=0.038; IGF-1R, minus lens
versus control p=0.005). IGF-1 was expressed at low levels,
especially in the cartilaginous sclera. Lens treatment did not
induce a significant change in IGF-1 mRNA levels in either
layer.

DISCUSSION
Insulin receptor transcript variants: Significant differences
in the transcript sizes of IR have been previously described in
different tissues and animal species. Four different IR
transcript variants were reported in chicks (Ensembl database)
with transcript lengths varying between 198 and 3,220 bp. All
of these can be translated to a protein product, but in the case
of the small transcripts, the functions are unknown. In
addition, several proteomic studies showed differences in the
molecular weight of IR alpha and beta subunits among
different tissues [60–63]. IR therefore seems to undergo
different transcriptional and translational regulation and
posttranslational modifications, including glycosylation or
proteolytic cleavage in the CNS [64]. In the brain, the α-

Figure 4. Retinal insulin receptor,
insulin growth factor–1 receptor, and
insulin-like growth factor-1 mRNA
levels after 4 and 24 h of plus (+7D) and
minus (−7D) lens treatment. Results are
expressed as the mean normalized
expression (MNE)±SEM. For the 4 h
experiment, six animals per groups were
used; nine per group were used for the
24 h experiment. Insulin receptor (IR),
insulin-like growth factor (IGF)-1
receptor (IGF-1R), and IGF-1 mRNA
levels      were          not        significantly
influenced by lens wear in the retina.
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subunit of the IR has a lower molecular size compared to that
of other tissues. It was therefore hypothesize that insulin
exerts its proposed neuromodulatory effects mediated by the
specific IRs in the brain [63]. In our study, we found 4.3 kb,
2.6 kb, and 1.3 kb long IR transcripts when we used a probe
that corresponds to part of the sequence for the IR tyrosine-
kinase domain. An mRNA of 4.3 kb can account for a protein
as large as IR (1,332 amino acids), whereas the smallest
transcript can only encode for parts of the protein. We were
able to show that different tissues expressed transcripts of
different lengths; the RPE and sclera seem to express mainly
short IR transcripts. Moreover, the smaller mRNA transcript
was the predominant form in the choroid and liver, while the
longer transcript was most abundant in the brain and retina.
This result may suggest that IRs in the retina and brain have
a different function than in the nonneuronal tissues. As
expected from the Ensembl database, only one long transcript
was detected in the brain and retina when an L2-binding
domain–specific probe was used.

One recent publication stated that the chicken retina does
not express IR mRNA [65]. In contrast, we found relatively
high amounts in the retina of our chicks. Since different parts
of IR were amplified in both studies, we used three different
primer pairs for the amplification of different parts of IR in an
attempt to solve the discrepancy. We found that the mRNA
for the insulin-binding domain and the tyrosine-kinase
domain are present at moderate levels in the retina.
Nevertheless, one PCR product that was designed to amplify
a short sequence between exons 17 and 18 could only be

detected in a very small amount in the retina and liver,
suggesting that this part of the sequence is not efficiently
transcribed or differs from that in the literature.
Possible sites of action for insulin and IGF-1 in the eye:
Several lines of evidence support a role of insulin and/or
IGF-1 in the control of eye growth [24,32,34], including one
strong clue coming from chicken studies, in which it was
shown that intravitreal injections of both peptides lead to the
development of myopia. The current study aimed to quantify
the mRNA expression of both the receptors and their ligands
in all fundal layers to gain a broader insight into their role.
IR and IGF-1R were expressed in all tissues, being more
abundant in the retina, followed by the RPE, choroid, and
cartilaginous and fibrous sclera. Therefore, assuming that the
mRNA is translated into protein, all of these are possibly target
sites for insulin and IGF-1 action. IGF-1 mRNA expression
was only relatively high in the retina, meaning that only here
could a significant amount of IGF-1 be produced. This result
corresponds with an older study [66] in which IGF-1-specific
transcripts were higher in the neural retina than in the sclera
plus choroid plus RPE. Although insulin mRNA expression
was detected in the retina and choroid, as confirmed with a
specific hydrolysis probe and gel electrophoresis, its level was
very low. It was therefore impossible to quantify these low
amounts reliably. Lens treatment did not increase insulin
mRNA levels in the retina, RPE, or choroid. Taken together,
it seems unlikely that changes in the amount of insulin
produced by the retina itself influences eye growth. Rather, it
is more likely that IGF-1 plays a physiologic role in the retina.

Figure 5. Insulin receptor, insulin-like
growth factor-1 and insulin-like growth
factor–1 receptor mRNA levels after 4
and 24 h of plus (+7D) and minus (−7D)
lens treatment in the retinal pigment
epithelium. Results are expressed as the
mean normalized expression (MNE)
±SEM. For the 4 h experiment, six
animals per groups were used; 9 per
group were used for the 24 h experiment.
Statistically significant differences
between the treated groups and the
control as determined by one-way
ANOVA (ANOVA) are denoted in the
graph (* for p<0.05). Insulin receptor
(IR) and insulin-like growth factor
(IGF)-1 receptor (IGF-1R) mRNA
levels    were    lower    after    4  h    of
plus lens treatment compared to
untreated control animals. In addition,
IGF-1 mRNA levels were significantly
lower after 4 h of plus lens treatment
compared to the minus lens–treated
animals. After 24 h of lens treatment,
there were no significant differences in
all genes, between all groups.
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Insulin and IGF-1 mRNA levels in the retina seem to be
developmentally regulated, as shown by binding assays,
decreasing by about 50% between the embryonic and the post-
hatching stages [67]. In the rat retina, it has already been
shown that Müller cells may contain the mRNA necessary for
de novo synthesis of insulin or a closely homologous peptide
[37]. However, the source of insulin in the avascular chicken
retina still remains unclear, and due to the very low amounts,
it will be difficult to uncover its function.

Influence of lens treatment on insulin receptor, IGF-1
receptor, and IGF-1 expression in the fundal layers of the eye:
Lens wear influenced IR, IGF-1R, and IGF-1 mRNA
expression in different fundal layers of the chicken eye, with
most changes seen in the RPE, choroid, and fibrous sclera. In
our study, the whole retina was used to measure changes in
gene expression after induced positive and negative defocus.
Insulin and IGF-1R mRNA were both highly expressed in the
retina, but neither their expression level nor the IGF-1 mRNA

Figure 6. Insulin receptor, insulin-like
growth factor–1 receptor, and insulin-
like growth factor–1 mRNA levels after
4 and 24 h of plus (+7D) and minus
(−7D) lens treatment in the choroid.
Results are expressed as the mean
normalized expression (MNE)±SEM.
For the 4 h experiment, six animals per
groups were used; nine per group were
used for the 24 h experiment.
Statistically significant differences
between the treated groups and the
control, as determined by one-way
ANOVA (ANOVA) are denoted in the
graph (* for p<0.05 and ** for p<0.01).
mRNA         levels        for      insulin
receptor (IR) were significantly
increased after 4 h and 24 h of minus lens
treatment, and the insulin-like growth
factor (IGF)-1 receptor (IGF-1R)
mRNA level was higher in the minus
lens–treated group compared to the plus
lens–treated group after 24 h of lens
wear.

Figure 7. Insulin receptor, insulin-like
growth factor-1 receptor, and insulin-
like growth factor–1 mRNA levels after
24 h of plus (+7D) and minus (−7D) lens
treatment in the cartilaginous sclera (A)
and fibrous sclera (B). Results are
expressed as the mean normalized
expression (MNE)±SEM. Nine animals
were analyzed per group. Statistically
significant differences between the
treated groups and the control, as
determined by one-way ANOVA
(ANOVA) are denoted in the graph (*
for p<0.05 and ** for p<0.01). In the
cartilaginous sclera, the mRNA
contents      of     the     two     receptors
were not significantly different. In the
fibrous sclera, the expression of the
insulin and the insulin-like growth
factor (IGF)-1 receptor (IGF-1R) was
higher in the minus lens–treated group
compared to controls.
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levels were influenced by defocus of 4 and 24 h. In contrast,
short plus lens–treatment periods (4 h) led to a strong
downregulation of both receptors in the RPE; in addition, the
IGF-1 mRNA levels were much lower in the plus lens group
compared to the minus lens–treated animals. Insulin and
IGF-1R signaling may therefore be involved in the onset of
growth arrest after negative defocus. It is not surprising that
the gene expression changes did not persist after 24 h of
treatment, since it is known from microarray studies that only
a minority of gene expression changes seem to be common to
multiple treatment times [68]. This can be interpreted in terms
of different mechanisms, one for the onset of increased (minus
lens) or decreased (plus lens) eye growth, and the other for
maintaining its persistence. An upregulation of IGF-1R
mRNA expression in the RPE of chicks that were treated with
minus lenses for 2 days was recently reported using
microarrays [69]. We did not measure the upregulation of this
receptor after one day, but as already discussed, time often
matters and may explain the different results.

In the present study, we were able to demonstrate that
short treatment with plus lenses mainly affected mRNA levels
in the RPE, whereas longer and minus lens treatment
influenced gene expression level in the choroid and fibrous
sclera. The choroid is a thin layer of vascular pigmented tissue
with two main physiologic functions: the nourishment of the
external retina and the regulation of ocular temperature. Both
insulin and IGF-1 mRNA levels were present at low levels in
the choroid, as confirmed with a specific hydrolysis probe and
gel electrophoresis, but it was impossible to quantify the low
amounts reliably. Nevertheless, the respective receptors levels
changed during the treatment. Higher mRNA levels of IR were
already measured after 4 h, and insulin and IGF-1R showed
higher expression levels than controls and/or plus lens–treated
animals after 24 h of lens wear. Zhu and Wallman [24]
recently hypothesized that although it is unknown whether
glucagon and insulin first act at the retina, RPE, or choroid,
they finally act to change the physiologic state of the choroid,
which in turn modulates both choroidal thickness and scleral
growth, the latter being manifested as a change in the rate of
ocular elongation. Our results support this hypothesis.
Especially after minus lens treatment, the only changes in
receptor gene expression were detected in the choroid and
sclera. Since only low insulin and IGF-1 mRNA levels were
detected in the choroid, is seems unlikely that they are
synthesized in significant amounts in this tissue. Instead, the
tissue could be a potential target for these growth factors’
action, given that insulin and IGF-1 injections in chicken eyes
were shown to induce choroidal thickness changes under
some experimental conditions. Insulin increases ocular
elongation without thinning the choroid in animals not
wearing lenses. Only when plus lenses were attached, which
normally cause choroidal thickness, does insulin thin the
choroid, as well as accelerating ocular elongation. In contrast,

IGF-1 injections increase ocular elongation, together with
thickening rather than thinning the choroid [24,32].

In contrast to that of mammals, the sclera of chicks is
composed of two layers: an inner cartilaginous layer,
containing collagen types II and IV and aggrecan as the
predominant proteoglycans, and an outer fibrous layer (like
that in mammals), which contains collagen type I and small
proteoglycans such as decorin [70]. When the rate of
elongation of the eye is visually manipulated, both scleral
layers show opposite modulation [62], with the fibrous sclera
getting thinner and the cartilaginous becoming thicker during
induced eye growth. Interestingly, we were able to show that
the fibrous sclera showed a similar upregulation of IR mRNA
expression as the choroid. One of the reasons for this
upregulation of the IGF-1R mRNA expression in the fibrous
sclera might be that IGF-1 exerts an effect on the developing
ocular tissue by influencing the synthesis and degradation of
the extracellular matrix in chicks [71]. In the guinea pig
model, it was already shown that IGF-1 can induce fibroblast
proliferation in a dose-dependent manner through the signal
transducer and activator of transcription 3 (STAT3) signaling
transduction pathway [72,73]. No lens-induced changes in
gene expression were detected in the cartilaginous sclera.
Compared to the fibrous sclera, the cartilaginous sclera had
higher mRNA levels for all measured genes. This result is
consistent with a previous study by Schippert et al. [74]. These
authors also showed that the fibrous sclera generally has lower
mRNA levels than the cartilaginous sclera in untreated chicks.
Co-cultures already demonstrated that the choroid can
influence the underlying sclera, for example by changing
proteoglycan synthesis in the sclera [75]. Retinoic acid, the
synthesis of which is influenced in opposite directions by
positive and negative defocus in both the retina and choroid,
has been shown to affect proteoglycan synthesis in the chick
sclera [17]. Moreover, retinoic acid might interact with the
IGF-1 signaling by changing the level of IGF-binding proteins
and thereby modulating scleral IGF-1 levels [76].
Comparison to studies in humans: Recent epidemiological
and retrospective case series studies in humans underlined a
role of IGF-1 as regulator of ocular growth, at least in patients
with primary growth hormone insensitivity [77], children with
growth hormone deficiency [78], and children born preterm
[79]. Low IGF-1 serum concentrations were associated with
hyperopia in these studies. These results are consistent with
our animal study showing an association of reduced IGF-1
mRNA levels with the development of hyperopia in the RPE
of chicks. Interestingly, patients with primary growth
hormone insensitivity who received IGF-1 therapy showed a
tendency toward mild myopia. These findings point toward a
role of IGF-1 as a growth signal in humans as well as in chicks.
Implications and summary: In summary, we found that a short
exposure to myopic defocus (plus lenses) leads to a
downregulation   of   insulin   receptor   and  IGF-1R  receptor 
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expression   in   the   RPE.   In   contrast,  hyperopic   defocus, 
imposed  by minus  lenses (but not myopic defocus)  signifi-
cantly   increased  their   expression  levels   in  the  choroid.
Similar   changes   were   seen   in  the  fibrous  sclera.  Taken

IGF-1  signaling  during  eye  growth.  Whether  different IR
transcript   variants  found  in  the  retina  and choroid are also

 

translated  into proteins  with different  functions  needs  to be
shown in the future.
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