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Abstract
Previous research investigating children with Developmental Coordination Disorder (DCD) has
consistently reported increased intra- and inter-individual variability during motor skill
performance. Statistically characterizing this variability is not only critical for the analysis and
interpretation of behavioral data, but may facilitate our understanding of the processes underlying
DCD. Thus, the primary purpose of this research was to demonstrate the utility of a flexible
statistical technique, a random coefficient model (RCM), that characterizes the increased intra-
and inter-individual variability in children with and without DCD. We analyzed data from a
sensorimotor adaptation task during which participants executed discrete aiming movements under
conditions of rotated visual feedback. To highlight the advantages of this statistical approach, we
contrasted the results from the RCM with those from a traditionally employed general linear
model (GLM). The RCM revealed differences between the two groups of children that the GLM
did not detect; and, characterized trajectories of change for each individual. The RCM provides
researchers an opportunity to probe behavioral deficits at the individual level and may provide
new insights into the behavioral heterogeneity in children with DCD.
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1. Introduction
Developmental Coordination Disorder (DCD) is an idiopathic condition that is characterized
by impaired performance in activities of daily living that require motor coordination (APA,
2000). Previous research investigating children with DCD has consistently reported two
characteristics: 1) increased within-subject variability; and, 2) substantial heterogeneity (i.e.,
inter-individual variability) of behavioral deficits across children. These characteristics have
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been demonstrated across a range of tasks, including discrete reaching (Kagerer, Bo,
Contreras-Vidal, & Clark, 2004), syncopated clapping and marching (Mackenzie et al.,
2008), multi-digit torque control (Oliveira, Shim, Loss, Petersen, & Clark, 2006), visuo-
motor integration and visual perception (Schoemaker et al., 2001), bimanual coordination
(Volman & Geuze, 1998), and continuous and discontinuous drawing (Bo, Bastian, Kagerer,
Contreras-Vidal, & Clark, 2008). While theoretically important, these performance
characteristics can hinder the analysis and interpretation of behavioral data. Statistically
characterizing this increased intra- and inter-individual variability is thus critical for
understanding the individual behavioral deficits as well as the more global impairments
underlying the population of children with DCD; this issue is the focus of the current paper.

General linear models (GLM) have traditionally been employed to compare children with
DCD to typically-developing (TD) controls (e.g., Kagerer et al., 2004; Mon-Williams,
Wann, & Pascal, 1999; Wilson, Maruff, & Lum, 2003). Although these models probe the
behavioral differences between groups (i.e., TD vs. DCD), GLMs are limited if the
individuals’ motor performances are of interest. To address this problem, researchers have
employed a number of alternative statistical approaches (e.g., clustering). For example,
Hoare (1994) attempted to identify sub-types of DCD based on the relationships among
multiple dependent measures from each individual. This approach provided insights into the
heterogeneity of DCD as it focused on each individual’s performance, but this approach is
extremely sensitive to the measures included in the analysis and the interpretation of the
sub-types is subjective. More recent studies have used ‘developmental landscapes’ to make
comparisons between children with and without DCD (Bo et al., 2008; Kagerer, Contreras-
Vidal, Bo, & Clark, 2006). These landscapes consist of a large cross-sectional age range of
TD children that form an age-based regression. Children with DCD outside the upper
prediction limit of the TD regression are considered to have impaired performance on that
particular task. This approach also emphasizes individualized performance and it compares
the children with DCD to a much larger group of TD children with a more expansive age
range. However, the approach is limited as it does not examine population level effects; and,
differences at the individual level may be difficult to detect if the between-subject variability
of the TD children is large.

The limitations of these previous approaches have motivated us to examine a statistical
technique for longitudinal data that may better characterize the increased intra- and inter-
individual variability evident in DCD. This technique, the random coefficient model (RCM)
(Cudeck, 1996; Cudeck & Harring, 2007; Davidian & Giltinan, 1995; Fitzmaurice, Laird, &
Ware, 2004), allows for the description of both average change in the target populations as
well as subject-specific change unique to each individual. To demonstrate the efficacy of
this statistical approach, we contrasted the results obtained from the RCM with those from
the more commonly employed GLM. We used repeated measures data from a small sample
of children with DCD, which is not atypical for studies on special populations, and a larger
sample of TD children. Participants completed a visuomotor adaptation experiment during
which discrete aiming movements were made to peripherally-located visual stimuli under
conditions of rotated visual feedback. The primary purpose of this research was to
demonstrate the utility of an analytic technique that statistically characterizes behavioral
variability in children with DCD. Our secondary aim was to interpret the results of the RCM
in the contexts of sensorimotor adaptation and DCD in order to highlight the advantages of
this approach that were not afforded by a traditional statistical model.

2. Methods
To better understand the implementation of the RCM, information about the experiment and
data set are provided. The methodology is thus divided into two sections. The details on the
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visuomotor experiment, including the outcome variable, are described in the first section
(2.1). The second section (2.2) describes the statistical analyses employed.

2.1. Visuomotor experiment
2.1.1. Participants—Seven children diagnosed with DCD and 14 typically-developing
(TD) children who participated in a visuomotor adaptation study were included in this
analysis. Inclusion criteria for children with DCD were: 1) Movement Assessment Battery
for Children (MABC) score below the 5th percentile (Henderson & Sugden, 1992); 2) a
pediatrician’s independent diagnosis of DCD, including a medical history and a screening
for neurological disorders (Physical and Neurological Examination for Subtle Signs;
PANESS) (Denckla, 1985); and, 3) typical cognitive development as determined by the
Woodcock-Johnson Psycho-Educational Battery-Revised. The TD participants demonstrated
MABC scores above the 20th percentile and were included as part of a developmental
landscape in a previous publication (King, Kagerer, Contreras-Vidal, & Clark, 2009). All
participants were right-handed, as defined based on everyday activities such as eating and
handwriting and confirmed by the MABC handedness criteria (Henderson et al., 1992).
Detailed participant information is included in Table 1. Prior to participation, each child’s
parent or legal guardian provided informed consent. All procedures were approved by the
Institutional Review Board at the University of Maryland, College Park. Children received a
toy prize and a small monetary compensation for their participation.

2.1.2. Procedures—Participants were asked to complete discrete aiming movements with
a computer pen on a digitizing tablet positioned below a horizontally-oriented computer
monitor. The monitor provided real-time visual feedback of the participants’ movements as
well as the start and target circles. Vision of the hand was occluded. The tablet recorded
Cartesian (x/y) coordinates of the computer pen (sampling frequency = 99 Hz). Participants
executed aiming movements to one of three visual target positions located 9 cm from the
centrally-located start circle (positioned 25°, 90°, or 155° with respect to the start position).
During task performance, the visual feedback of the participants’ movement paths provided
on the computer monitor was rotated 60° clockwise (CW); thus, exposing participants to a
visuomotor distortion (126 trials, 42 per target). This sensorimotor distortion results in an
initial decrease in performance. With practice, participants adapt to the imposed rotation, as
indicated by a substantial reduction in movement errors (i.e., sensorimotor adaptation). This
improvement in performance during exposure to a visuomotor rotation has been previously
demonstrated in adults (Kagerer, Contreras-Vidal, & Stelmach, 1997; Krakauer, Pine,
Ghilardi, & Ghez, 2000) and children with and without DCD (Contreras-Vidal, Bo,
Boudreau, & Clark, 2005; Kagerer et al., 2006; King et al., 2009).

2.1.3. Dependent Variable—The time series of each trial was dual-pass filtered with an
8th order Butterworth filter (10-Hz cutoff). Onset and offset of each movement were
determined based on an algorithm employed in previous research (Contreras-Vidal et al.,
2005). Several potential dependent measures can be computed to assess sensorimotor
adaptation (e.g., Contreras-Vidal et al., 2005). For the purposes of this research, we focused
on a single dependent variable, root mean squared error (RMSE). RMSE is a spatial error
between the actual movement and the straight-line vector between the start and target
positions and was computed as:

(1)
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where (xa,ya) and (xi,yi) are corresponding points of the actual and ideal trajectories,
respectively (Contreras-Vidal et al., 2005). Importantly, RMSE is a continuous variable that
theoretically can vary between 0 and infinity. It reflects errors in both motor planning and
execution; higher values indicate decreased sensorimotor performance.

2.2. Statistical Analysis
We contrasted the results obtained from the RCM with those from the more commonly
employed GLM in order to highlight the advantages of a more flexible analytic technique
that can not only examine individual behavioral trajectories, but can also explicitly model
within- and between-subject variability. It should be emphasized that this research did not
aim to compare and contrast the GLM and RCM in terms of ‘fitting’ the data as these
statistical approaches have distinct mean structures with a different number of parameter
estimates.

2.2.1. General Linear Model (GLM)—In previous adaptation experiments, the exposure
phase was decomposed into blocks of trials and summary statistics were computed for each
block (Contreras-Vidal et al., 2005; Flanagan et al., 1999; Kagerer et al., 2006; King et al.,
2009; Krakauer, Ghez, & Ghilardi, 2005). A multi-factorial, repeated-measures analysis of
variance (ANOVA) was conducted to assess population level differences over the course of
the exposure phase. We employed a similar analysis for our data set. Specifically, the
exposure phase was decomposed into three blocks of trials: 1) early exposure (trials 1–18);
middle exposure (trials 55–72); and, late exposure (trials 109–126). We conducted a 3
(block) × 2 (group: TD/DCD) ANOVA on RMSE. We chose to decompose the data into
three blocks of trials to be consistent with previous research in our laboratory (King et al.,
2009); however, it should be noted that other studies have computed means for different
numbers of trial blocks (e.g., Contreras-Vidal et al., 2005; Kagerer et al., 2006).

2.2.2. Random Coefficient Model (RCM)—To help control for any target-related
effects and to increase the stability of our dependent measures, mean RMSE values were
computed by averaging across three consecutive trials. The 126-trial exposure phase was
thus decomposed into 42 observations (i.e., blocks) for each participant. If any of the three
consecutive trials were excluded from analysis (i.e., missing data), the entire block was
excluded. The RCM is capable of handling missing data, a characteristic that will be further
explored in the discussion (Section 4.1.3).

2.2.2.1. Mean Structure: Since the RCM examines the trajectories of change as a function
of the repeated observations, it is suited to parameterize the improvements in performance
during exposure to the visuomotor distortion. When determining an appropriate mean
function, there are several important factors that should be considered (see Cudeck &
Harring, 2010 for details). Importantly, the mean function should not only fit the data
appropriately; but, the model parameters should be interpreted within the context of the
behavioral paradigm. Previous research has demonstrated that visuomotor adaptation data
are generally characterized by exponential decay functions (Flanagan et al., 1999; King et
al., 2009; Krakauer et al., 2005; Krakauer et al., 2000). The current data were consistent
with previous research as there was a rapid reduction in RMSE over the first several blocks
of trials. Performance continued to improve over the remainder of the protocol; however, the
rate of adaptation was less than the initial reduction in movement errors, suggesting a non-
linear function. Preliminary data analysis revealed that RMSE was best characterized by a
double-exponential. This mean structure was thus an appropriate fit of the data and its
parameters could be interpreted in the context of previous research.
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There are indeed several potential analytic techniques that probe trajectories of behavioral
change; however, the RCM models trajectories of change at the population and individual
levels of analysis and it explicitly models between- and within-subject variability.
Accordingly, RCMs include both fixed effects, parameters applicable to the entire
population (i.e., TD or DCD), as well as random effects, parameters that model individual
differences in performance. For simplicity, the sections that follow highlight the critical
components of the model developed for the current data. For a detailed tutorial on the steps
for building similar statistical models to the ones employed in the current study, please see
Verbeke & Molenberghs (2000).

The final double-exponential model for RMSE is shown in Eq. 2 below:

(2)

where: RMSE(i,j) = RMSE value for the ith subject on the jth trial block,

β1, β2, β3, β4 = estimated fixed effects for the typical subject

γ1, γ3, γ4 = adjustments to the fixed effects for children with DCD

gi = 0 if child was typically developing

gi = 1 if child was diagnosed with DCD

bi2, bi4 = estimated random effects

eij = residuals

The β2 and β4 parameters were the ‘typical values’ of the individual-specific rate constants
representing the improvement in performance for the TD children over the course of the
exposure phase. An examination of these parameters suggested that the β2 parameter
represents a ‘fast adaptation’ component and β4 represents a ‘slow adaptation’ component as
the β2 estimates are much larger (in absolute terms) than the β4 estimates (Tables 2 and 3).
These fast and slow adaptation components have been discussed in previous adaptation
research (Joiner & Smith, 2008;Smith, Ghazizadeh, & Shadmehr, 2006). The sum of β1 and
β3 was interpreted as the y-intercept for the average TD participant since this is the
magnitude of RMSE at the beginning of the experimental protocol (i.e., when j = 0). The
terms bi2 and bi4 were the random effects (i.e., estimated individual adjustments) to the rate
constants; the random effects bi1 and bi3 were excluded as preliminary data analysis
indicated minimal between-subject variability in these parameter estimates. The b terms are
assumed to be normally distributed with a mean of 0 and a variance-covariance structure
specified by the matrix Φ (see section 2.2.2.2 for details). The γ parameters denote average
adjustments to the corresponding fixed effects for participants diagnosed with DCD. For
example, the sum of γ1 and γ3 represents the average adjustment to the y-intercept for a child
with DCD whereas the γ4 parameter represents the average adjustment to the ‘slow
adaptation’ rate constant for a child with DCD. Alternatively stated, the sum of the
corresponding β and γ parameters was equal to the typical estimates for a child with DCD.
Since the γ parameters were adjustments to the typical values for the TD children, statistical
tests of these parameters assessed the differences between the two groups of children. It
should be noted that the γ2 parameter was excluded from the final model as preliminary data
analysis indicated that the two groups of children did not differ in the fast adaptation
parameter (Likelihood Ratio Test (LRT): TLRT(df = 1) = 1.8; p > 0.05).
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2.2.2.2. Variance-Covariance Structure: An advantage of RCMs over more conventional
analytic methods is that both within- and between-subject variability are explicitly modeled.
We give a brief description of each below in relation to the model described in Eq. 2.

Within-Subject Covariance Structure: Within-subject variability is captured by the residual
terms eij which represent the variability of subject i’s scores around his/her predicted score
at trial block j. In many contexts, it is reasonable to expect a comparable pattern of within-
subject variation across individuals. Furthermore, specification of the random within-subject
variation allows for the possibility of heterogeneous within-subject variances as well as
within-subject correlation. These characteristics are critical for repeated measures data
because the variances frequently change as a function of the mean and/or trial number and
the correlation between two observations tends to decrease as the distance between
observations increases. For ei = (ei1, …, eini)′, the common within-subject variance-
covariance structure can be written as

(3)

where λ is a vector of parameters which describe the structure. The errors, ei, are assumed to
be normally distributed with a mean of 0 and variance-covariance structure specified by the
matrix, Λi (λ). While numerous alternative configurations are possible to account for the
complexities in the data set, a simple homogenous, independence structure such as Λi
(λ)=σ2Ini, where λ=σ2, is often specified (and is used in the current example). In this
structure, the variances associated with the repeated measures are constant and the
covariance between any two observations is zero. The i subscript is used simply to show the
dependence of Λi on its dimensions. In terms of the current example, Λi is a diagonal matrix
with row and column dimensions equal to the number of blocks of trials for the ith subject.
The maximum size of Λi is 42 by 42, but the dimensions may be smaller if the ith subject is
missing data. It is not unreasonable to expect that the preponderance of variability in the
repeated measures can be adequately represented through specification of random effects
(i.e., the b terms); and once these differences are taken into account in the model, the within-
subject variability can often be accounted for by a simple, parsimonious structure. It should
be emphasized that the simple, independent structure of Λi used in the current example is
not the only option. Please refer to Fitzmaurice et al. (2004) for a detailed discussion on
alternative variance-covariance structures.

Between-Subject Covariance Structure: Since the random effects represent individual
deviations from the group trajectory, they provide a measure of between-subject variability.
[Fixed parameters (i.e., the β and γ terms) do not vary; therefore, they do not contribute to
the between-subject variability]. The variances and covariance of these random effects are
represented by the matrix Φ, the dimensions of which are equal to the number of random
effects. The between-subject covariance matrix, Φ, has diagonal elements representing
variance components capturing the degree of variability in regression coefficients between
subjects, and off-diagonal elements summarizing the extent the random effects are related.
Since Eq. 2 contained two random effects (i.e., bi2 and bi4), Φ is a 2 × 2 matrix.

(4)
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where ϕ22 and ϕ44 represent the variance of bi2 and bi4, respectively, and ϕ24 is the
covariance between the two random effects. As emphasized above, bi1 and bi3 were
removed from the final model based on preliminary data analyses.

Normality is the most common assumption for the distribution of random effects, that is:

(5)

although the structure can be modified to allow for group differences in Φ. In some
instances, the normality distributional assumption may not accurately represent the
distribution of the random effects. In these cases, other parametric or non-parametric
alternatives can be implemented.

3. Results
Averaged movement trajectories from early (trials 1–18) and late (trials 109–126) exposure
are shown for the children with DCD and the TD children in Fig. 1. During early exposure,
movement paths were characterized by spiral patterns as the children adjusted their
movements in response to the visual feedback rotation. Movements during late exposure
were once again straight, suggesting that the participants adapted to the distorted visual
feedback. Interestingly, the children with DCD appeared to perform the task similar to their
TD peers, a comparison that was further explored by the subsequent analyses. The
remainder of this section presents the results from both the GLM and the RCM. The critical
differences between these two statistical approaches are the focus of the discussion section.

3.1. General Linear Model
Results from the 3 (block: early/middle/late) × 2 (group: TD/DCD) ANOVA on RMSE (Fig.
2) revealed a significant effect of trial block (F(2,38) = 145.90; p < 0.001); main effect of
group and the interaction were not significant (p > 0.05). These results from the GLM
indicate that the two groups of children adapted similarly to the visuomotor rotation.

To examine the between-subject heterogeneity in the children with DCD, the bar plot in Fig.
2 depicts individual data relative to the group means. This approach provided information
about each individual’s performance only if the individual was multiple standard deviations
from the population means. For example, an examination of Figure 2 suggested that DCD
IDs #68 and #69 failed to adapt to the sensorimotor distortion as well as their TD peers.
However, definitive conclusions can not be made regarding these participants as the GLM
does not statistically parameterize individual data. With the approach in Fig. 2, individual
differences may be observed, but not explicitly parameterized and tested.

3.2. Random Coefficient Model
RMSE during the exposure phase is shown for the two groups of children in Fig. 3.
Population parameters, the fixed effects in the double exponential model (Eq. 4), are
included in Table 2. The sum of β1 and β3 (3.27, SE = 0.15) was interpreted as the average
y-intercept for the TD children. Similarly, the sum of γ1 and γ3 (0.74, SE = 0.22) was the
average adjustment to the y-intercept for the children with DCD and was statistically
significant (t = 3.38, p = 0.003), indicating that these children had larger RMSE values at the
beginning of the exposure phase compared to the values typical of a child in the TD group.
β2, representing the fast adaptation component for both groups, was significant (t = 5.39, p <
0.001). Since γ2 was removed from the model, the two groups of children did not differ in
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the fast adaptation component. The slow adaptation parameter for the TD children (i.e., β4)
was also significant (t = 4.92, p < 0.001). Interestingly, the adjustment to this parameter for
the children with DCD, γ4, was both positive and significant (t = 3.26, p = 0.004), indicating
that the slow adaptation component for the children with DCD was substantially reduced
(i.e., worse performance) compared to the values typical of a child in the TD group.

Individual trajectories for RMSE and the corresponding parameters (Eq. 4) are shown in Fig.
4 and Table 3, respectively. Consistent with the extant literature, children with DCD
exhibited substantial within-group variability. Two participants demonstrated increased
rates of fast adaptation (i.e., bi2), as compared to the average child with DCD (ID #28: t =
3.50, p = 0.002; ID #40: t = 2.85, p = 0.01), whereas two participants demonstrated
decreased fast adaptation rates (ID #68: t = 2.15, p = 0.045; ID #69: t = 4.40, p < 0.001).
Since there was no γ2 parameter in the double exponential model, these four participants
were also significantly different from the values typical of a child in the TD group.

Similar to the rates of the fast adaptation component, two children with DCD demonstrated
increased rates of slow adaptation (i.e., bi4) relative to the typical child with DCD (ID #33: t
= 2.74, p = 0.013; ID #40; t = 3.33, p = 0.004). Conversely, DCD participants #68 and #69
demonstrated decreased rates of slow adaptation (ID #68: t = 2.39, p = 0.027; ID #69: t =
5.63, p < 0.001), a result that mirrored their fast adaptation parameters. Although only two
participants with DCD demonstrated decreased rates of slow adaptation as compared to the
typical DCD child, all seven of the participants were worse than the average TD child. The
sum of γ4 (adjustment to β4 for the children with DCD) and each individual’s bi4 random
effect yielded all positive numbers; thus, each child with DCD had a decreased slow
adaptation rate relative to the average TD child.

Collectively, the results from the RCM indicated: 1) children with DCD demonstrated a
decreased slow adaptation rate; and, 2) children with DCD exhibited substantial between-
subject variability, as some participants adapted to the visuo-motor distortion equal to or
better than the other children with DCD and their TD peers (i.e., ID #s 28, 33, 40), whereas
other participants were significantly worse (ID #s 68, 69).

4. Discussion
This study sought to statistically characterize the behavioral performance of children with
DCD using an approach, RCM (Cudeck, 1996; Cudeck et al., 2007; Davidian et al., 1995;
Fitzmaurice et al., 2004), that addressed the between-subject heterogeneity and within-
subject variability typical of this population. Data from a visuomotor adaptation experiment
were used to highlight the differences between the RCM and the more commonly employed
GLM. The RCM revealed population-level differences that the GLM did not detect; and, it
characterized trajectories of change for each individual. To fully demonstrate the utility of
this approach, we have organized the remainder of this discussion into two sections. The
first section (4.1), consistent with the primary purpose of this research, focuses on
advantages of the RCM for the analysis of children with DCD. It should be emphasized that
this section is not necessarily limited to advantages of the RCM; rather, it contains
advantages of a broader class of flexible statistical techniques that parameterize the
population as well as each individual’s performance. The second section (4.2) illustrates
novel findings and emphasizes how the current results can be interpreted within the contexts
of sensorimotor adaptation and DCD.

4.1. The Random Coefficient Model (RCM)
4.1.1. Subject-Specific Trajectories—One of the most attractive features of statistical
approaches such as the RCM is the ability to characterize data at the individual level. The
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RCM employed for the current data set demonstrated that DCD participants #68 and #69 did
not adapt at the same rates as their peers with DCD or the TD children. However, based on
the results of the GLM, these two children were combined with the other participants with
DCD and their specific behavioral impairments were ‘masked’ by the group average. The
RCM provided us the opportunity to make inferences at the individual level (see Section 4.2.
for a discussion of these inferences). This feature is especially important when investigating
special populations as the behavioral impairments are quite heterogeneous. A second
advantage of employing statistical approaches that parameterize individual data arises when
a mean structure may be appropriate to capture the behavior of interest at the population
level, but this structure is not an appropriate characterization of any one individual (Cudeck
et al., 2007). In this context, an interpretation of the model parameters will fail to produce
any meaningful conclusions as these parameters are not applicable to any one individual.

4.1.2. Trajectories of Change—The repeated measures ANOVA employed in the
current study aggregated over 100 trials of data into three blocks (early, middle, and late
exposure) and assessed differences between the means of these trial blocks. This approach
does not adequately capture the behavioral trajectory of the participants. In contrast, the
RCM was parameterized such that adaptation rates were obtained, effectively assessing
change as a function of the repeated observations. This feature makes statistical models such
as the RCM, in contrast to repeated measures ANOVAs, better suited for analyzing
trajectories of behavioral change. We chose a double exponential for the current data set
based on our preliminary data analyses and to be consistent with previous literature
(Flanagan et al., 1999; King et al., 2009; Krakauer et al., 2005; Krakauer et al., 2000).
However, the RCM can be parameterized with a plethora of potential linear and non-linear
mean functions. A detailed discussion on the criteria for selecting appropriate mean
functions is outside the scope of this article but is included in Cudeck and Harring (2010).

4.1.3. Increased Flexibility—A third advantage of statistical approaches such as the
RCM is the increased flexibility in model parameterization. For example, a repeated-
measures ANOVA assumes that both the variance across observations and the covariance
between any two observations are constant (i.e., a compound symmetric variance-covariance
structure). This assumption is often violated with longitudinal data because the variance
frequently changes as a function of the mean and/or trial number. Furthermore, in a
correlated data set, the covariance between two observations tends to decrease as the
distance between observations increases. Violations of the compound symmetric variance-
covariance structure can impact the validity of the statistical tests (McCulloch, 2005).
However, with the RCM, the covariance structure can be parameterized to account for these
inherent characteristics of longitudinal data. Moreover, between- and within-subject
variability are both explicitly modeled in the RCM by the matrices Φ and Λi, respectively.
This allows researchers to conceptualize the two different types of variability separately and
facilitates the construction of a more appropriate statistical model.

Another feature of RCM is the ability to handle missing data, which can be problematic for
traditional statistical analyses. For example, if a participant has missing data and a repeated
measures ANOVA is conducted, all of the data from this participant are ignored in the
analysis. This is problematic for two reasons. One, fewer participants result in a decrease in
statistical power. Two, the validity of the inferences can be jeopardized if the participants
with missing data ‘share’ a common attribute that underlies the missing data. In other words,
the sample is no longer representative of the population of interest. It is possible to
circumvent these issues by averaging across only the available data (i.e., ignore the missing
values). Although this will allow the participants with missing data to remain in the
analyses, these values may be biased depending on the number of observations included in
the average. In contrast to traditional GLMs, the RCM employed in this research is capable

King et al. Page 9

Res Dev Disabil. Author manuscript; available in PMC 2012 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



of handling missing data that are assumed to be missing at random (MAR). For a more
detailed discussion of missing data, please refer to Fitzmaurice and colleagues (2004).

4.1.4. Limitations and Considerations—The preceding sections discussed advantages
of the RCM; however, we should emphasize some of the limitations and other
considerations associated with this statistical approach. First, the RCM is appropriate for
data sets containing multiple observations from each individual (e.g., repeated measures
data). These repeated measures can come from a single experimental session, as in the
current study, or from a longitudinal design where multiple observations are taken at
different time points. Moreover, the multiple observations do not have to be taken at
identical time points for each individual (i.e., unbalanced design). Second, a detailed
analysis and interpretation of individual data may be unwieldy for large sample sizes. In the
current example, our individual analysis was straightforward as we predominantly focused
on seven children with DCD. For substantially larger sample sizes, it may not be practical to
examine the behavioral trajectory of each and every participant. However, previous research
has typically examined a random sample from the full data set to assess individual
trajectories (e.g., Cudeck et al., 2007). Moreover, independent of sample size, the values of
the random effects may be used to cluster participants into smaller sub-groups and/or to
identify specific participants that deviated substantially from the population. Thus, the RCM
can still provide valuable information about individuals’ performances regardless of sample
size.

4.2. Insights into Developmental Coordination Disorder
This research employed a novel statistical approach to parameterize the sensorimotor
performance of children with DCD. However, such an approach is only beneficial if the
results can be interpreted within the context of the behavioral paradigm and the population
of interest. Utilizing statistical approaches such as the RCM provides a unique perspective
for researchers investigating children with DCD and may lead to an increased understanding
of the disorder. The remainder of this discussion will focus on how the results of the RCM
can provide additional insights into DCD that are not afforded by traditional statistical
approaches such as the GLM.

4.2.1. Subject-Specific Trajectories—Subject-specific models, such as the RCM,
characterize each individual’s trajectory, allowing specific children who struggled to be
identified based on their performance on the task. For example, children with DCD #28,
#33, and #40 performed better than their TD peers, suggesting that these children have no
sensorimotor adaptation impairments. Conversely, a subset of participants with DCD (IDs
#68 and #69) failed to adapt to the novel sensorimotor environment compared to the other
children with DCD and the TD children. These two participants had difficulty updating a
spatial-to-motor transformation that is appropriate for the manipulated sensorimotor
environment (Kagerer et al., 1997; Krakauer et al., 2000). Previous research has suggested
that sensorimotor adaptation is dependent on the cerebellum, especially when movement
errors are relatively small, as in the late exposure phase of this study (Baizer, Kralj-Hans, &
Glickstein, 1999; Martin, Keating, Goodkin, Bastian, & Thach, 1996; Robertson & Miall,
1999). Research on patients with Parkinson’s disease (PD) indicated that the basal ganglia
are critical for sensorimotor adaptation, particularly when the magnitude of the movement
errors is relatively large, as in the early exposure phase of the present study (Contreras-Vidal
& Buch, 2003; Teulings, Contreras-Vidal, Stelmach, & Adler, 2002). It is possible that these
two children with DCD have impaired functioning of the basal ganglia and/or cerebellum,
although additional research is necessary to investigate this potential explanation. This
subject-specific statistical approach can provide researchers an opportunity to probe
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individual behavioral deficits and may lead to the development of individualized
interventions.

Identifying children with similar behavioral impairments also facilitates the clustering of
children with DCD, potentially elucidating subtypes of the disorder. The existence of several
subtypes of DCD has garnered substantial attention in the extant literature and may help
explain the increased between-subject variability in this population (Hoare, 1994; Lundy-
Ekman, Ivry, Keele, & Woollacott, 1991; Visser, 2003; Volman et al., 1998; Whitall et al.,
2008).

4.2.2. Sensorimotor Adaptation—The results of the RCM provided rates of
sensorimotor adaptation for both the children with DCD and the TD children. Children with
DCD demonstrated decreased adaptation rates for the slow adaptation component (i.e., the
γ4 parameter). Recent research suggests that at least two distinct processes underlie
sensorimotor adaptation: a ‘fast’ adaptation component critical for responding to movement
errors and a ‘slow’ adaptation component important for long-term retention (Joiner et al.,
2008; Smith et al., 2006). As children with DCD demonstrated decreased rates in the slow
adaptation component, these data suggest that long-term sensorimotor retention is impaired
in these children. Moreover, the fast and slow adaptation components have been attributed to
distinct parts of the cerebellum (Smith et al., 2006), a neural structure that has been
suggested as a potential neural underpinning of DCD (Bo et al., 2008; Cantin, Polatajko,
Thach, & Jaglal, 2007; Kagerer et al., 2006; Lundy-Ekman et al., 1991; O’Hare & Khalid,
2002).

4.2.3. Insights from Behavioral Heterogeneity—The utilization of statistical models,
such as the RCM, that address the behavioral heterogeneity in children with DCD is critical
as this increased between-subject variability may provide critical information about the
etiology of DCD and its underlying behavioral impairments. One potential explanation of
this heterogeneity is that there are multiple mechanisms underlying the population of DCD
and the manifestations of the disorder are dependent on these specific mechanism(s).
Alternatively, behavioral deficits may be the result of a single neurological impairment and
the heterogeneity of motor performance can be attributed to the varying degrees of severity
this impairment has on the motor system. It has previously been proposed that such a
neurological impairment underlies not only DCD, but other developmental disorders as well
(Kaplan, Crawford, Cantell, Kooistra, & Dewey, 2006; Kaplan, Wilson, Dewey, &
Crawford, 1998). Support for this explanation is based on not only the heterogeneous
behavioral deficits in DCD, but the increased co-occurrence of developmental disorders
such as DCD, attention-deficit hyperactivity disorder (ADHD), and reading disability (RD)
(Kaplan et al., 2006; Kaplan et al., 1998; Martin, Piek, & Hay, 2006). Whereas the increased
intra- and inter-individual variability has previously been considered a limiting factor in the
analysis and interpretation of behavioral data from children with DCD, these behavioral
characteristics may provide insights when appropriate statistical techniques are employed.

5. Conclusion
The current study demonstrated the utility of a flexible statistical technique, the RCM, for
analyzing the behavioral performance of children with DCD. Specifically, the RCM detected
critical population-level differences between TD children and children with DCD and
addressed the substantial heterogeneity evident in this population by analyzing each
individual’s behavioral trajectory. This analytic technique can be applied to a plethora of
experiments in which the data set contains multiple observations from each individual.
Importantly, these repeated measures do not have to be from a single experimental session,
as was the case in the current study. The multiple observations can span weeks, months, or
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years, making the RCM an ideal technique for investigating developmental research
questions. Similarly, the RCM is not limited to research on children with DCD. It can be
employed to investigate any population provided that characterization of both average and
subject-specific change is of interest. We propose that future research investigating
populations that demonstrate heterogeneous behavioral performance, as in the case of
children with DCD, should incorporate statistical techniques, such as the RCM, that analyze
subject-specific and population effects.
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Fig. 1.
Movement Trajectories. Solid black lines depict averaged group trajectories and the gray
shaded regions represent one standard deviation. Units are in cm.
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Fig. 2.
Root mean squared errors (RMSE) for the three blocks of trials and two experimental
groups. Error bars depict 1 SD. Individual data from the children with DCD are depicted as
open circles. Numbers to the right of these circles are the participant ID numbers (refer to
Table 1B).
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Fig. 3.
Exposure: Mean Trajectories. Mean root mean squared errors (RMSE) are shown for the
children with DCD (triangles, dotted lines) and TD children (circles, solid lines) as a
function of exposure blocks. Vertical lines depict +/− one SD. Parameters for the fitted
exponential trajectories are shown in Table 2.
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Fig. 4.
Exposure: Individual Trajectories. Root mean squared errors (RMSE) are shown as a
function of exposure blocks for the seven children with DCD. Triangles represent individual
data points. Dotted lines depict estimated trajectories for each child with DCD and solid
lines represent the estimated mean trajectories of the TD children.
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Table 1

A.

Group Gender Mean Age (SD) MABC %ile Range

TD 10 M; 4 F 10.04 (0.58) 20 – 96

DCD 6 M; 1 F 10.17 (0.76) see Table 1B

B.

ID # Gender Age MABC %ile

28 M 9.5 1

33 M 11.35 3

36 M 9.21 5

40 F 9.62 < 1

45 M 10.74 < 1

68 M 10.43 2

69 M 10.33 < 1

A. Participant information for the two groups of children. B. Participant information for each child diagnosed with DCD.
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Table 3

Random effects for children with DCD

ID # bi2 bi4

28 −0.583*
(0.166)

−0.003
(0.004)

33 0.079
(0.072)

−0.012*
(0.004)

36 −0.087
(0.095)

−0.001
(0.004)

40 −0.380*
(0.133)

−0.016*
(0.005)

45 −0.001
(0.085)

−0.007
(0.004)

68 0.145*
(0.068)

0.009*
(0.004)

69 0.288*
(0.065)

0.021*
(0.004)

Values in parentheses are standard errors.

*
significantly different from the mean of the children with DCD at the p = 0.05 level.
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