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Abstract
There are currently no predictive methods to identify patients who suffered an initial brain injury
and are at high risk of developing chronic epilepsy. Consequently, treatments aimed at epilepsy
prevention that would target the underlying epileptogenic process are neither available nor being
developed. After a brain injury or any other initial precipitating event (IPE) to the development of
epilepsy, pathological changes may occur in forms of inflammation, damage in the blood brain
barrier, neuron loss, gliosis, axon sprouting, etc., in multiple brain areas. Recent studies provide
connections between various kinds of brain pathology and alterations in the peripheral blood
transcriptome. In this review we discuss the possibility of using peripheral blood transcriptome
biomarkers for the detection of epileptogenesis and consequently, subjects at high risk of
developing epilepsy.

Biomarkers of epileptogenesis
Epilepsy is a chronic neurological disorder characterized by recurrent seizures. From the
genetic perspective, epilepsy is a complex of neurological disorders characterized by similar
phenotype (seizures). Epilepsy may be divided into familial epilepsy caused by intrinsic
genetic factors such as mutation in a particular gene or combination of certain genetic traits;
and acquired epilepsy originating from an initial precipitating event (IPE) often resulting in
status epileptics (SE) and a high likelihood of recurrent seizures or chronic epilepsy. Some
of the common causes of acquired epilepsy are hypoxic-ischemic encephalopathies during
the neonatal period and/or early infancy, febrile seizures during late infancy and early
childhood, stroke and degenerative diseases in older adults, central nervous system (CNS)
infections, drug use and traumatic brain injuries in all ages. Perhaps the major cause of
acquired epilepsy is a traumatic brain injury (TBI) characterized by a high occurrence of
residual deficits. While primary brain damage occurs immediately due to external forces,
secondary damage develops over the subsequent hours and days, and involves multiple
mechanisms including glutamate and excitatory amino acid release, free-radical generation,
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calcium-mediated damage, gene activation, mitochondrial dysfunction, and inflammatory
processes [45].

After initial precipitating injuries (such as trauma), up to 25% of the patients develop
posttraumatic epilepsy with the latent (silent) period varying in duration [1, 26, 27]. The
foregoing suggests that the development of epilepsy involves both IPE and a genetic
predisposition to developing epilepsy. Numerous studies of the epileptic brain indicate that
when clinical seizures occur, the brain has already undergone multiple irreversible changes,
and most physicians accept that current treatment of epilepsy is mostly symptomatic.
Therefore, there is a critical need for treatments that arrest epileptogenesis. The clinical
challenge is in identifying the subset of patients with ongoing epilepstogenesis that will
benefit from interventions designed to block adverse plasticity leading to epilepsy
(antiepileptogenic treatment). At the present time, no clinically accepted biomarkers
predictive of the likelihood of developing epilepsy after IPE are available. Well-recognized
histopathologic markers of epilepsy become discernible only after the epileptic state is
already established.

Early diagnosis and intervention are critical for efficient treatment of any disease, including
epilepsy. Previous clinical trials have failed to provide positive recommendations for
preventive therapy and they used a traditional approach of splitting patients with treatment
and without treatment, disregarding the selection of patients at high and low risks of
developing epilepsy [42, 63]. Finding valuable biomarkers that indicate the existence of
unrecognized processes leading to the occurrence of disease are critical for early
intervention. The necessity for earlier treatment of epileptic patients was raised in several
recent publications [16, 63]; however, the absence of valuable biomarkers permitting the
identification of subjects at high risk of developing epilepsy after IPE and the prediction of
seizure occurrence hampers the progress of these studies.

Currently, there are electrographic and imaging biomarkers of epileptogenesis. One of the
electrographic markers of epileptogenesis at the network level is the occurrence of EEG
spikes which represents paroxysmal discharges of neuronal populations [15]. Interictal
spikes are widely accepted diagnostically as a sign of epilepsy, but little is known about the
reasons for the presence of interictal activity in the epileptic brain. As it was described in
kindling and other models of epilepsy, EEG spikes appear in multiple brain regions before
the occurrence of spontaneous seizures [2, 6, 28, 34] and may be a valuable biomarker of
epileptogenesis. It is hypothesized that spikes may guide sprouting axons, increase and
sustain the strength of the synapses formed by sprouted axons, and alter the balance of ion
channels in the epileptic focus, ultimately provoking seizures [60]. However these data have
not yet been proven in humans after an insult to the brain and prior to development of
chronic epilepsy.

Pathological high frequency oscillations (pHFOs) represent another possible marker of
epileptogenesis. pHFOs were described more than ten years ago in hippocampal-entorhinal
circuitry in epileptic patients and animals [7, 8]. It was hypothesized and later supported by
experimental evidences that these brief (15–30 ms) high frequency (250 to 500 Hz)
oscillations are generated by local clusters of pathologically interconnected neurons (PIN-
clusters) [9, 11]. The size of the area of pHFOs generation depends on at least two
conditions: strength of local excitatory connections and strength of recurrent inhibition.
Small discretely localized areas of interictal pHFOs generation remain fixed, and the
electrophysiological pattern of pHFOs is unchanged over several weeks to months,
indicating that pHFOs reflect abnormal discharges from a fixed pathologic substrate
imbedded within less epileptogenic tissue [10]. pHFOs are generated in local brain seizure
generating zones [32, 59, 68] that indicates their potential role in seizure genesis making
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them a useful and highly predictive marker of epileptogenesis and recurrent seizure
occurrence. However, the necessity for implantation of electrodes into the brain limits
clinical application of electrographic biomarkers of epileptogenesis.

Magnetic resonance imaging (MRI) methods may provide an additional means of detecting
epileptogenesis. Studies of thalamus temporal evolution after pilocarpine induced SE
revealed a blood-brain barrier (BBB) breakdown two hours after the status that began
disappearing by six hours [51]. Longitudinal MRI studies of the intrahippocampal kainic
acid (KA) model detected both an immediate neurotoxic effect of KA injection and a follow
up gliosis occurring 2 weeks later [5]. In the kindling model of epileptogenesis, the
increased signal was observed in the rostral ipsilateral regions of CA1 and dentate gyrus in
kindled but not in control rats [33]. However, although imaging and electrographic
biomarkers predictive of the likelihood of developing epilepsy after IPE have been
described, their implementation into routine clinical practice to evaluate patients at risk is
hampered for at least two reasons. These are the high costs of imaging tests and the invasive
nature of the procedure for identification of existing electrographic biomarkers. This again
emphasizes the need for the identification of reliable and robust peripheral biomarkers of
epileptogenesis. If available, such biomarkers would be a convenient tool for non-invasive
identification of patients at risk of developing chronic epilepsy.

As defined, peripheral neurological disease biomarkers should reflect disease-specific
changes of biological processes that can be consistently applied to different individuals with
that specific condition. Thus, biomarkers should provide comprehensive information with
regard to predicting specific features of a disorder, evaluate risk for individual subjects, aid
diagnosis in clinically similar/overlapping conditions, and help with the development of new
treatments. Furthermore, biomarkers should be inexpensive and easy to apply.

Highly inclusive methods of investigations such as studies of the whole genome and
proteome are most promising when attempting to identify such biomarkers. In particular,
microarray-based technology permitting the analysis of whole transcriptome in a single
experiment may be an efficient approach to discover biomarkers associated with the disease
[38].

Peripheral blood transcriptome as a source of biomarkers of neurological
diseases

Recently published data support the idea that blood gene expression profiling can provide
surrogate markers for neurologic diseases. The feasibility of this approach was demonstrated
at several levels [47]. The method of choice in these studies is a microarray-based
technology that proved to be an efficient tool for the analysis of brain function in health and
disease (refer to Karsten, et al. 2008 [38]). Its main principle is based on the reversed
hybridization of fluorescently labeled experimental and control total RNA to oligonucleotide
probes representing near whole transcriptome immobilized on the surface of a microarray
glass slide.

An emerging application in this field targets identification of early disease biomarkers based
on gene expression profile from peripheral blood transcriptome mainly represented by
leukocytes [4, 48, 61, 62]. More than 20% of brain transcripts were found to be co-expressed
in the peripheral blood monocytes of both human and rats when Affymetrix microarrays
were used [52]. Such remarkable overlap in gene expression response of the blood and brain
cells may be due to the genetic component or injury leading to the disruption of BBB. An
example of the genetic constituent may be a mutation in a specific gene leading to a cascade
of regulatory events affecting expression of the same downstream genes in both tissues.
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Injury evoked transcriptome response may be explained by the exposure of the blood cells to
the local tissue damage, pathological changes in BBB permeability due to SE and/or
inflammatory response. Continuous blood flow ensures that a large number of blood cells
will be exposed to the environment of the local damage, further increasing specific gene
expression response in the whole blood transcriptome. Although mechanisms of blood-brain
transcriptome co-regulation still remain speculative, the phenomenon itself was illustrated
by several recent findings that some of the “traditionally brain specific” and disease-
associated genes may also be altered in the blood transcriptome in a similar pattern.

Coppola et al. [13] identified significant alterations in progranulin expression level in the
leukocytes of patients with sporadic and familial neurodegenerative dementias. Progranulin
was originally identified as a gene responsible for some cases of familial frontotemporal
dementia (FTD; [3, 14]. While highly elevated expression of Progranulin was found in the
blood of patients with clinically diagnosed FTD and Alzheimer disease [13], low expression
in the blood predicted the presence of Progranulin mutations [13, 22]. Patients with
Friedreich’s ataxia, a rare neurodegenerative disease caused by the mutations in Frataxin
gene, demonstrate significantly reduced Frataxin expression in the peripheral blood that was
proposed as a diagnostic test [50]. Our recent study identified multiple gene expression
changes specifically present in the motor neuron surrounding glial cells in the mouse models
of Amyotrophic Lateral Sclerosis [41]. Surprisingly, some of these changes were also found
in the blood of presymptomatic SODG93A mice suggesting that prognostic tests for motor
neuron disease using peripheral blood transcriptome are feasible [41].

Second, multiple studies have established a direct link between neurological disease and
changes in the blood transcripome. Some of the examples include identification of disease
relevant genes in the blood of patients with Alzheimer’s disease [25, 35, 46, 48],
Parkinson’s disease [54], Hungtington disease [4], Amyotrophic Lateral Sclerosis [43, 53],
multiple sclerosis [23], migraine [29], autism [24, 64], schizophrenia [49, 66], bipolar
disorder [31, 39], post-traumatic stress disorder [55], chronic fatigue [67], Tourette
syndrome [44, 61], and various types of acute brain injury such as ischemic stroke and
seizures [58, 64, 69]. In addition, although a large number of genes regulated in the
peripheral blood might be common to many types of injury (e.g. stress related genes), there
are sets of genes specific to a particular type of brain injury [56, 57, 62]. Robust gene
expression changes in peripheral blood monocytes were identified in adult rats as soon as 24
hours after ischemic stroke, intracerebral hemorrhage, kainate-induced SE, hypoxia, and
insulin-induced hypoglycemia [56, 57]. This combined evidence demonstrates that an
altered state of the central nervous system is associated with specific profiles in the
peripheral blood, and this association clearly depends on the disease stage, particular
etiology, genetic component and other factors.

Nevertheless, most gene expression changes identified in blood are associated with a fully
developed disease phenotype and almost no studies of blood transcriptome in
presymptomatic animal models or patients have been reported, raising the issue of whether
the identified genes may be useful as clinical predictive biomarkers of the disease. Indeed, in
spite of these multiple efforts, often inconsistent results point to only potential use of
peripheral blood biomarkers mainly applicable to the prediction of disease progression or
therapeutic response [12, 65]. No clinical peripheral blood transcriptome (PBT) biomarkers
currently exist for early neurological disease diagnosis that can be used prior to any notable
clinical phenotype. Consequently, this prevents any attempts of early treatment using disease
modifying drugs.
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Epilepsy, BBB and peripheral blood
Mounting evidence suggests that inflammation is an important contributing factor of
epileptogenesis. CNS inflammation is often associated with a disruption of BBB, exposing
neuronal and astrocytic cells to blood cells and environment [20, 21, 40]. Recent studies in
the mouse models of chronic seizures point to the direct pathogenic link between leukocytes
and seizure generation [21, 40] making it plausible to speculate that global profiles of gene
and protein expression in the peripheral blood may be altered by inflammatory processes in
epileptogenic brain. In addition, pathological lymphocyte accumulation was noticed in the
patients with refractory epilepsy [21, 30], further supporting the hypothesis of seizure and
blood co-regulation. Indeed, several recent publications [56, 57] and the data from our
ongoing projects [36, 37] point to the presence of global gene expression changes in the
peripheral blood transcriptome in response to the underlying epileptogenic processes.

Many experimental models of SE exist in which a significant fraction of animals develop
spontaneous seizures and pathology resembling human temporal lobe epilepsy (TLE, [17–
19]. While the onset of epilepsy following the IPE occurs months or years later in humans, it
takes several weeks to months in rodent models. Even in a homogeneous population of
rodents, not all develop epilepsy after SE or TBI. These observations point to possible
changes in the gene expression profile of animals during the latent period of epileptogenesis
when the mechanisms leading to epilepsy are at play immediately following the IPE. The
sequence of events somehow differs in those animals that do not eventually develop epilepsy
and may possibly reflect silent but more aggressive epileptogenesis in the subjects with later
occurring epilepsy. This observation became a main premise of our ongoing attempt to
identify peripheral blood transcriptome changes associated with silent epileptogenesis
during the latent period [36, 37]. To avoid identification of the potentially biased model-
specific gene expression changes, both local seizures (KA) and systemically (pilocarpine)
induced epilepsy models were used. In our experiments, peripheral blood transcriptome was
investigated prior to the injection (base line), 24 h, 48 h, 72 h and 1 week after SE but prior
to the development of chronic seizures. Animals with seizures are identified several months
later using 24 h video monitoring and electrophysiological measurements. Accumulated
samples from two different models and several time points permit various types of
microarray data analysis. The following questions can be asked: are there any global
differences in the peripheral blood transcriptome between the animals developing seizures
and animals that fully recovered after initial SE? Does the transcriptome profile changes
significantly before and after SE? Is it associated with later occurring seizures? What is the
time course of these differences? Are identified gene expression differences present in both
models or represent specific mechanisms of induced seizures? Is there transcriptome profile
normalization at later time points? These and other equally important questions demand
detailed and lengthy examination, though preliminary analyses appear hopeful. The obtained
microarray data point to distinct groups of genes associated with animals that later develop
seizures [36, 37]. This supports the hypothesis that the molecular signature preceding the
development of epilepsy is present in the peripheral blood transcriptome, and this in turn
may allow the development of a prognostic test that can be used to both screen and diagnose
potential epilepsy patients, and to prospectively evaluate the effectiveness of
antiepileptogenic therapy. However, more work is required in order to fully demonstrate the
usefulness of this approach.
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