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Abstract

Background: Many computational microRNA target prediction tools are focused on several key features, including
complementarity to 59seed of miRNAs and evolutionary conservation. While these features allow for successful target
identification, not all miRNA target sites are conserved and adhere to canonical seed complementarity. Several studies have
propagated the use of energy features of mRNA:miRNA duplexes as an alternative feature. However, different independent
evaluations reported conflicting results on the reliability of energy-based predictions. Here, we reassess the usefulness of
energy features for mammalian target prediction, aiming to relax or eliminate the need for perfect seed matches and
conservation requirement.

Methodology/Principal Findings: We detect significant differences of energy features at experimentally supported human
miRNA target sites and at genome-wide sites of AGO protein interaction. This trend is confirmed on datasets that assay the
effect of miRNAs on mRNA and protein expression changes, and a simple linear regression model leads to significant
correlation of predicted versus observed expression change. Compared to 6-mer seed matches as baseline, application of
our energy-based model leads to ,3–5-fold enrichment on highly down-regulated targets, and allows for prediction of
strictly imperfect targets with enrichment above baseline.

Conclusions/Significance: In conclusion, our results indicate significant promise for energy-based miRNA target prediction
that includes a broader range of targets without having to use conservation or impose stringent seed match rules.
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Introduction

MicroRNAs (miRNAs) are small, non-coding RNAs that have

important roles in the post-transcriptional gene regulation in

animals and plants, and are involved in a wide variety of cellular

processes [1,2]. As part of the RNA-induced silencing complex

(RISC), miRNAs regulate gene expression through different

mechanisms including destabilizing transcripts, promoting tran-

script degradation, and/or inhibiting translation [3]. While many

miRNAs have been identified, until recently a relatively small

portion of targets had been experimentally validated due to the

low throughput manner that is generally accompanied with

biological validation. Recent developments have enabled large-

scaled identification of a direct interaction between miRNA and

mRNA; however, these methods are still early in development,

and typically cover an ensemble of active miRNAs rather than a

single gene [4–7].

At this point, computational approaches are still the driving

force in miRNA target prediction, and numerous tools have been

developed to assist identification of miRNA targets. These tools

can reduce the number of likely targets to a more manageable

number for experimental validation. However, creating accurate

target prediction tools has been an ongoing challenge. Several

studies have shown that predicted target sets differ among target

prediction tools [8,9]. Some of the non-overlapping predicted

targets may be a result of different 39UTR sequences used, yet

even when using the same sequence set for prediction, a large

portion of targets predicted by different tools still do not overlap

[10].

Multiple features have been shown to be informative for

miRNA target prediction. Most of the algorithms make strong

assumptions on the type of matches to the target sequence, in

particular to the so-called seed region, which spans the first eight

nucleotides of the miRNA [11,12]. Target sites with perfect

complementarity to position 2–7 or 2–8 are typically called

canonical sites. Besides Watson-Crick base pairing, G-U base pairs

in miRNA:target duplexes are counted as canonical match in

some target prediction tools [8,13], as is the presence of an

adenine base across from position 1 of miRNA [12]. The second

commonly used key feature in target prediction tools is
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evolutionary conservation; it provides a strong signal as many

functional miRNA targets are conserved across species. Additional

‘‘context’’ features include, among others, AU content around the

target site, and relative target site location in the 39UTR [14,15].

However, there are limitations to these key features in

predicting miRNA targets. Requiring perfect complementarity to

the 59 seed region of a miRNA will leave out target candidates

with imperfect seed match, such as those reported in [16–18]. A

recent study reported centered sites, which lack perfect 59 seed

pairing but instead have contiguous base pairs from position 4 or 5

to position 14 or 15 [19]. Furthermore, miRNA targets that are

not widely conserved will be missed if evolutionary conservation is

required. A seed-relaxed approach is especially crucial in the

context of viral miRNAs, which are used to regulate their own as

well as their host’s genes [20]; conservation-based target prediction

is not applicable here as viruses evolve too fast and are typically

highly adapted to a specific host [21]. Additionally, some viral

miRNAs with extensive sequence similarity to host miRNAs have

been shown to target genes differentially [22,23], and traditional

seed-based predictors will not be able to predict differences in

genes targeted by either miRNA.

As an alternative approach, different studies have shown

evidence of thermodynamic properties as signals for functional

miRNA or siRNA targeting. The underlying idea of using

thermodynamic properties is that gene regulation by miRNAs

involves a direct binding between a miRNA and its mRNA target.

This binding may be considered in terms of thermodynamics as a

process where free energy changes occur via formation of a duplex

between miRNA and mRNA, and such changes may help identify

miRNA targets. Zhao et al. observed that miRNA target sites tend

to reside in an unstable region, and tend to lack stabilizing

elements, namely long stems [24]. Tafer and colleagues showed

that target site accessibility improves predictions of highly efficient

siRNAs [25]. In complementary work, several groups demon-

strated that different context sequences around the same binding

site affect the repression levels [9,26].

The free energy change involved with mRNA:miRNA duplex

formation may thus serve as a key predictor for miRNA targets.

Continuous-valued thermodynamic features may also allow

prediction of actual levels of suppression caused by miRNAs

instead of a binary yes/no decision. Early on, thermodynamic

properties have been used in some forms to predict miRNA

targets, but tools vary greatly in terms of energy computation and

its incorporation into a prediction model. The majority of these

tools focus on one energy feature, hybridization energy, only

[11,13,27–30]. Many of them only use energy as a filter for

putative target sites, and are still largely dependent on seed match

or conservation [11,27,28].

More recently, integrated thermodynamic features for miRNA

target identification demonstrated the effectiveness of combining

target accessibility and duplex stability [9,26]. In addition, using

data from pull-down experiments of miRNAs in the RISC,

Hammell et al. showed that total free energy change and target

accessibility yielded enrichments in miRISC-enriched transcripts

[8]. However, these studies focused on model organisms with more

compact genomes and comparatively short 39UTRs (fly and

worm), and several independent genome-wide studies on more

complex human datasets concluded that the accuracy of at least

some algorithms was not on practically relevant levels and did not

significantly exceed scans for canonical seed matches [31,32].

Besides the issue of differences between organisms, genomic

predictions generally still required candidate sites to contain

perfect seed match of length 6, or seed match of length 7 or 8 with

one G-U base pair, and therefore did not specifically address the

potential benefit of energy-based models to address the issue of

imperfect sites [9].

These conflicting findings prompted us to independently

reassess the usefulness of energy features for mammalian miRNA

target prediction. We systematically evaluate the contribution of

different energy features and seed requirements on known curated

human target sites as well as recent genome-wide maps of

Argonaute (AGO) family member binding sites, which provide

global measurements of RISC and thus miRNA targeting. Then,

we propose a simple linear prediction model and evaluate it based

on genome-wide data on mRNA and protein expression changes

induced by human and viral miRNAs. Our results show that it is

possible to deliver energy-based target prediction that exceeds the

performance of baseline seed match searches, even on strictly

imperfect sites. Our results compare well against previous

approaches, and indicate the potential for energy-based features

on the way to develop flexible and tractable prediction models that

can be used on a broader range of miRNA target predictions,

including non-conserved and imperfect sites.

Methods

Our approach is inspired by the previously proposed model that

mRNA:miRNA duplex formation occurs in a stepwise manner

[9,26]. First, a portion of the mRNA where a target site resides has

to become locally accessible to a targeting miRNA. The energy

required to open up the local mRNA secondary structure around

the target site is designated as the disruption energy, DGopen. The

second step is the binding of the miRNA to the open target site,

and the free energy change in this binding step is called the

hybridization energy, DGH. The total free energy change of the

entire duplex formation (DDG) is the difference between the

hybridization energy and the disruption energy.

Match site identification and energy computation
In an energy-based model, any position within a 39UTR is a

potential target site, albeit at different affinities. For practical

reasons, we computed energy values at candidate target sites in the

39UTR that contained a consecutive perfect 4-mer match within

the canonical seed region to the miRNA (position 2–8). This

minimum match length was motivated by Long et al. [26], where

it was proposed that duplex formation requires a minimum

nucleus of four nucleotides in length; however, different from that

approach, we restricted this nucleus to the miRNA seed region.

For hybridization energy (DGH) computation, we extracted the

flanking sequence up to twice the length of the remaining miRNA

portion at each side of the 4-mer match. The flanking sequence

can be a part of a coding region of the mRNA. While interactions

may potentially occur across a larger region, using longer context

will result in mRNA structures with increasing internal base

pairing, which does not reflect the energy changes occurring in the

functional binding between miRNA and mRNA. We then used

RNAcofold in the Vienna package to compute the free energy

change during hybridization, and we required that the bases in the

4-mer match region were paired [33,34]. In case of any unpaired

bases in this region or internal base-pairing within the molecule,

we used RNAeval in the Vienna package to recompute the energy

value for the modified structure (paired at 4-mer, with the internal

pairing removed) [34].

Since RNA secondary structure computation is computationally

intensive, we computed the disruption energy (DGopen) locally

around possible candidate sites to be able to handle the frequently

long mammalian 39UTRs, akin to previous approaches [25]. We

used RNAplfold in the Vienna package to compute unpaired

Thermodynamic Features for miRNA Target Prediction
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probabilities Punpaired of a local window with the parameter setting

as follows: the window size of each local structure, W = 80; the

maximum distance allowed between paired bases, L = 40; and the

open region size, u = 20 [35,36]. To integrate energy at both steps

of the duplex formation, we converted the average accessibility

probability across all sliding windows over the match site to the

disruption energy value. Since the expectation value of natural log

is not equal to the natural log of the expectation value, we

extracted a sequence of exactly the length of the window size (W)

so that the program reported the exact open probability of this

single window. Then we converted this open probability value to

the disruption energy value as follows: DGopen = RT ln (Punpaired).

We repeated these steps over all possible sliding windows over the

match site. The final DGopen value is the average of all DGopen

values for each sliding window. The total free energy change

(DDG) is the difference between the hybridization energy (DGH)

and the disruption energy (DGopen): DDG =DGH2DGopen.

After computing these energy values, initial 4-mer match sites

were screened for overlaps in cases when multiple overlapping 4-

mers matched to the same region. We chose the site with the best

DDG value to represent these overlapping 4-mer matches. We

validated our approach on example data, where the correlation

between total free energy change and miRNA-induced repression

level was examined and experimentally validated for a number of

examples from Drosophila [9], using different RNA (co-)folding

tools. The target set included sites in hid (targeted by bantam), grim

(miR-2), and rpr (miR-2) UTR within wildtype or modified context

sequence flanking the target site. Figure S1 shows that our method

yielded similar correlation between DDG values and the

normalized luciferase ratios, compared with the original study [9].

Seed type assignment and filters. Any energy-based

predicted sites contained at least a perfect 4-mer complementary

match to the seed region from position 2–8. We evaluated a seed

type of such sites based on maximal complement; the categories

included 8 consecutive base pairs from position 1 to 8 (8-mer), 5 to

7 consecutive base pairs within positions 2 to 8 (5-mer, 6-mer, and

7-mer), 7-mer plus adenine across the first nucleotide of miRNA

(7-mer-A), and 5 to 7 non-consecutive base pairs or an adenine

across miRNA position 1 (5-in-8, 6-in-8, and 7-in-8). G-U base

pairs were counted as mismatches in the initial match site

identification and the seed type assignment.

We used seed match types as filters to define more/less stringent

prediction sets. With a 6-mer filter, only the match sites that have

at least 6 consecutive Watson-Crick base pairs to the miRNA (8-

mer, 7-mer-A, 7-mer, 6-mer sites) were used. With a 6-in-8 filter,

we only used the match sites that have at least 6 base pairs to the

miRNA (an adenine across miRNA position 1 counted as a base

pair for imperfect sites). This means a 6-in-8 filter allows for 8-mer,

7-mer-A, 7-mer, 6-mer, 7-in-8, and 6-in-8 match sites as defined

above.

Evaluation of energy contribution at experimentally
supported human miRNA target sites

We evaluated energy features on known target sites of human

miRNAs as reported in Tarbase version 4.0 [37]. For the positive

set, we used all 112 miRNA-mRNA target pairs for which we

could obtain an accurate mRNA sequence at the reported site

from the UCSC genome annotation (hg18) [38]. For the control

set, we randomly selected match sites of dinucleotide-shuffled

miRNA to randomly assigned Tarbase UTR. To create a shuffled

miRNA, the starting nucleotide was selected based on the

nucleotide frequencies of the Tarbase miRNA. We then used a

first-order Markov chain model to build up the rest of the

sequence. Remaining nucleotides, which could not be incorporat-

ed while obeying first-order dependencies, were then randomly

inserted if the initial successfully first-order sites exceeded 85% of

the length of the miRNA. We filtered out any shuffled miRNAs

whose seed sequence overlapped with any known miRNA seeds or

poly-A motifs. We generated 10 shuffled miRNAs per Tarbase

miRNA-mRNA target pair, with 10 randomly selected target

Tarbase UTRs for each shuffled miRNA.

We compared cumulative density distribution of the energy

values between Tarbase sites and control sites, and used Wilcoxon

rank sum test to determine the significance of the differences

between the distributions. To evaluate signals from energy

features, we plotted the receiver operating characteristic (ROC)

curves (true positive rates versus false positive rates over varying

energy cutoffs) to distinguish between Tarbase sites and control

sites, and computed the area under curve (AUC) values.

Genome-wide evaluation of energy contribution at site
level

For a genome-wide evaluation of features, we assessed the

energy contribution in distinguishing sites with evidence of direct

interaction by AGO proteins in HEK-293 cells as determined by

the PAR-CLIP method, which involves cross-linking of proteins

and mRNAs followed by deep sequencing of bound mRNA

fragments [6]. Crosslinked-Centered Regions (CCRs) are 41

nucleotides long and centered at the site of highest evidence of

direct interaction between an mRNA and an AGO complex

within an initial cluster of reads. Even though CCRs were reported

outside 39UTRs as well, we used only the CCRs that are correctly

mapped within human 39UTRs in ENSEMBL47 [39] in order to

be consistent with our studies on other datasets. All available

transcript isoforms of a gene were used to search for matches in

order to cover all possible target sites, including sites in alternative

exons, but we only counted the same site within multiple isoforms

once, unless differences in the local context sequence changed the

energy values.

The PAR-CLIP experiments identified interactions between

AGO proteins and mRNAs, but not directly for a specific miRNA.

To create sets of confident miRNA-CCR pairs, we used the top 20

highly expressed miRNAs which accounted for a large fraction of

possible target sites from the experiment (cf. [6]), and then

evaluated CCRs for seed matches to these miRNAs only. In

addition, since our method searches for matches to 59end of a

miRNA, we cannot exclude possible targeting by other miRNAs

with similar seed sequence to these 20 miRNAs. Therefore, we

included additional miRNAs with the same 59end sequence

(position 1 to 7, or 2 to 8) to these 20 miRNAs, and combined

them all into 12 non-redundant miRNA groups for evaluation

(Table S1).

We designated match sites of at least length 6 that fell within a

CCR as positive sites; here we only used CCRs that have one

match location to seed sequences of our miRNA set, and have

sequence read numbers of at least 20. While this approach was

carefully designed to include a large number of real target sites, it

does not exclude the possibility that the CCR was targeted by a

different miRNA, especially by ones outside the list of top 20

miRNAs, or that CCRs missed the real or best possible target

location. Negative set members are 6-mer (or better) matches in

39UTRs of expressed genes in HEK-293 cells (according to [40])

that lie outside the full CCR set. We plotted the ROC curve

varying the energy cutoff for these positive and negative sets.

Genome-wide evaluation at the UTR level
Dataset of miRNA-induced genome-wide expression

change. The majority of genomic data on the effects of

Thermodynamic Features for miRNA Target Prediction
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miRNAs assesses changes at the whole transcript level. We

primarily used data from one study which compared miRNA-

induced expression changes at the mRNA level (by microarrays)

with those at the protein level (by pSILAC) for five human

miRNAs — miR-1, miR-16, miR-30a, miR-155, and let-7b [32].

For mRNA expression change, we chose the values from

microarray experiments measured 32 hours after transfection as

they showed higher correlation to the change in protein

production level than a sample obtained after 8 hours (cf. [32]).

The expression change values here are log2 values of the ratio

between signal in the presence of the miRNA and signal in the

absence of the miRNA. We used the gene sequences that

corresponded to human Refseq database version 26. Transcript

variant coordinates from ENSEMBL 47 [39] were screened for

the longest sequence among overlaps on the same strand. An

annotated stop codon was required, and sequences were retrieved

from the UCSC genome browser database (hg18) [38]. In our

analyses, we only used the miRNA-gene pairs for which expression

change were measured at both mRNA and protein levels. Across

all five experiments, this totaled in 14,160 miRNA-gene pairs.

Training of linear prediction models. We evaluated

different energy features, including three energy types at

multiple sites, and the energy sum over all match sites in the

39UTR. We built a linear regression model to predict expression

change based on multiple energy features (e.g. individual and sum

over all sites). The 39UTR length was also included in the feature

set, as longer 39UTRs have increased chances for putative binding

site matches. We used the lm() function in the R package to model

parameters (i.e. feature weights), and evaluated the model on

pooled expression data showing negative log2 fold change in a five-

fold cross-validation setting. The Spearman rank correlation test

was used to determine correlation between model-predicted score

and observed log2 fold change. The expression change data at

mRNA and protein levels were evaluated separately.

Enrichment analysis. To evaluate the performance for de-

novo target prediction, we ranked the genes by their model-

predicted scores and computed the enrichment of bona fide targets

in top-scoring gene sets of increasing size (50 genes increment).

Bona fide targets were defined as genes with observed log2 fold

change less than or equal to a cutoff. The enrichment was defined

as the ratio between the fraction of bona fide targets in our

predicted set and the fraction of total bona fide targets in the full

gene set. An enrichment value greater than one thus indicated that

the predicted set contained a higher number of down-regulated

genes than expected at random.

Performance comparison to PITA. We compared the

performance of our method to PITA, a miRNA target

prediction tool that uses energy values of the duplex formation

[9]. Since PITA searches for match sites of length 6 or longer, we

trained and evaluated our prediction model on 39UTRs with at

least one 6-mer (or better) site. Here, we limited our gene set to the

overlap between the genes that we used from Selbach et al. [32]

and PITA predictions (PITA Targets ALL catalog at the gene

level, version 6) in order to compare the enrichment of highly

down-regulated genes.

Comparison to context score. We compared the

enrichment of bona fide targets in the top predicted sets based

on our model versus context scores reported in TargetScanHuman

release 5.1 [12,14]. Context scores for candidate sites were

computed based on site type, pairing at 39 end of miRNA, local

AU content, and position in the UTR [14]. We used the combined

single-genome context scores of all sites in a 39UTR (conserved

and non-conserved) to rank genes for the enrichment analysis. As

in the comparison to PITA, we used the regression models that

were trained on 6-mer or better sites. The evaluation set contained

the overlap between the TargetScanHuman UTR database, and

our UTR set with at least one 6-mer (or better) site.

Evaluation of energy-based prediction model on

independent expression change data. To evaluate our

prediction model on a completely different dataset, we used

mRNA expression change data obtained after transfection of miR-

K12-11 in human B-cell line BJAB at physiological level [22]. The

microarrays may contain multiple probes to the same 39UTR in

the experiment, and we consistently used the lowest log2 fold

change (i.e. log2[(signal in the presence of the miRNA)/(signal in

the absence of the miRNA)] ) among all probes for the UTR. We

retrieved the sequences in the same way as for the Selbach et al. set

above [32], yielding a total of 10,966 39UTRs with associated

expression values on this microarray. A subset of 9,379 39UTRs

that contained at least one 6-in-8 (or better) site was used in our

enrichment analysis.

Software Availability. The Perl program to compute

predicted miRNA-induced expression change of the gene

according to our models is available at http://www.genome.

duke.edu/labs/ohler/research/miRNAs/targetThermo/.

Results

We evaluated contributions of energy features to miRNA target

prediction on two different types of datasets: individual sites as

annotated by human experts from the literature, or as predicted

based on genome-wide RNA binding profiles, and miRNA-

induced expression changes at the whole gene level. In the first

case, we can directly address the contribution of individual energy

features, whereas in the second case, multiple sites in 39UTRs have

to be combined into a single score.

Known human target sites exhibit both significantly
lower hybridization energy and higher disruption energy

We began the evaluation of energy features for target prediction

on a curated set of experimentally supported human miRNA

targets collected in Tarbase version 4.0 [37]. Tarbase provides a

location of the target site in the gene, which we used as a positive

site in our analysis. As there are insufficient negative sites that are

known not to be targeted by any miRNA, we created 10

dinucleotide-shuffled miRNAs for each Tarbase-reported miRNA,

and randomly assigned 10 Tarbase 39UTRs to each shuffled

miRNA to create randomized controls. We searched for match

sites in these control miRNA-UTR pairs, and randomly selected

one match site per UTR as a control site for comparison. This

resulted in a stringent control set, as it only contained UTRs that

were known to be targeted by miRNAs in Tarbase, and was as

such different from a genome-wide randomly selected background.

We compared the total free energy change, the hybridization

energy, and the disruption energy at reported true sites to the

energy values at the control sites. The energy distributions

significantly differed between the Tarbase sites and the control

sites for all three energy types (p,1610216, p,1610216, and

p = 4.361024 based on Wilcoxon rank sum tests for DDG, DGH,

and DGopen respectively; Figure 1). The energy distributions also

exhibited the correct shifts towards favorable duplex formations in

true sites vs. control sites: lower DDG and DGH, and higher

DGopen. To assess classification success between true and control

sites, we used receiver operating characteristic (ROC) curves,

which show true versus false positive rates at varying energy value

cutoffs, and as well as the area under the curve (AUC); an AUC

value of 1 indicates perfect classification, and a value of 0.5

indicates random performance. This analysis resulted in AUC

Thermodynamic Features for miRNA Target Prediction
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values equaling 0.87, 0.85, and 0.60 for DDG, DGH, and DGopen

respectively (Figure 2). While this result supported the model that

both steps of the duplex formation are important for target

determination, hybridization energy was much more indicative on

this set than mRNA accessibility. Comparing this strategy to a

simple search for different seed types, Figure 2 shows that energy-

based features improved upon simply looking for (imperfect) seed

matches. For instance, our approach performed as well as

scanning for a 6-in-8 (or better) match, while relying on the much

less stringent requirement of a 4-mer match. Even though simple

scans for 6-mer matches came with a greatly reduced false positive

rate, they missed a considerable fraction of annotated sites. Our

method, on the other hand, was able to eventually predict all

positive Tarbase sites, not all of which contained canonical seed

matches. Moreover, energy-based scoring consistently led to

additional improvements when limiting the scoring to more

stringent subsets of sites with 6-in-8 or canonical 6-mer seed

matches (Figure S2A–B).

Transcriptome-wide AGO protein occupation profiles
exhibit preferable energy features

We next investigated the energy contribution in distinguishing

target sites at a genome-wide level. Recent studies have

determined cross-linked sites of mRNA and AGO proteins,

members of the RISC that shuttle miRNAs to their target sites

[6]. Such data allow us to compare the energy values between seed

matches in regions that interact with AGO proteins and seed

matches in regions that show no interaction. While the site of

interaction is mapped, the particular miRNA that is a part of the

bound complex is generally unknown. We used the top 20 highly

expressed miRNAs and clustered them with additional miRNAs

that shared the same sequence at the 59end. We computed energy

values at seed matches (length 6 or longer) to the miRNA in these

12 non-redundant miRNA groups. Positive sites were matches

within the cross-linked centered regions (CCRs) that contained

one match location to seed sequences of our miRNA set. Negative

sites were matches that lie outside any CCRs but fell into 39UTRs

of genes that were expressed in the same cell line. The AUC values

showed a positive contribution of target site accessibility to

distinguish AGO-interacting sites for all but one miRNA group,

and strong contributions were observed in some (Figure 3). In

contrast, signals from hybridization energy were not as strong as

those observed in the Tarbase set.

These observed differences agree with the notion that these

locations directly interact with AGO, yet lack direct evidence of

which miRNA was involved. Our informed guess to assign specific

miRNAs to CCRs may not always be accurate, and likewise, the

experiment itself may not pick up all interacting sites, which means

our negative set may still contain some false negatives. An

important difference between the two datasets is that Tarbase

contains experimentally supported target sites, but is certainly

biased by early studies that generally assumed perfect seed

matches, i.e. it can be expected to contain sites with strong

hybridization. In turn, PAR-CLIP data demonstrate evidence of

AGO binding, but not all of the interactions are stable or define

functional sites, which agrees with comparatively lower hybrid-

ization energy values.

Energy-based features are significantly correlated with
miRNA-induced expression change

Having established the positive contribution of energy features

at the site level, we investigated how such features would be

correlated with genome-wide expression change at the gene level.

Data on miRNA-induced changes at both mRNA and protein

Figure 1. Cumulative density distribution of energy values at known miRNA target sites (Tarbase) vs. control sites. All energy values
are in kcal/mol unit. (A) DDG. (B) DGH. (C) DGopen.
doi:10.1371/journal.pone.0020622.g001

Figure 2. Contribution of energy values at Tarbase sites vs
control sites. The plot shows ROC curves and corresponding AUC
values for the three energy types in the duplex formation steps: DDG,
DGH, and DGopen. The result for a canonical 6-mer seed match search
and a search for relaxed seeds (at least 6 out of 8 positions—a 6-in-8
filter) are also shown.
doi:10.1371/journal.pone.0020622.g002

Thermodynamic Features for miRNA Target Prediction
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levels provided an appropriate framework to address this question

[31,32], and allowed us to compare the impact of miRNAs on

gene expression at the transcriptional and translational level.

Differently from evaluations of single sites, we will frequently

observe multiple match locations in a 39UTR. Therefore, we

evaluated all 4-mer match sites in the 39UTR, and evaluated

correlations based on the top energy values and the sum over all

sites. To avoid issues that may arise from the use of different

technologies and experimental protocols, we here focused on data

from one study, which used overexpression of individual miRNAs

and assessed subsequent changes on the mRNA and protein levels

by microarrays and pSILAC respectively [32].

We first assessed the correlation between individual energy

features and observed expression change, using data at both

mRNA and protein levels of five assayed human miRNAs (miR-

1, miR-16, miR-30a, miR-155, and let-7b). Here, only miRNA-

gene pairs with observed negative log2 fold change were used, as

positive values were likely to result from indirect effects.

Obviously, not all genes with an observed negative log2 fold

change will be direct targets, and as a result, not all of them will

contain miRNA target sites. In addition, less pronounced

expression change may simply be a result of experimental error

or precision. Out of these reasons, we did not expect to achieve

high correlation values on this noisy set. Favorable duplex

formation energy (lower DDG, lower DGH, or higher DGopen)

should lead to positive correlation coefficients for DDG and DGH,

and a negative coefficient for DGopen. For all three energy types,

we investigated the correlation for top values of each energy type

separately as well as the energy sum over all sites in order to take

into consideration the frequent observation of multiple target sites

of the same miRNA in a UTR. In addition, we included 39UTR

length in our feature set, as a chance for occurrence of target sites

increases in a longer UTR; here a negative correlation to log2

fold change is expected. The results showed significant correla-

tions between observed expression change and feature values

(Table 1). For all of the features, the correlation was computed

separately for the microarray (mRNA) and pSILAC (protein)

datasets, and the correlation was generally stronger at the mRNA

level than at the protein level. These significant correlations

demonstrated that energy features are correlated with the

outcome mediated by miRNAs.

To assess whether a simple model combining these features

could successfully predict the outcome on unseen data, we used the

combination of energy features as well as 39UTR length in a linear

regression model to predict expression change. In a cross-

validation setting, we pooled expression data from all experiments

and divided the transcripts into five disjoint training and test sets,

each of which contained expression data from all miRNAs. We

built and tested linear models on mRNA and protein expression

datasets separately in order to assess any differences on the mRNA

or protein level. All features listed in Table 1 were used for model

training. Given the large training dataset and the redundancy

between some of the features, we consistently observed zero

weights for several features: DGopen at the top two DDG sites, and

sum of DDG. Spearman’s correlation test was used to evaluate the

model, and showed that the model was able to predict expression

change with a significant correlation to the observed change at

both mRNA and protein levels (Table 2); the correlation of the

model combining multiple features was higher than the individual

feature correlations in Table 1. Looking at the seed type

components of putative targets defined at different observed

expression changes, we found that the energy-based model was

able to capture canonical sites without having to impose stringent

seed rules, yet at the same time successfully identified highly down-

regulated genes that lacked canonical match sites (Figure S3; see

Results S1 for details).

Upon closer investigation, we noted that the experiment for let-

7b overexpression constituted an outlier, and cross-validation

model performance on only the remaining 4 miRNA datasets

showed marked improvement (Table 2). This corroborated the

previous observation that, different from all of the other 4

miRNAs, the let-7b seed was not the most enriched sequence motif

in the mRNA dataset [41]. One possible explanation may lie in the

sequence composition of the miRNAs: unlike the other 4 miRNAs,

hsa-let-7b consists of predominantly G and U bases (19 out of 22

bases), which may allow for more extensive G-U pairing and

consequently for a more extensive set of imperfect and less

effective target sites.

Figure 3. Discrimination between sites with and without evidence of AGO interaction. AUC values are shown for the three energy types in
the duplex formation steps: DDG, DGH, and DGopen for each miRNA group containing one or more of the 20 most highly expressed miRNAs in the
same cell line and the miRNAs that shared their 59end sequences. Only 6-mer sites were considered. The line at the AUC value of 0.5 indicates random
performance.
doi:10.1371/journal.pone.0020622.g003
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A simple energy-based model identifies highly down-
regulated targets, including imperfect sites

The study by Selbach et al [32] evaluated several miRNA target

prediction tools, where targets were defined by protein level

changes; the target prediction tools assessed in the study had

typically been trained on mRNA data, as their study was among

the first to measure the impact of miRNAs on protein synthesis.

To align with this setup, and to assess the performance of our

method for de novo target prediction, we used the model trained

on mRNA expression change data to compute a prediction score,

and used the observed protein log2 fold change to define bona fide

targets. Since the genes with small negative log2 fold change were

more likely to be noise or come from experimental errors, we

retrained the model on only genes meeting an observed mRNA

expression change cutoff of less than or equal to 20.1, and used

the dataset excluding let-7b (see Results S1 and Figure S4 for

results when all 5 miRNAs were used). To increase the stability of

estimates, we used each model from the 5-fold cross validation to

compute predicted scores, and used the median value as prediction

for all genes, including genes with observed positive expression

change.

To benchmark the model performance against random

expectation, we computed the enrichment of highly down-

regulated genes in top predicted gene sets (as ranked by the

model score), compared to the full set. By varying the size of the

top predicted set, instead of defining one threshold for target

prediction, we were able to assess the trend of bona fide target

enrichment across the full range of model scores. It was evident

that the simple energy-based model was able to identify highly

down-regulated genes as targets (Figure 4): there was a clear

enrichment compared to random (an enrichment value of 1) with

stronger enrichments for more negative prediction scores (smaller

top predicted sets). We used different cutoffs to define bona fide

targets, and enrichments were higher at more stringent cutoffs,

indicating a favorable trend of our model to predict more of the

genes with stronger observed down-regulation. Our method

yielded stronger enrichments over a canonical 6-mer baseline

even when all 4-mer matches were included (Figure 4A). While the

enrichment decreased for the 6-in-8 set, the signal above baseline,

a more suitable way to compare across the sets, became greater

than the 4-mer set (Figure 4B). And with a more restricted site

filter, the differences from 6-mer search baseline increased even

more, and the enrichment value went up to five folds (Figure 4C).

Up to this point, our analyses did not directly address the

important question whether the signals mainly came from perfect

sites in the UTR, and whether imperfect sites actually contributed

Table 1. Correlation between energy features, as well as 39UTR length, and observed level of down-regulation.

mRNA Protein

Feature corr. coef. p-value corr. coef. p-value

best DDG 0.182 ,1610216 0.109 ,1610216

second best DDG 0.186 ,1610216 0.115 ,1610216

best DGH 0.207 ,1610216 0.097 2610215

second best DGH 0.218 ,1610216 0.110 ,1610216

best DGopen 20.028 0.022 20.074 1.461029

second best DGopen 20.028 0.023 20.093 1.9610213

DGH at the best DDG site 0.186 ,1610216 0.092 5.6610214

DGH at the second best DDG site 0.198 ,1610216 0.104 ,1610216

DGopen at the best DDG site 20.005 0.67 20.028 0.023

DGopen at the second best DDG site 0.016 0.21 20.019 0.14

Sum of DDG 0.225 ,1610216 0.094 1.5610214

Sum of DGH 0.185 ,1610216 0.155 ,1610216

Sum of DGopen 0.139 ,1610216 0.149 ,1610216

39UTR length 20.138 ,1610216 20.133 ,1610216

Shown are the Spearman correlation coefficient and the corresponding p-value between different individual energy or 39UTR length, and the observed log2 fold change
at the mRNA or protein level.
doi:10.1371/journal.pone.0020622.t001

Table 2. Correlation of linear model scores with observed level of down-regulation.

mRNA protein

Average corr. coef. p-value Average corr. coef. p-value

5 miRNAs 0.241 ,7610215 0.152 ,561026

4 miRNAs (excluding let-7b) 0.292 ,2610216 0.185 ,561028

Shown is the average Spearman correlation coefficient between model-predicted score and observed log2 fold change, averaged across five cross-validation runs. The
specified p-value is the upper bound among all five cross-validation runs. The model was trained and tested separately on expression change data at mRNA and protein
level.
doi:10.1371/journal.pone.0020622.t002
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to the model performance. To determine the contribution of

imperfect sites, we repeated training and evaluation of the

prediction model on genes with only imperfect sites in the

39UTR. Our gene set here was limited to 39UTRs that do not

have a perfect match of length 6 or longer, and contain only 6-in-8

or 7-in-8 sites. Figure S5A–B show that our method was able to

predict enriched bona fide targets, and confirmed the enrichment

trends of top predictions on UTRs that only have imperfect sites.

Performance of the energy-based prediction model
exceeds PITA algorithm

Previous studies reported that the performance of PITA, an

energy-based miRNA target prediction approach that also uses

energy in duplex formation, did not exceed a simple seed match

search on mammalian data [31,32]. Our energy-based model, on

the contrary, yielded a stronger signal than a baseline 6-mer

search. To investigate this, we directly compared the performance

of our method to PITA [9]. Since PITA prediction requires

canonical sites of length 6 or longer, we used a prediction model

that was built on UTRs with at least one 6-mer (or longer) match

to the seed sequence of the 4 miRNAs (i.e. model used for

Figure 4C). In the subset of genes that overlap between our dataset

and PITA predictions, we compared the enrichment of highly

down-regulated genes as ranked by our predicted score to the

enrichment when ranked by PITA score.

Our energy-based method yielded a higher enrichment than

PITA score throughout the ranked predicted set (Figure 5A). The

enrichment of bona fide targets on the common subset was again

more pronounced for our top scores. Notably, PITA performance

greatly decreased and became more uniform throughout the

ranked list when let-7b was included (Figure S6A). Our method,

on the other hand, showed a consistent performance on the 6-mer

set with or without let-7b in model training and enrichment

computation. This suggests that our method is more robust than

PITA, and may explain the low performance of PITA observed in

previous studies.

In conclusion, a model based solely on energy features and

UTR length can deliver a favorable performance on mammalian

data.

Comparison to TargetScan context scores
Other than energy-based predictors, most target prediction tools

rely on conservation and were thus not appropriate to compare

against. Context scores of the popular TargetScan predictor, on

the other hand, can be selected to ignore the contribution of

conservation [14]. Similar to the comparison with PITA, we used

the 6-mer prediction models to compute predicted scores for

UTRs that have at least one 6-mer (or better) site. The

comparison was limited to genes that are in both the TargetScan

UTR sequence database and our UTR set. Both context score

and our energy-based scoring sets yielded enriched bona fide

targets in top predicted sets, and the enrichment was higher

towards the higher-scoring gene sets (Figure 5B, S6B). Since

TargetScan requires predicted targets to have canonical match

sites of at least length 7, and we accordingly ranked genes that

lacked 7-mer or 8-mer matches at the bottom of the context score

predictions, it is not unexpected that context scores had higher

enrichments in the top scoring sets, which were all based on

longer seed matches. The context score performance eventually

fell below our method, likely because it failed to identify bona fide

targets that lack those long canonical sites in the 39UTR. To

evaluate this in more detail, we separately computed enrichment

plots of genes with context scores vs. those without. This showed

that the performance of our model fell below TargetScan on the

subset of genes with context scores (i.e. genes containing

canonical sites of length 7 or 8; Figure S7A–B), but delivered

significant predictions of highly down-regulated genes that lack

canonical seed matches, i.e. of putative targets that TargetScan

did not score at all (Figure S7C–D). The comparison between our

energy-based method and TargetScan’s context score therefore

ended in a tie – for long seeds, the additional features in the

TargetScan model improved performance, but it missed bona

fide non-canonical targets that our method was able to predict.

Energy-based prediction yields enrichments of highly
down-regulated genes on an independent dataset

In order to allow for a controlled assessment of energy-based

target prediction, results so far were obtained on data from the

same study. To conclude, we assessed the performance of the

model on a dataset of human mRNA expression changes induced

by miR-K12-11. This miRNA is encoded by Kaposi’s sarcoma-

associated herpesvirus (KSHV), and has been shown to be a

functional ortholog to a human miRNA, miR-155 [22]. Given that

model trained on the 6-in-8 set yielded high enrichments above

baseline while including predictions of imperfect sites (Figure 4B),

we used the model trained on 39UTRs with at least one 6-in-8 (or

better) site, and restricted evaluation to sites with at least a minimal

6-in-8 seed. As in the previous enrichment analyses, we used the

models from the five-fold cross-validation training on mRNA

expression change data from Selbach et al. [32] above to compute

predicted expression change caused by miR-K12-11, and used the

median value to compute the enrichment values. Figure 6 shows

the enrichment of down-regulated genes below an observed

mRNA log2 fold change cutoff in our top predicted sets (cf. Figure

S8 for results on a model trained on all 5 miRNAs). Compared to

the enrichment analyses in the previous section, the enrichment

here was constrained to a smaller top set of genes. This difference

was likely due to different experimental setups: unlike in the

overexpression studies in Selbach et al. [32], the viral miRNA was

transfected at physiological levels, and the lower overall number of

potential targets agrees with fewer genes showing significant

expression changes in the viral dataset. Nevertheless, the

enrichment from our model was again higher than a search for

6-mer sites in the 39UTRs, thus clearly improving on the standard

baseline approach when conservation across target sites cannot be

used as feature, while at the same time allowing for mismatches in

the target site.

Figure 4. Enrichment of bona fide targets within top predicted target sets of varying size. Genes were ranked by median predicted score
computed from five cross-validation models trained on mRNA expression data of four miRNAs (i.e. excluding let-7b) from Selbach et al. [32]. Bona fide
targets were defined as those with observed protein log2 fold change less than or equal to different cutoffs, as observed in independent experiments
by pSILAC; genes above the cutoff were considered as non-targets. The enrichment of bona fide targets in ranked sets of increasing size is shown. (A)
all 4-mer sites were used in model training and predicted score computation. The plots for 20.3 and 20.4 log2 fold change cutoffs are shown. The
corresponding baseline enrichment from a canonical 6-mer seed match search is also shown. (B) A 6-in-8 filter was applied to select for sites to
compute feature values, and only 39UTRs that have at least one 6-in-8 (or better) match were used in model training, and enrichment evaluation. (C)
Similar to (B), but a filter for a 6-mer (or better) site was used. On this set, canonical 6-mer baseline corresponded to an enrichment value of 1.
doi:10.1371/journal.pone.0020622.g004
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Discussion

The main intent of this study was to evaluate the utility of

energy-based models for miRNA target prediction, which had

initially shown promise to provide a framework to handle the

prediction of non-conserved targets, and/or targets with imper-

fect seed matches. After initial reports that approaches such as

PITA might outperform ‘‘classical’’ target predictors [9], follow-

up studies reported contrary results, suggesting that some energy-

based methods might not even exceed baseline results from

simple scanning for canonical seed matches, at least for

mammalian genes [31,32,42]. Here, we were able to reconcile

these conflicting results: while an evaluation of PITA predictions

showed a mixed performance and was greatly affected by

miRNAs in the set, our simple linear regression model based

on energy features was able to predict genes down-regulated by

miRNAs with clear enrichments.

The evaluation of individual target sites included both small

manually curated sets, and genomic dataset from recent PAR-

CLIP experiments that identified binding location of AGO

proteins. The results reflected strong biases in either set:

experimentally supported mammalian mRNA targets in Tarbase

Figure 5. Comparison of the prediction model to other existing tools. (A) Our model score vs PITA score. Model-predicted scores and
enrichment values were computed as in Figure 4C. We used PITA scores with flanking length of 3 and 15 bases upstream and downstream, for which
the original study reported better performance compared to no flanking region [9]. (B) Our model score vs TargetScan’s context score. Models from
the 6-mer training set were used (cf. Figure 4C). TargetScan UTRs without the required canonical sites (i.e. no context score) were ranked at the
bottom of the predicted list.
doi:10.1371/journal.pone.0020622.g005
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were largely defined by mRNA:miRNA hybridization energy,

and provided a noticeable but modest difference in local

secondary structure. In contrast, genome-wide energy evaluations

at the site level suggested a stronger impact of accessibility on

AGO-interacting sites. Here, hybridization energy contributed

noticeably less, hinting at the difficulty in pinpointing the precise

miRNA acting at the target location, and/or at an overall lower

effect of hybridization on sites that were occupied yet whose

functional effect on expression levels is unknown. These findings

underlined some of the global statistics reported in the original

study [6]: in their study, seed matches to the top 100 expressed

miRNAs were significantly enriched in CCRs, but at a relatively

low level of 1.5-fold when compared to randomized 6-mers.

However, CCRs were overall found to be located in region of

increased accessibility.

Evaluations on genomic mRNA and protein expression change

data at the UTR level confirmed contributions of both energy

components in the duplex formation steps. The stronger

correlation to mRNA expression change, compared to protein

synthesis change, of a simple linear model agrees with a recent

report which suggested changes in mRNA levels as the

predominant effect of miRNA-induced gene regulation [43].

Our results indicated that commonly used hierarchies of seed

matches are naturally reflected in energy-based scores (cf. Results

S1). As such, stronger expression change in the presence of longer

seed matches also means a more favorable energy score at these

sites, which provides for an intuitive and natural way to

incorporate seed mismatches and different seed types in the

prediction model. While restrictions to canonical seed matches

provide for a higher enrichment of true targets in predictions, our

energy-based method was able to predict non-canonical targets

even without using conservation. As we demonstrated on the

dataset of viral miRNA induction, the current approach is best

used to define putative targets when given functional genomics

data: rank genes by prediction scores, determine an enrichment

profile based on a reasonable cutoff for significant expression

change, and investigate (non-canonical) putative targets in a

suitable set of top predictions.

Re-assessing the potential of energy-based features and models

for target prediction, we provided convincing evidence that such

models can indeed deliver promising results and naturally include

imperfect sites. In particular, evaluations at both site and UTR

levels demonstrated the usefulness of thermodynamics features for

miRNA target identification in mammals at the genome-wide

level, and not just in model organisms with shorter 39UTRs which

had been the main focus in other studies of energy-based target

identification [8,9]. Our results showed that genes with stronger

down-regulation were enriched in the top predictions, and our

method yielded consistent favorable performance in comparison

against other tools, and in target prediction on an independent

dataset. While our current approach is already competitive for the

prediction of non-canonical sites, a more stringent training on

clearly defined positive and negative targets would likely improve

the performance, and future investigation on possible effects of

differences among miRNA sequences could help improve

robustness of the tool on a relaxed seed match dataset.

It will soon be possible to intersect functional genomics datasets

assessing the impact of miRNAs on transcript and protein levels

with the increasingly available CLIP data, which define putative

target sites at a genomic scale. This will allow for defining effective

training sets, whose absence has hindered the prediction of targets.

Additionally, combining energy with conservation scores or

sequence features such as mRNA local composition or relative

position of target sites is likely to prove informative [44]. In

summary, energy-based models provide a natural and promising

starting point, and deserve a renewed attention for more

comprehensive modeling efforts to predict microRNA targets.

Supporting Information

Figure S1 DDG values and normalized luciferase ratios
for several Drosophila miRNAs and their targets in

Figure 6. Enrichment of highly down-regulated mRNAs for miR-K12-11 target predictions. As in Figure 4, the enrichment of bona fide
targets within gene sets of increasing size, ordered by increasing model score, is shown. A 6-in-8 filter was used for model training and prediction (cf.
Figure 4B). Different observed mRNA log2 fold change values (20.5, and 20.6) were used as a cutoff for bona fide targets. The corresponding
baseline enrichments resulting from 6-mer seed matches are also shown.
doi:10.1371/journal.pone.0020622.g006
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different UTR context. The DDG values (in kCal/mol) were

computed as described in the Methods section. The normalized

luciferase ratios were obtained from the original study [9].

Spearman correlation test was used to compute the correlation

coefficient.

(TIF)

Figure S2 ROC plot of energy values at Tarbase sites vs
control sites with seed type filter. The plot shows the three

energy types in the duplex formation steps: DDG, DGH, and

DGopen. (A) For both Tarbase and control sets, we used the same

sites as in Figure 2, but with a 6-in-8 site filter. Thus, the positive

set here corresponded to 95% of the full Tarbase set in Figure 2.

(B) Same as in (A), but further restricting sites to canonical matches

of at least 6 consecutive base pairs (77% of the Tarbase sites in

Figure 2).

(TIF)

Figure S3 Seed type composition of gene sets down-
regulated by miRNA overexpression. Genes assayed in a

miRNA overexpression study were ranked by observed protein

log2 fold change. The plots show the fraction of different seed types

in the top down-regulated sets of an increasing size (50 genes

increment). The seed type of the UTR was determined among

seed type of all matches according to an order: 8-mer, 7-mer-A, 7-

mer, 6-mer, 7-in-8, 6-in-8, 5-mer, and 5-in-8. The seed type

symbols are as specified in Methods, including the remaining 4-

mer sites that do not have any additional base pairs within an 8-

mer region (4-mer). Only the genes with negative observed log2

protein fold change were included in the plots. As reference, the

asterisk marks the size of the top down-regulated gene set that

corresponds to an observed protein log2 fold change less than or

equal to 20.2. Note that the 7-mer-A seed type has no counts here

since all five miRNAs have U at position 1, which means the 7-

mer-A type is the same as the 8-mer type in this case, and our seed

type order as a result assigns such site/UTR as an 8-mer. (A)

Composition of UTR seed type of all genes with observed down-

regulation at the protein level. (B) Composition of UTR seed type

for the subset of genes in (A) that were predicted as a target by the

linear model. These putative targets were genes with predicted

score less than a cutoff determined from cross-validation runs. (C)

Same as in (B), but showing the seed type of the best DDG site in

each gene.

(TIF)

Figure S4 Enrichment of bona fide targets within top
predicted target sets for the 5-miRNA set. Similar to

Figure 4, but all five miRNAs were used to train the model and

included in the enrichment analysis. (A) all 4-mer sites were used

(B) with a 6-in-8 site filter (C) with a 6-mer site filter.

(TIF)

Figure S5 Enrichment analysis on strictly imperfect
UTRs. Genes with only imperfect sites of at least length six in the

39UTR were used for model training and enrichment analysis. (A)

on the 4-miRNA set (B) on the 5-miRNA set.

(TIF)

Figure S6 Comparison of the energy-based model to
other existing tools for the 5 miRNA datasets. Similar to

Figure 5, but 5 miRNA datasets were used in model training and

enrichment analysis. (A) Our model scores vs PITA scores. (B) Our

model scores vs TargetScan’s context scores.

(TIF)

Figure S7 Additional comparison of the energy-based
model to TargetScan’s context score. (A) Enrichment of

highly down-regulated genes in top predicted set, ranked by

context score vs. our model score on the subset of genes in

Figure 5B that have reported context score. (B) Same as (A), but

all 5 miRNAs were included in model training and enrichment

calculation. (C) Predictions ranked by our model score on the

genes that do not have context score (i.e. the complement of the

gene set in (A)). (D) Same as (C), but for the 5-miRNA set.

(TIF)

Figure S8 Enrichment of highly down-regulated mRNAs
for miR-K12-11 target predictions using the models
trained on 5 miRNAs. Similar to Figure 6, but all 5 miRNA

datasets were used to train the models.

(TIF)

Table S1 miRNA groups in the evaluation on PAR-CLIP
dataset.
(DOC)

Results S1

(DOC)
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